-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSimulation.py
566 lines (513 loc) · 19 KB
/
Simulation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
# -*- coding: utf-8 -*-
"""
Created on Fri Dec 01 10:53:16 2017
@author: jingzhao
"""
import numpy as np
from .tools import qplt,simp_err,mu_to_Dl,err_ts
import matplotlib.pyplot as plt
from scipy import integrate
from scipy.interpolate import splrep,splev
from .cos_models import LCDM
import pandas as pd
from scipy.constants import c,arcsec,parsec
import scipy.stats as stats
#from astroML.density_estimation import FunctionDistribution
Mpc=parsec*1e6
c0=c
'''
Generate the simulated data, including QSO, Strong lens (LSST .etc), SNIa
'''
class gen_QSO(object):
def __init__(self,number,L=11.03,L_err=0.0,theta_err=0.03,Omegam=0.3,h=0.7,random_err=True,endpoint=False):
self.num=number
self.L=np.float64(L)
self.L_s = np.float64(L_err)
self.theta_err=np.float64(theta_err)
self.h = np.float64(h)
self.ll = LCDM(Omegam,h)
self.random_err = random_err
self.endpoint = endpoint
#========================Luminosity function to Number of QSO========================================
def Luminosity_function(self,Mg,z):
h=self.h
bh,bl,phis,Mgs0,k1,k2=[3.31,1.45,1.83e-6*(h/0.7)**3,-21.61+5*np.log(h/0.7),1.39,-0.29]
Mgs=Mgs0-2.5*(k1*z+k2*z**2)
fm=10**(0.4*(1-bh)*(Mg-Mgs))+10**(0.4*(1-bl)*(Mg-Mgs))
return phis/fm
def qz(self):
number=self.num
Mgi=[18,23]
bins_with=0.2
zz=np.arange(0.5,6+bins_with,bins_with)
N=len(zz)
Nqso=np.zeros(N-1)
bins=np.zeros([N-1,2])
addn=0
for i in range(N-1):
bins[i:]=[zz[i],zz[i+1]]
Nqso[i]=integrate.nquad(self.Luminosity_function,[[Mgi[0],Mgi[1]],[zz[i],zz[i+1]]])[0]
ratio=Nqso/np.sum(Nqso)
true_n=number-1
while true_n<number:
fb=list(map(int,map(round,(number+addn)*ratio)))
true_n=sum(fb)
addn=addn+1
zzn=[]
for i in range(len(fb)):
zn=np.random.uniform(bins[i,0],bins[i,1],fb[i])
zzn=np.append(zzn,zn)
if self.endpoint:
zzn=np.append(zzn,[0.5,6])
ans=np.random.choice(zzn,number,replace=False)
# width=(zz[1]-zz[0])/2
# plt.bar(zz[0:N-1]+width, Nqso, alpha = .5, color = 'g',width = width)
# plt.xlabel('$z$')
# plt.ylabel('Number of QSO')
return np.sort(ans)
#========================Simulate the QSO================================
def _theta(self,L0,z):
DA=self.ll.ang_dis_z(z)
return L0*1e-6/DA*180*3600/np.pi*1e3
def _DDA(self,L0,thetaq):
DA=L0/(thetaq*1e-3/(180/np.pi*3600))/1e6
return DA
def theta(self):
qzz=self.qz()
theta_th=self._theta(self.L,self.qz())
theta_s=theta_th*self.theta_err
if self.random_err=='normal':
theta_obs=np.random.normal(theta_th,theta_s)
elif self.random_err=='1sigma':
theta_obs=stats.truncnorm(-1,1,loc=theta_th,scale=theta_s).rvs()
else:
theta_obs=theta_th
return qzz,theta_obs,theta_s
def DA(self):
qzz,the_th,the_s=self.theta()
Da=self.L*1e-3/(the_th*arcsec)
sig_Da=Da*np.sqrt((self.L_s)**2+self.theta_err**2)
return qzz,Da,sig_Da
def DA_th(self):
z=self.qz()
DA=self.ll.ang_dis_z(z)
return DA
def dp(self):
DH=self.ll.D_H()
z,da,da_s=self.DA()
dp=da*(1+z)/DH
dp_s=da_s*(1+z)/DH
return z,dp,dp_s
def qz_hist(self,bins=50,*args, **kwargs):
plt.figure()
plt.hist(self.qz(),bins=bins,normed=True,color='g',alpha=0.5,edgecolor='k')
plt.yticks([])
plt.xlim(0,6)
plt.xlabel('Redshift')
qplt(*args, **kwargs)
def plt_DA(self,*args, **kwargs):
qzz,DAq,DA_s=self.DA()
plt.figure()
plt.errorbar(qzz,DAq,DA_s,fmt='.',color='k',elinewidth=0.5,capsize=1,alpha=0.9,capthick=0.5,ms=3)
plt.xlabel('$z$')
plt.ylabel('$D_A(z) ~(\mathrm{Mpc})$')
qplt(*args, **kwargs)
def save_DA(self,path_file_name):
st=['#z','DA','DA_err']
data=self.DA()
dc=dict(zip(st,data))
df=pd.DataFrame(dc)
if path_file_name[-3:]=='lsx':
df.to_excel(path_file_name,index=False)
elif path_file_name[-3:]=='txt':
df.to_csv(path_file_name,index=False,sep=' ')
else:
df.to_csv(path_file_name,index=False,sep=' ')
def save_theta(self,path_file_name):
st=['#z','theta','theta_err']
data=self.theta()
dc=dict(zip(st,data))
df=pd.DataFrame(dc)
if path_file_name[-3:]=='lsx':
df.to_excel(path_file_name,index=False)
elif path_file_name[-3:]=='txt':
df.to_csv(path_file_name,index=False,sep=' ')
else:
df.to_csv(path_file_name,index=False,sep=' ')
class gen_SGL(object):
def __init__(self,filename,thetaE_sig=0.01,sig_vv_sig=0.05,TD_sig=0.05,
middle_mass=True,Omegam=0.315,h=0.674,random=True,Accuracy=0.2,
standardisable=True):
self.filename = filename
self.ll = LCDM(Omegam,h)
self.sgll=np.loadtxt(self.filename)
self.middle_mass = middle_mass
self.thetaE_sig = thetaE_sig
self.sig_vv_sig = sig_vv_sig
self.TD_s = TD_sig
self.random = random
self.Accuracy = Accuracy
self.standardisable = standardisable
self.index = []
if middle_mass:
sgn= [i for i in range(len(self.sgll[:,0])) if 100<=self.sgll[i][3]<=300]
self.sgl=self.sgll[sgn]
else:
self.sgl=self.sgll
def list_z(self,mn,**kwargs):
thetaE=self.sgl[:,2]
xs=self.sgl[:,9]
ys=self.sgl[:,10]
mX_i=self.sgl[:,16]
beta=np.sqrt(xs**2+ys**2)
y=beta/thetaE
mu=(y**2+2.0)/y/np.sqrt(y**2+4.0)
mX_obs=mX_i-2.5*np.log10(mu)
# num_td=len(beta)
t_err=0.0003
# sgn= [i for i in range(len(beta)) if 2*beta[i]>=t_err]
if self.standardisable:
sgn= [i for i in range(len(beta)) if beta[i]>=t_err and mX_obs[i]<=22.15 and thetaE[i]>=0.9]
else:
sgn= range(len(beta))
if 'zsrange' in kwargs:
[zmin,zmax]=kwargs['zsrange']
sgn= [i for i in sgn if zmin<=self.sgl[i][1]<=zmax]
if 'zlrange' in kwargs:
[zmin,zmax]=kwargs['zlrange']
sgn= [i for i in sgn if zmin<=self.sgl[i][0]<=zmax]
sgln=np.random.choice(sgn,mn,replace=False)
self.index=sgln
return mX_obs[sgln]
def data_zs(self,qzs,err=5e-3,pair_all=False):
num=len(qzs)
sgln=[]
qn=[]
if pair_all:
for i in range(num):
c1=[]
errp=err
while not list(c1):
c1=np.where(abs(qzs[i]-self.sgl[:,1])<=errp)[0]
errp=errp+err/5.0
# print('[%s] Matching redshift error is %s'%(i,errp))
sgln.append(np.random.choice(c1))
qn.append(i)
self.index=sgln
else:
for i in range(num):
c1=np.where(abs(qzs[i]-self.sgl[:,1])<=err)
if list(c1[0]):
sgln.append(np.random.choice(c1[0]))
qn.append(i)
self.index=sgln
return qn
def data_zlzs(self,dnum,qz,qDA,qDA_sig,err=5e-3):
sgln=[]
zl=self.sgl[:,0]
zs=self.sgl[:,1]
DAl=[];DAs=[];DAl_sig=[];DAs_sig=[]
xs=self.sgl[:,9]
ys=self.sgl[:,10]
beta=np.sqrt(xs**2+ys**2)
# num_td=len(beta)
t_err=0.0003
td= [i for i in range(len(beta)) if 2*beta[i]>=t_err]
nn=np.random.choice(td,len(td),replace=False)
var=0
for i in nn:
if var==dnum:
break
nzl=np.where(abs(zl[i]-qz)<=err)[0]
nzs=np.where(abs(zs[i]-qz)<=err)[0]
if len(nzl)>=1: nzl=np.random.choice(nzl)
if len(nzs)>=1: nzs=np.random.choice(nzs)
if nzl and nzs:
DAl=np.append(DAl,qDA[nzl])
DAl_sig=np.append(DAl_sig,qDA_sig[nzl])
DAs=np.append(DAs,qDA[nzs])
DAs_sig=np.append(DAs_sig,qDA_sig[nzs])
sgln.append(i)
var=var+1
self.index=sgln
return DAl,DAl_sig,DAs,DAs_sig
def data_zlzs_gp(self,qz,qDA,qDA_sig):
num_sgl=len(self.sgl[:,0])
sgn= [i for i in range(num_sgl) if qz.min()<=self.sgl[i][1]<=qz.max() and
qz.min()<=self.sgl[i][0]<=qz.max()]
self.index=sgn
tck_da=splrep(qz,qDA)
tck_s=splrep(qz,qDA_sig)
DAl=splev(self.sgl[sgn,0],tck_da)
DAl_sig=splev(self.sgl[sgn,0],tck_s)
DAs=splev(self.sgl[sgn,1],tck_da)
DAs_sig=splev(self.sgl[sgn,1],tck_s)
return DAl,DAl_sig,DAs,DAs_sig
def data_timedl(self,dnum,qz,qDA,qDA_sig):
# sgln=len(self.sgl[:,0])
xs=self.sgl[:,9]
ys=self.sgl[:,10]
beta=np.sqrt(xs**2+ys**2)
num_td=len(beta)
err=1e-5
while num_td>dnum+50 :
td= [i for i in range(len(beta)) if 2*beta[i]>=err]
num_td=len(td)
err=err+0.001
nn=np.random.choice(td,dnum,replace=False)
sgn= [i for i in nn if qz.min()<=self.sgl[i][1]<=qz.max() and
qz.min()<=self.sgl[i][0]<=qz.max()]
self.index=sgn
tck_da=splrep(qz,qDA)
tck_s=splrep(qz,qDA_sig)
DAl=splev(self.sgl[sgn,0],tck_da)
DAl_sig=splev(self.sgl[sgn,0],tck_s)
DAs=splev(self.sgl[sgn,1],tck_da)
DAs_sig=splev(self.sgl[sgn,1],tck_s)
return DAl,DAl_sig,DAs,DAs_sig
def timeDL(self):
'''
return ::
thetaE,tehtaA,thetaB : arcseconds
time_delay,time_delay_sig : day
'''
sgln=self.index
zl=self.sgl[sgln,0]
zs=self.sgl[sgln,1]
thetaE=self.sgl[sgln,2]
sig_vv=self.sgl[sgln,3]
xs=self.sgl[sgln,9]
ys=self.sgl[sgln,10]
beta=np.sqrt(xs**2+ys**2)
Dl=self.ll.ang_dis_z(zl)
Ds=self.ll.ang_dis_z(zs)
Dls=self.ll.ang_dis_z2(zl,zs)
Dt=Dl*Ds/Dls
thetaA=(thetaE+beta)*arcsec
thetaB=(thetaE-beta)*arcsec
TD_t=(1.0+zl)/2.0/c0*Dt*(thetaA**2-thetaB**2)*Mpc/24./3600.
TD_sig=np.abs(self.TD_s*TD_t)
return zl,zs,thetaE,sig_vv,thetaA/arcsec,thetaB/arcsec,TD_t,TD_sig
def TDistance(self):
sgln=self.index
zl=self.sgl[sgln,0]
zs=self.sgl[sgln,1]
Dl=self.ll.ang_dis_z(zl)
Ds=self.ll.ang_dis_z(zs)
Dls=self.ll.ang_dis_z2(zl,zs)
Dt=Dl*Ds/Dls*(1+zl)
return zl,zs,Dt,Dt*self.TD_s
def magnifications(self):
sgln=self.index
thetaE=self.sgl[sgln,2]
xs=self.sgl[sgln,9]
ys=self.sgl[sgln,10]
beta=np.sqrt(xs**2+ys**2)
y=beta/thetaE
def mu_plus(gamma):
return 1./(1.-(3.-gamma)*np.power(1./(1.+y),gamma-1.))
def mu_sum(gamma):
mu_p=mu_plus(gamma)
mu_m=1./(1.-(3.-gamma)*np.power(1./(1.-y),gamma-1.))
return np.abs(mu_p)+np.abs(mu_m)
if self.standardisable:
mu,mu_sig=err_ts(mu_plus,2.0,0.02)
else:
mu,mu_sig=err_ts(mu_sum,2.0,0.02)
return mu,mu_sig
def dl(self):
zl,zs,thE,sig_vv,thA,thB,Tt,Tsig=self.timeDL()
thetaE,thetaA,thetaB=thE*arcsec,thA*arcsec,thB*arcsec
TD_t,TD_sig=Tt*24.0*3600,Tsig*24.0*3600
DH=self.ll.D_H()
def solve_dl(dt,thE,sig_vv,thA,thB,zl):
R_obs=2*c*dt/(1+zl)/(thA**2-thB**2)/Mpc
D_obs=thE*c0**2/(4*np.pi*(sig_vv*1e3)**2)
dl=R_obs*D_obs/DH*(1+zl)
return dl
if self.random:
td_th=stats.truncnorm(-self.Accuracy,self.Accuracy,loc=TD_t, scale=TD_sig).rvs()
# td_sig=np.random.normal(0.0,TD_sig)
td_sig = TD_sig
tE = stats.truncnorm(-self.Accuracy,self.Accuracy,thetaE,thetaE*self.thetaE_sig).rvs()
# tE_sig = np.random.normal(0.0,thetaE*self.thetaE_sig)
tE_sig = thetaE*self.thetaE_sig
sig_th = stats.truncnorm(-self.Accuracy,self.Accuracy,sig_vv,sig_vv*self.sig_vv_sig).rvs()
# sig_sig = np.random.normal(0.0,sig_vv*self.sig_vv_sig)
sig_sig = sig_vv*self.sig_vv_sig
else:
td_th = TD_t
td_sig = TD_sig
tE = thetaE
tE_sig = thetaE*self.thetaE_sig
sig_th = sig_vv
sig_sig = sig_vv*self.sig_vv_sig
dl,dl_s=simp_err(solve_dl,[td_th,tE,sig_th,thetaA,thetaB,zl],
[td_sig,tE_sig,sig_sig,thetaA*0,thetaB*0,zl*0])
return dl,dl_s
def D(self):
sgln=self.index
thetaE=self.sgl[sgln,2]*arcsec
sig_vv=self.sgl[sgln,3]
def D_obs(thE,sigv):
return thE*c0**2/(4*np.pi*(sigv*1e3)**2)
if self.random:
tE = stats.truncnorm(-self.Accuracy,self.Accuracy,thetaE,thetaE*self.thetaE_sig).rvs()
# tE_sig = np.random.normal(0.0,thetaE*self.thetaE_sig)
tE_sig = thetaE*self.thetaE_sig
sig_th = stats.truncnorm(-self.Accuracy,self.Accuracy,sig_vv,sig_vv*self.sig_vv_sig).rvs()
# sig_sig = np.random.normal(0.0,sig_vv*self.sig_vv_sig)
sig_sig = sig_vv*self.sig_vv_sig
else:
tE = thetaE
tE_sig = thetaE*self.thetaE_sig
sig_th = sig_vv
sig_sig = sig_vv*self.sig_vv_sig
Dth,D_s=simp_err(D_obs,[tE,sig_th],[tE_sig,sig_sig])
return Dth,D_s
def return_SGL(self):
sgln=self.index
zl=self.sgl[sgln,0]
zs=self.sgl[sgln,1]
thetaE=self.sgl[sgln,2]
sig_vv=self.sgl[sgln,3]
return zl,zs,thetaE,sig_vv
# return self.sgl[sgln,:]
def dls(self,ds,ds_s):
zl,zs,thetaE,sig_vv=self.return_SGL()
thE=thetaE*arcsec
def dls_f(thE,sig_vv,ds):
D_obs=thE*c0**2/(4*np.pi*(sig_vv*1e3)**2)
dlss=D_obs*ds
return dlss
if self.random:
tE = stats.truncnorm(-self.Accuracy,self.Accuracy,thE,thE*self.thetaE_sig).rvs()
# tE_sig = np.random.normal(0.0,thE*self.thetaE_sig)
tE_sig = thE*self.thetaE_sig
sig_th = stats.truncnorm(-self.Accuracy,self.Accuracy,sig_vv,sig_vv*self.sig_vv_sig).rvs()
# sig_sig = np.random.normal(0.0,sig_vv*self.sig_vv_sig)
sig_sig = sig_vv*self.sig_vv_sig
else:
tE = thE
tE_sig = thE*self.thetaE_sig
sig_th = sig_vv
sig_sig = sig_vv*self.sig_vv_sig
dlss,dls_s=simp_err(dls_f,[tE,sig_th,ds],
[tE_sig,sig_sig,ds_s])
return dlss,dls_s
class gen_SNIa(object):
'''
WFIRST http://wfirst.gsfc.nasa.gov/
Eur. Phys. J. C (2017) 77:434
DOI 10.1140/epjc/s10052-017-5005-4
'''
def __init__(self,Omegam=0.308,h=0.678,additional_mu_err=0.0):
self.ll=LCDM(Omegam,h)
self.additional_mu_err = additional_mu_err
def mu(self,z):
def rn(z):
z1=np.arange(0.1,1.8,0.1)
n=[i for i in range(len(z1)) if z1[i]<=z]
N=[69,208,402,223,327,136,136,136,136,136,136,136,136,136,136,136]
return np.float64(N[n[-1]])
def mu_err(z):
s_meas=0.08
s_int=0.09+self.additional_mu_err
s_lens=0.07*z
# s_stat2=(s_meas**2+s_int**2+s_lens**2)/np.vectorize(rn)(z)
s_stat2=(s_meas**2+s_int**2+s_lens**2)
s_sys=0.01*(1+z)/1.8
s_tot=np.sqrt(s_stat2+s_sys**2)
return s_tot
mu_th=5.0*np.log10(self.ll.lum_dis_z(z))+25.
