-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathRecommenderSysetm.py
165 lines (124 loc) · 5.05 KB
/
RecommenderSysetm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
from surprise import KNNBasic
from surprise import Dataset
from surprise import Reader
import os
from surprise import NMF
#------------------------load data from a file
file_path = os.path.expanduser('restaurant_ratings.txt')
reader = Reader(line_format='user item rating timestamp', sep='\t')
data = Dataset.load_from_file(file_path, reader=reader)
from surprise import SVD
from surprise import evaluate, print_perf
import os
#########---------------SVD
print('')
print('---------------SVD result-------------')
data.split(n_folds=3)
algo = SVD()
perf = evaluate(algo, data, measures=['RMSE', 'MAE'])
print_perf(perf)
#########---------------PMF
print('')
print('---------------PMF result--------------')
data.split(n_folds=3)
algo = SVD(biased=False)
perf = evaluate(algo, data, measures=['RMSE', 'MAE'])
print_perf(perf)
##########--------------NMF
print('')
print('----------------NMF result--------------')
data.split(n_folds=3)
algo = KNNBasic(sim_options = {'user_based':True})
perf = evaluate(algo, data, measures=['RMSE', 'MAE'])
print_perf(perf)
##########--------------User Based Collaborative Filtering algorithm
print('')
print('User Based Collaborative Filtering algorithm result')
data.split(n_folds=3)
algo = KNNBasic(sim_options = {'user_based': False })
perf = evaluate(algo, data, measures=['RMSE', 'MAE'])
print_perf(perf)
##########--------------Item Based Collaborative Filtering algorithm
print('')
print('Item Based Collaborative Filtering algorithm result')
data.split(n_folds=3)
algo = KNNBasic(sim_options = {'user_based': False})
perf = evaluate(algo, data, measures=['RMSE', 'MAE'])
print_perf(perf)
##########--------MSD------User Based Collaborative Filtering algorithm
print('')
print('MSD----User Based Collaborative Filtering algorithm result')
data.split(n_folds=3)
algo = KNNBasic(sim_options = {'name':'MSD','user_based': True})
perf = evaluate(algo, data, measures=['RMSE', 'MAE'])
print_perf(perf)
##########--------cosin------User Based Collaborative Filtering algorithm
print('')
print('cosin----User Based Collaborative Filtering algorithm result')
data.split(n_folds=3)
algo = KNNBasic(sim_options = {'name':'cosine','user_based': True})
perf = evaluate(algo, data, measures=['RMSE', 'MAE'])
print_perf(perf)
##########--------person------User Based Collaborative Filtering algorithm
print('')
print('Person sim----User Based Collaborative Filtering algorithm result')
data.split(n_folds=3)
algo = KNNBasic(sim_options = {'name':'pearson','user_based': True})
perf = evaluate(algo, data, measures=['RMSE', 'MAE'])
print_perf(perf)
##########--------MSD------User Based Collaborative Filtering algorithm
print('')
print('10--Neighboors--User Based Collaborative Filtering algorithm result')
data.split(n_folds=3)
algo = KNNBasic(k=10, sim_options = {'name':'MSD', 'user_based':True })
perf = evaluate(algo, data, measures=['RMSE'])
print_perf(perf)
##########--------cosin------User Based Collaborative Filtering algorithm
print('')
print('10---Neighboors---Item Based Collaborative Filtering algorithm result')
data.split(n_folds=3)
algo = KNNBasic(k=10, sim_options = {'name':'MSD', 'user_based':False })
perf = evaluate(algo, data, measures=['RMSE'])
print_perf(perf)
##########--------MSD------User Based Collaborative Filtering algorithm
print('')
print('15--Neighboors--User Based Collaborative Filtering algorithm result')
data.split(n_folds=3)
algo = KNNBasic(k=10, sim_options = {'name':'MSD', 'user_based':True })
perf = evaluate(algo, data, measures=['RMSE'])
print_perf(perf)
##########--------cosin------User Based Collaborative Filtering algorithm
print('')
print('15---Neighboors---Item Based Collaborative Filtering algorithm result')
data.split(n_folds=3)
algo = KNNBasic(k=10, sim_options = {'name':'MSD', 'user_based':False })
perf = evaluate(algo, data, measures=['RMSE'])
print_perf(perf)
##########--------MSD------User Based Collaborative Filtering algorithm
print('')
print('25--Neighboors--User Based Collaborative Filtering algorithm result')
data.split(n_folds=3)
algo = KNNBasic(k=10, sim_options = {'name':'MSD', 'user_based':True })
perf = evaluate(algo, data, measures=['RMSE'])
print_perf(perf)
##########--------cosin------User Based Collaborative Filtering algorithm
print('')
print('25---Neighboors---Item Based Collaborative Filtering algorithm result')
data.split(n_folds=3)
algo = KNNBasic(k=10, sim_options = {'name':'MSD', 'user_based':False })
perf = evaluate(algo, data, measures=['RMSE'])
print_perf(perf)
##########--------MSD------User Based Collaborative Filtering algorithm
print('')
print('30--Neighboors--User Based Collaborative Filtering algorithm result')
data.split(n_folds=3)
algo = KNNBasic(k=10, sim_options = {'name':'MSD', 'user_based':True })
perf = evaluate(algo, data, measures=['RMSE'])
print_perf(perf)
##########--------cosin------User Based Collaborative Filtering algorithm
print('')
print('30---Neighboors---Item Based Collaborative Filtering algorithm result')
data.split(n_folds=3)
algo = KNNBasic(k=10, sim_options = {'name':'MSD', 'user_based':False })
perf = evaluate(algo, data, measures=['RMSE'])
print_perf(perf)