forked from architkaila/Chat-With-Documents
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
206 lines (154 loc) · 6.28 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import streamlit as st
from dotenv import load_dotenv
from PyPDF2 import PdfReader
from langchain.text_splitter import CharacterTextSplitter
from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores import FAISS
from langchain.chat_models import ChatOpenAI
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
from html_chatbot_template import css, bot_template, user_template
def extract_text(pdf_files):
"""
Function to extract the text from a PDF file
Args:
pdf_file (file): The PDF files to extract the text from
Returns:
text (str): The extracted text from the PDF file
"""
# Initialize the raw text variable
text = ""
# Iterate over the documents
for pdf_file in pdf_files:
print("[INFO] Extracting text from {}".format(pdf_file.name))
# Read the PDF file
pdf_reader = PdfReader(pdf_file)
# Extract the text from the PDF pages and add it to the raw text variable
for page in pdf_reader.pages:
text += page.extract_text()
return text
def get_chunks(text):
"""
Function to get the chunks of text from the raw text
Args:
text (str): The raw text from the PDF file
Returns:
chunks (list): The list of chunks of text
"""
# Initialize the text splitter
splitter = CharacterTextSplitter(
separator="\n", # Split the text by new line
chunk_size=1000, # Split the text into chunks of 1000 characters
chunk_overlap=200, # Overlap the chunks by 200 characters
length_function=len # Use the length function to get the length of the text
)
# Get the chunks of text
chunks = splitter.split_text(text)
return chunks
def get_vectorstore(chunks):
"""
Function to create avector store for the chunks of text to store the embeddings
Args:
chunks (list): The list of chunks of text
Returns:
vector_store (FAISS): The vector store for the chunks of text
"""
# Initialize the embeddings model to get the embeddings for the chunks of text
embeddings = OpenAIEmbeddings()
# Create a vector store for the chunks of text embeddings
# Can use any other online vector store (Elasticsearch, PineCone, etc.)
vector_store = FAISS.from_texts(texts=chunks, embedding=embeddings)
return vector_store
def get_conversation_chain(vector_store):
"""
Function to create a conversation chain for the chat model
Args:
vector_store (FAISS): The vector store for the chunks of text
Returns:
conversation_chain (ConversationRetrievalChain): The conversation chain for the chat model
"""
# Initialize the chat model using Langchain OpenAi API
# Set the temperature and select the model to use
# Can replace this with any other chat model (Llama, Falcom, etc.)
llm = ChatOpenAI(model_name='gpt-3.5-turbo', temperature=0.1)
# Initialize the chat memory
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
# Create a conversation chain for the chat model
conversation_chain = ConversationalRetrievalChain.from_llm(
llm=llm, # Chat model
retriever=vector_store.as_retriever(), # Vector store
memory=memory, # Chat memory
)
return conversation_chain
def generate_response(question):
"""
Function to generate a response for the user query using the chat model
Args:
question (str): The user query
Returns:
response (str): The response from the chat model
"""
# Get the response from the chat model for the user query
response = st.session_state.conversations({'question': question})
# Update the chat history
st.session_state.chat_history = response['chat_history']
# Add the response to the UI
for i, message in enumerate(st.session_state.chat_history):
# Check if the message is from the user or the chatbot
if i % 2 == 0:
# User message
st.write(user_template.replace(
"{{MSG}}", message.content), unsafe_allow_html=True)
else:
# Chatbot message
st.write(bot_template.replace(
"{{MSG}}", message.content), unsafe_allow_html=True)
## Landing page UI
def run_UI():
"""
The main UI function to display the UI for the webapp
Args:
None
Returns:
None
"""
# Load the environment variables (API keys)
load_dotenv()
# Set the page tab title
st.set_page_config(page_title="DocuMentor", page_icon="🤖", layout="wide")
# Add the custom CSS to the UI
st.write(css, unsafe_allow_html=True)
# Initialize the session state variables to store the conversations and chat history
if "conversations" not in st.session_state:
st.session_state.conversations = None
if "chat_history" not in st.session_state:
st.session_state.chat_history = None
# Set the page title
st.header("DocuMentor: Conversations with Your Data 🤖")
# Input text box for user query
user_question = st.text_input("Upload your data and ask me anything?")
# Check if the user has entered a query/prompt
if user_question:
# Call the function to generate the response
generate_response(user_question)
# Sidebar menu
with st.sidebar:
st.subheader("Document Uploader")
# Document uploader
pdf_files = st.file_uploader("Upload a document you want to chat with", type="pdf", key="upload", accept_multiple_files=True)
# Process the document after the user clicks the button
if st.button("Start Chatting ✨"):
# Add a progress spinner
with st.spinner("Processing"):
# Convert the PDF to raw text
raw_text = extract_text(pdf_files)
# Get the chunks of text
chunks = get_chunks(raw_text)
# Create a vector store for the chunks of text
vector_store = get_vectorstore(chunks)
# Create a conversation chain for the chat model
st.session_state.conversations = get_conversation_chain(vector_store)
# Application entry point
if __name__ == "__main__":
# Run the UI
run_UI()