-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdeluxe_lidar_analysis_package.r
195 lines (145 loc) · 7.17 KB
/
deluxe_lidar_analysis_package.r
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
# This program takes in a folder of raw pre- and post-burn .las files, along with a csv file with paired file
# names and pre and post-burn masses. It outputs a folder of cropped, denoised, normalized scans and a csv file
# with height distributions, volumes, bulk densities, consumption by volume, and consumption by mass.
require("lidR")
# USER: set the location of the input folder
# the input folder should be a folder of lidar scans
# all of the files in the input folder should end with "_pre.las" or "_post.las"
input.folder <- "C:/Users/js81535/Desktop/lidar_exploration/unclipped_scans/LAS files/"
# USER: set the location of the input csv.
# the table should have columns for pre_file_name, post_file_name, pre_mass, and post_mass
# the table should have one row for each pre-burn/post-burn pair of scans in the input file
input.csv <- "C:/Users/js81535/Desktop/lidar_exploration/names_and_masses.csv"
# USER: set the location where the output should go (the cropped scans and the csv file will go to this folder.)
output.folder <- "C:/Users/js81535/Desktop/lidar_exploration/autoclipped_scans_for_analysis"
# grab data from the folder and csv file
input.file.names <- list.files(path = input.folder, full.names = FALSE)
input.data <- read.csv(input.csv)
# initialize output data frame
output.data <- data.frame(input.data)
output.data$min_height_pre <- NA
output.data$q1_height_pre <- NA
output.data$median_height_pre <- NA
output.data$q3_height_pre <- NA
output.data$max_height_pre <- NA
output.data$volume_pre <- NA
output.data$bulk_density_pre <- NA
output.data$min_height_post <- NA
output.data$q1_height_post <- NA
output.data$median_height_post <- NA
output.data$q3_height_post <- NA
output.data$max_height_post <- NA
output.data$volume_post <- NA
output.data$bulk_density_post <- NA
output.data$consumption_by_volume <- NA
output.data$consumption_by_mass <- NA
# loop through the raw pre and post files to crop them
all.files <- c(input.data$pre_file_name, input.data$post_file_name)
for (file.name in all.files) {
# check that the file exists in the folder
if (!file.exists(file.path(input.folder, file.name))) {
cat("the file \'", file.name, "\' is not in the input folder.\nEnsure that the folder has pre and post burn .las files with names that match the ones in the pre_file_name and post_file_name columns of the input csv.\n")
next
}
# load the scan
las <- readLAS(file.path(input.folder, file.name))
# find the median position of all of the points in the scan
med.x <- median(las$X)
med.y <- median(las$Y)
med.z <- median(las$Z)
#print(c(med.x, med.y, med.z))
# trim a 2m square around the median position of all the points in the scan
top <- med.y + 1
right <- med.x + 1
bottom <- med.y - 1
left <- med.x - 1
trimmed.las <- clip_rectangle(las, xleft = left, ybottom = bottom, xright = right, ytop = top)
#plot(trimmed.las)
# crop out the ceiling
ground.las <- filter_poi(trimmed.las, Z < 1)
#plot(ground.las)
# crop out the floor
platform.las <- filter_poi(ground.las, Z > -1.4)
#plot(platform.las)
# classify noise points and trim them
platform.las <- classify_noise(platform.las, sor(k=10, m=2))
denoised.las <- filter_poi(platform.las, Classification != 18)
# write the cropped scan to a file in the output folder.
cat("processing ", file.name, '...\n')
if (grepl('_pre\\.las$', file.name)) {
new.file.name <- sub("_pre\\.las$", "_autoclipped_pre.las", file.name)
} else if (grepl('_post\\.las$', file.name)) {
new.file.name <- sub("_post\\.las$", "_autoclipped_post.las", file.name)
} else {
new.file.name <- file.name
}
cat("stored as ", new.file.name, '\n')
writeLAS(denoised.las, file.path(output.folder, new.file.name))
}
# define a function to find height distributions and volumes
find.hdv <- function(file.name, pre.post, output.row) {
# load the scan
las <- readLAS(file.path(output.folder, file.name))
# classify ground and non-ground points
mycsf <- csf(FALSE, class_threshold = 0.01, rigidness = 3, cloth_resolution = 0.9)
las <- classify_ground(las, mycsf)
# normalize heights from the ground
norm.las <- normalize_height(las, tin())
# find height distribution and add it to the output data frame
fuel.points <- Filter(function(x) x > 0, attributes(norm.las)$data$Z)
min.height <- min(fuel.points)
q1.height <- quantile(fuel.points, probs = 0.25, names=FALSE)[1]
median.height <- median(fuel.points)
q3.height <- quantile(fuel.points, probs = 0.75, names=FALSE)[1]
max.height <- max(fuel.points)
# rasterize the top of the fuel bed
fuel.raster <- rasterize_canopy(norm.las, res = 0.004, algorithm = dsmtin())
# get all of the individual pixels in the raster
fuel.matrix <- as.matrix(fuel.raster)
# make an empty list. Then, populate it with the volumes for each pixel
uprights <- c()
for (point in fuel.matrix) {
# we only want points that have positive height
if (!is.na(point) && point > 0) {
upright.volume <- point * 0.000016 # multiply by the area of each pixel (which is the resolution squared)
uprights <- append(uprights, upright.volume)
}
}
total.volume <- sum(uprights)
if (pre.post == 'pre') {
output.data[output.row, "min_height_pre"] <<- min.height
output.data[output.row, "q1_height_pre"] <<- q1.height
output.data[output.row, "median_height_pre"] <<- median.height
output.data[output.row, "q3_height_pre"] <<- q3.height
output.data[output.row, "max_height_pre"] <<- max.height
output.data[output.row, "volume_pre"] <<- total.volume
} else if (pre.post == 'post') {
output.data[output.row, "min_height_post"] <<- min.height
output.data[output.row, "q1_height_post"] <<- q1.height
output.data[output.row, "median_height_post"] <<- median.height
output.data[output.row, "q3_height_post"] <<- q3.height
output.data[output.row, "max_height_post"] <<- max.height
output.data[output.row, "volume_post"] <<- total.volume
}
cat('...')
}
# find height distribution and volume for each file and add it to the output data frame
for (i in 1:nrow(input.data)) {
# grab names from the input csv
pre.name <- input.data[i, "pre_file_name"]
post.name <- input.data[i, "post_file_name"]
# update the names to match the new, processed scans
pre.name <- sub("_pre\\.las$", "_autoclipped_pre.las", pre.name)
post.name <- sub("_post\\.las$", "_autoclipped_post.las", post.name)
# find height distributions and volumes and add them to the output data frame
find.hdv(pre.name, 'pre', i)
find.hdv(post.name, 'post', i)
}
# add bulk densities and consumption to the data frame
output.data$bulk_density_pre <- output.data$pre_mass / output.data$volume_pre
output.data$bulk_density_post <- output.data$post_mass / output.data$volume_post
output.data$consumption_by_volume <- ((output.data$volume_pre - output.data$volume_post) / output.data$volume_pre) * 100
output.data$consumption_by_mass <- ((output.data$pre_mass - output.data$post_mass) / output.data$pre_mass) * 100
# write the data to a csv file
write.csv(output.data, file.path(output.folder, "scans_data.csv"), row.names = FALSE)
cat("\nYour data can be found at \'", file.path(output.folder, "scans_data.csv"), "\'\n")