We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
import matplotlib.pyplot as plt import numpy as np from sklearn.neighbors import KNeighborsClassifier data_input = np.load('data_input.npy') data_target = np.load('data_target.npy') kn = KNeighborsClassifier()
input_arr = np.array(data_input) target_arr = np.array(data_target)
np.random.seed(1650)
print(input_arr) print(input_arr.size)
print(target_arr) print(target_arr.size)
index = np.arange(1800) np.random.shuffle(index) print(index)
train_input = input_arr[index[:500]] train_target = target_arr[index[:500]]
print("입력 학습 : " ) print(train_input) print("타겟 학습 : ") print(train_target)
test_input = input_arr[index[500:]] test_target = input_arr[index[500:]]
mean = np.mean(train_input, axis=0) std = np.std(train_input, axis=0)
print(mean,std) train_scaled = (train_input - mean) / std new = ([25,300] - mean) / std kn.fit(train_scaled, train_target)
print(kn.predict([new])) print(kn.predict([[25,300]])) distances, indexes = kn.kneighbors([new])
plt.scatter(train_scaled[:,0], train_scaled[:,1]) plt.scatter(new[0], new[1], marker='^') plt.scatter(train_scaled[indexes,0],train_scaled[indexes,1], marker='D')
print(np.shape(data_input)) print(input_arr) print(np.shape(data_target)) print(target_arr)
print(np.shape(data_target)) x = np.shape(data_target==1)+np.shape(data_target==2)+np.shape(data_target==3)+np.shape(data_target==4) print("x 값") print(x)
a = np.where(data_target==1) b = np.where(data_target==2) c = np.where(data_target==3) d = np.where(data_target==4) print("a 값 : 1") print(a) print("b 값 : 2") print(b) print("c 값 : 3") print(c) print("d 값 : 4") print(d)
data1_size = 500 data2_size = 400 data3_size = 400 data4_size = 500
plt.xlabel('length') plt.ylabel('weight')
plt.show()
The text was updated successfully, but these errors were encountered:
No branches or pull requests
import matplotlib.pyplot as plt
import numpy as np
from sklearn.neighbors import KNeighborsClassifier
data_input = np.load('data_input.npy')
data_target = np.load('data_target.npy')
kn = KNeighborsClassifier()
print("입력 데이터의 개수 : " + data_input.size) 3600
print("타겟 데이터의 개수 : "+ data_target.size) 1800
input_arr = np.array(data_input)
target_arr = np.array(data_target)
np.random.seed(1650)
print(input_arr)
print(input_arr.size)
입력 데이터 개수 3600
print(target_arr)
print(target_arr.size)
타겟 데이터 개수 1800
index = np.arange(1800)
np.random.shuffle(index)
print(index)
train_input = input_arr[index[:500]]
train_target = target_arr[index[:500]]
print("입력 학습 : " )
print(train_input)
print("타겟 학습 : ")
print(train_target)
test_input = input_arr[index[500:]]
test_target = input_arr[index[500:]]
mean = np.mean(train_input, axis=0)
std = np.std(train_input, axis=0)
print(mean,std)
train_scaled = (train_input - mean) / std
new = ([25,300] - mean) / std
kn.fit(train_scaled, train_target)
print(kn.predict([new]))
print(kn.predict([[25,300]]))
distances, indexes = kn.kneighbors([new])
plt.scatter(train_scaled[:,0], train_scaled[:,1])
plt.scatter(new[0], new[1], marker='^')
plt.scatter(train_scaled[indexes,0],train_scaled[indexes,1], marker='D')
print(np.shape(data_input))
print(input_arr)
print(np.shape(data_target))
print(target_arr)
print(np.shape(data_target))
x = np.shape(data_target==1)+np.shape(data_target==2)+np.shape(data_target==3)+np.shape(data_target==4)
print("x 값")
print(x)
a = np.where(data_target==1)
b = np.where(data_target==2)
c = np.where(data_target==3)
d = np.where(data_target==4)
print("a 값 : 1")
print(a)
print("b 값 : 2")
print(b)
print("c 값 : 3")
print(c)
print("d 값 : 4")
print(d)
data1_size = 500
data2_size = 400
data3_size = 400
data4_size = 500
plt.xlabel('length')
plt.ylabel('weight')
plt.show()
The text was updated successfully, but these errors were encountered: