Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Week 2 #2

Open
Jangchanhi opened this issue Mar 15, 2023 · 0 comments
Open

Week 2 #2

Jangchanhi opened this issue Mar 15, 2023 · 0 comments

Comments

@Jangchanhi
Copy link
Owner

import matplotlib.pyplot as plt
import numpy as np
from sklearn.neighbors import KNeighborsClassifier
data_input = np.load('data_input.npy')
data_target = np.load('data_target.npy')
kn = KNeighborsClassifier()

print("입력 데이터의 개수 : " + data_input.size) 3600

print("타겟 데이터의 개수 : "+ data_target.size) 1800

input_arr = np.array(data_input)
target_arr = np.array(data_target)

np.random.seed(1650)

print(input_arr)
print(input_arr.size)

입력 데이터 개수 3600

print(target_arr)
print(target_arr.size)

타겟 데이터 개수 1800

index = np.arange(1800)
np.random.shuffle(index)
print(index)

train_input = input_arr[index[:500]]
train_target = target_arr[index[:500]]

print("입력 학습 : " )
print(train_input)
print("타겟 학습 : ")
print(train_target)

test_input = input_arr[index[500:]]
test_target = input_arr[index[500:]]

mean = np.mean(train_input, axis=0)
std = np.std(train_input, axis=0)

print(mean,std)
train_scaled = (train_input - mean) / std
new = ([25,300] - mean) / std
kn.fit(train_scaled, train_target)

print(kn.predict([new]))
print(kn.predict([[25,300]]))
distances, indexes = kn.kneighbors([new])

plt.scatter(train_scaled[:,0], train_scaled[:,1])
plt.scatter(new[0], new[1], marker='^')
plt.scatter(train_scaled[indexes,0],train_scaled[indexes,1], marker='D')

print(np.shape(data_input))
print(input_arr)
print(np.shape(data_target))
print(target_arr)

print(np.shape(data_target))
x = np.shape(data_target==1)+np.shape(data_target==2)+np.shape(data_target==3)+np.shape(data_target==4)
print("x 값")
print(x)

a = np.where(data_target==1)
b = np.where(data_target==2)
c = np.where(data_target==3)
d = np.where(data_target==4)
print("a 값 : 1")
print(a)
print("b 값 : 2")
print(b)
print("c 값 : 3")
print(c)
print("d 값 : 4")
print(d)

data1_size = 500
data2_size = 400
data3_size = 400
data4_size = 500

plt.xlabel('length')
plt.ylabel('weight')

plt.show()

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant