forked from PaddlePaddle/PaddleNLP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathquant.py
294 lines (267 loc) Β· 10.8 KB
/
quant.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
import paddle
from paddle import nn
from paddle.distributed.fleet.meta_parallel import (
ColumnParallelLinear,
RowParallelLinear,
)
from paddle.quantization import PTQ, QAT, QuantConfig
from paddleslim.quant.advanced import (
GPTQ,
AutoClip,
AWQSearch,
EMASampler,
MultiStepSampler,
PieceWiseSearch,
Shift,
Smooth,
)
from paddleslim.quant.advanced.utils import find_parent_layer_and_sub_name
from paddleslim.quant.layers import (
QuantizedColumnParallelLinear,
QuantizedRowParallelLinear,
)
from paddleslim.quant.observers import (
AbsMaxChannelWiseWeightObserver,
AVGObserver,
GroupWiseWeightObserver,
)
from paddleslim.quant.observers.abs_max_weight import (
AbsMaxChannelWiseWeightObserverLayer,
)
from paddleslim.quant.observers.avg import AVGObserverLayer
from paddleslim.quant.observers.groupwise import GroupWiseWeightObserverLayer
from paddlenlp.peft import PrefixModelForCausalLM
from paddlenlp.peft.lora import (
ColumnParallelLoRALinear,
LoRALinear,
RowParallelLoRALinear,
)
from paddlenlp.peft.lora.lora_quant_layers import (
ColumnParallelQuantedLoRALinear,
QuantedLoRALinear,
RowParallelQuantedLoRALinear,
)
from paddlenlp.utils.log import logger
def create_qat_model(quant_args, model, dtype):
from paddle.quantization.quanters import FakeQuanterWithAbsMaxObserver
from paddleslim.quant.quanters import (
FakeQuanterChannelWiseAbsMaxObserver,
PACTQuanter,
)
q_config = QuantConfig(activation=None, weight=None)
q_config.add_qat_layer_mapping(LoRALinear, QuantedLoRALinear)
q_config.add_qat_layer_mapping(RowParallelLoRALinear, RowParallelQuantedLoRALinear)
q_config.add_qat_layer_mapping(ColumnParallelLoRALinear, ColumnParallelQuantedLoRALinear)
if quant_args.quant_type == "a8w8":
activation = PACTQuanter(quanter=FakeQuanterWithAbsMaxObserver(), init_value=20.0, dtype=dtype)
weight = FakeQuanterChannelWiseAbsMaxObserver(bit_length=8, dtype="float32")
elif quant_args.quant_type == "weight_only_int4":
activation = None
weight = FakeQuanterChannelWiseAbsMaxObserver(bit_length=4, dtype="float32")
elif quant_args.quant_type == "weight_only_int8":
activation = None
weight = FakeQuanterChannelWiseAbsMaxObserver(bit_length=8, dtype="float32")
else:
raise ValueError("quant_type should be one of ['a8w8', 'weight_only_int4', 'weight_only_int8']")
q_config.add_type_config(RowParallelLoRALinear, weight=weight, activation=activation)
q_config.add_type_config(ColumnParallelLoRALinear, weight=weight, activation=activation)
q_config.add_type_config(LoRALinear, weight=weight, activation=activation)
q_config.add_type_config(nn.Linear, weight=weight, activation=activation)
qat = QAT(q_config)
model = qat.quantize(model, inplace=True)
return model
def apply_shift(quant_args, trainer, ptq_dataloader, ptq_model_config):
logger.info("***** Running Shift *****")
shift_sampler = EMASampler() if quant_args.shift_sampler == "ema" else None
shift = Shift(
model=trainer.model,
model_config=ptq_model_config,
sample_function=shift_sampler,
shift_all_linears=quant_args.shift_all_linears,
)
with paddle.no_grad():
trainer.ptq_loop(
ptq_dataloader,
description="Shift",
max_eval_iters=quant_args.shift_step,
)
shift.update_weight()
del shift, shift_sampler
logger.info("***** Shift done *****")
def apply_smooth(quant_args, trainer, ptq_dataloader, ptq_model_config):
if quant_args.do_awq:
logger.info("***** Running AWQ *****")
else:
logger.info("***** Running Smooth *****")
smooth_sampler = MultiStepSampler() if quant_args.smooth_sampler == "multi_step" else None
if quant_args.smooth_piecewise_search:
search_func = PieceWiseSearch(
k_piece=quant_args.smooth_k_piece,
bits_length=8,
search_piece=quant_args.smooth_search_piece,
search_alpha_min=0.2,
search_alpha_max=0.8,
search_scale_min=1.0,
search_scale_max=5.0,
weight_quant_method="abs_max_channel_wise",
act_quant_method="avg",
)
elif quant_args.do_awq:
search_func = AWQSearch(
n_grid=20,
bits_length=4,
weight_quant_method=quant_args.weight_quant_method,
)
else:
search_func = None
smooth = Smooth(
trainer.model,
ptq_model_config,
alpha=0.5,
smooth_all_linears=quant_args.smooth_all_linears,
sample_function=smooth_sampler,
search_function=search_func,
smooth_method="awq" if quant_args.do_awq else "smoothquant",
)
with paddle.no_grad():
trainer.ptq_loop(
ptq_dataloader,
description="Smooth",
max_eval_iters=quant_args.smooth_step,
)
smooth.update_weight()
del smooth, smooth_sampler, search_func
logger.info("***** Smooth done *****")
def apply_autoclip(quant_args, trainer, ptq_dataloader):
"""
AutoClip
"""
print("-------------------Start AutoClip------------------")
sampler = MultiStepSampler()
auto_clip = AutoClip(
trainer.model,
weight_bits=4,
weight_quant_method=quant_args.weight_quant_method,
sample_function=sampler,
n_grid=20,
max_shrink=0.5,
)
with paddle.no_grad():
trainer.ptq_loop(
ptq_dataloader,
description="AutoClip",
max_eval_iters=quant_args.autoclip_step,
)
auto_clip.auto_clip()
del sampler, auto_clip
logger.info("***** AutoClip done *****")
def apply_ptq(quant_args, trainer, ptq_dataloader):
logger.info("***** Running PTQ *****")
q_config = QuantConfig(activation=None, weight=None)
if quant_args.weight_quant_method == "abs_max_channel_wise":
weight_observer = AbsMaxChannelWiseWeightObserver
elif quant_args.weight_quant_method == "groupwise":
weight_observer = GroupWiseWeightObserver
else:
raise ValueError("weight_quant_method should be one of ['abs_max_channel_wise', 'groupwise']")
if quant_args.quant_type == "a8w8":
activation = AVGObserver(quant_bits=8)
weight = weight_observer(quant_bits=8)
elif quant_args.quant_type == "weight_only_int4":
activation = None
weight = weight_observer(quant_bits=4)
elif quant_args.quant_type == "weight_only_int8":
activation = None
weight = weight_observer(quant_bits=8)
else:
raise ValueError("quant_type should be one of ['a8w8', 'weight_only_int4', 'weight_only_int8']")
q_config.add_qat_layer_mapping(ColumnParallelLinear, QuantizedColumnParallelLinear)
q_config.add_qat_layer_mapping(RowParallelLinear, QuantizedRowParallelLinear)
q_config.add_type_config(
[paddle.nn.Linear, ColumnParallelLinear, RowParallelLinear, QuantedLoRALinear],
activation=activation,
weight=weight,
)
ptq = PTQ(q_config)
trainer.model = ptq.quantize(trainer.model, inplace=True)
trainer.ptq_loop(
ptq_dataloader,
description="PTQ",
max_eval_iters=quant_args.ptq_step,
)
weight_scales = {}
act_scales = {}
for cur_name, cur_layer in trainer.model.named_sublayers():
if isinstance(cur_layer, AbsMaxChannelWiseWeightObserverLayer):
if "_observer" not in cur_name:
weight_scales[cur_name] = cur_layer.scales().numpy().tolist()
if isinstance(cur_layer, GroupWiseWeightObserverLayer):
if "_observer" not in cur_name:
weight_scales[cur_name] = cur_layer.scales().numpy().tolist()
if isinstance(cur_layer, AVGObserverLayer):
if "_observer" not in cur_name:
act_scales[cur_name] = cur_layer.scales().numpy().tolist()
weight_scales_path = os.path.join(trainer.args.output_dir, "weight_scales.json")
with open(weight_scales_path, "w") as f:
json.dump(weight_scales, f)
logger.info(f"Weight scales saved in {weight_scales_path}.")
act_scales_path = os.path.join(trainer.args.output_dir, "act_scales.json")
with open(act_scales_path, "w") as f:
json.dump(act_scales, f)
logger.info(f"Activation scales saved in {act_scales_path}.")
trainer.model = ptq.convert(trainer.model, inplace=True)
logger.info("***** PTQ done *****")
def apply_gptq(quant_args, trainer, ptq_dataloader):
logger.info("***** Running GPTQ *****")
num_layer = 0
model = trainer.model
for cur_name, cur_layer in model.named_sublayers():
if type(cur_layer) in [paddle.nn.Linear, ColumnParallelLinear, RowParallelLinear]:
num_layer += 1
logger.info(f"GPTQ layer: {num_layer}, {cur_name}")
parent_layer, sub_name = find_parent_layer_and_sub_name(model, cur_name)
cur_quant_layer = GPTQ(cur_layer)
setattr(parent_layer, sub_name, cur_quant_layer)
with paddle.no_grad():
trainer.ptq_loop(
ptq_dataloader,
description="GPTQ",
max_eval_iters=quant_args.gptq_step,
)
cur_quant_layer.fasterquant(percdamp=0.1, groupsize=-1, actorder=True)
del cur_quant_layer
setattr(parent_layer, sub_name, cur_layer)
logger.info("***** GPTQ done *****")
def get_ptq_model_config(model):
if isinstance(model, PrefixModelForCausalLM):
base_model_prefix = model.model.base_model_prefix
else:
base_model_prefix = model.base_model_prefix
if base_model_prefix in ["chatglm"]:
raise NotImplementedError(f"{model} does not support Shift or Smooth.")
elif base_model_prefix == "chatglm_v2":
model_config = {"fused_qkv": False, "parallel_ffn": False, "skip_norm_list": ["rms_norm_56"]}
elif base_model_prefix == "bloom":
model_config = {"fused_qkv": True, "parallel_ffn": False}
elif base_model_prefix == "llama":
model_config = {"fused_qkv": False, "parallel_ffn": True}
else:
raise ValueError(
f"Unknown base_model_prefix: {model.base_model_prefix}. Supported base_model_prefix list: chatglm_V2, bloom, llama."
)
return model_config