# return mu_th,mu_err(z)
return mu_th,mu_err(z)
def sn_num(self,number):
N=[69,208,402,223,327,136,136,136,136,136,136,136,136,136,136,136]
ratio=np.asarray(N)/float(np.sum(N))
true_n=number-1
addn=0
bins=np.arange(0.1,1.8,0.1)
while true_n<number:
fb=list(map(int,map(round,(number+addn)*ratio)))
true_n=sum(fb)
addn=addn+1
zzn=[]
for i in range(len(bins)-1):
zn=np.random.uniform(bins[i],bins[i+1],fb[i])
# print(zn,i)
zzn=np.append(zzn,zn)
# if self.endpoint:
# zzn=np.append(zzn,[0.5,6])
redshift=np.random.choice(zzn,number,replace=False)
# width=(zz[1]-zz[0])/2
# plt.bar(zz[0:N-1]+width, Nqso, alpha = .5, color = 'g',width = width)
# plt.xlabel('$z$')
# plt.ylabel('Number of QSO')
return np.sort(redshift)
def DL(self,z):
mu_th,mu_s=self.mu(z)
DLs,DL_s=mu_to_Dl(mu_th,mu_s)
return DLs,DL_s
def dp(self,z):
DH=self.ll.D_H()
DLs,DLs_s=self.DL(z)
ds=DLs/(1+z)/DH
ds_s=DLs_s/(1+z)/DH
return ds, ds_s
def dp_lens(self,z,mud,mud_err=0.05):
'''
mud is magnifications
'''
mu_x,mu_s=self.mu(z)
dp=np.power(10.0,mu_x/5.0-5.0)/(1+z)/self.ll.D_H()
dps=np.sqrt((dp*mud_err/2.0)**2+(np.log(10.0)/5.0*dp*mu_s)**2)
return dp,dps
# mobs,m_s=mu_x-2.5*np.log10(mud),mu_s-2.5*np.log10(mud)
# def dps(zs,muobs,mD):
# return np.power(10.0,(muobs+2.5*np.log10(mD))/5.0-5.0)/(1+zs)
# dp,dp_s=simp_err(dps,[z,mobs,mud],[z*0.0,m_s,mud*mud_err])
# return dp/self.ll.D_H(), dp_s/self.ll.D_H()
def dp_lens2(self,z,mud,mud_err):
mu_x,mu_s=self.mu(z)
mobs=mu_x-2.5*np.log10(mud)
def dps(zs,muobs,mD):
return np.power(10.0,(muobs+2.5*np.log10(mD))/5.0-5.0)/(1+zs)
dp,dp_s=simp_err(dps,[z,mobs,mud],[z*0.0,mu_s,mud_err])
return dp/self.ll.D_H(), dp_s/self.ll.D_H()
class gen_drift(object):
def __init__(self,year,Omegam=0.3,h=0.7):
self.ll=LCDM(Omegam,h)
self.H0 = h*1e2
self.year = np.float64(year)
def drift(self,z):
mpc=Mpc*1e2
c=c0*1e2
year=self.year*365.0*24.0*60.*60.
H0=self.H0*1e5/mpc
return c*H0*year*(1-self.ll.hubz(z)/(1+z))
def drift_s(self,z):
def drift_err(z):
if 2.<=z and z<=4.:
q=-1.7
elif z>4.0:
q=-0.9
else:
q=0
SN=3000.
N=30.
dd=1.35*(2370.0/SN)/np.sqrt(N/30.)*((1.+z)/5.)**q
return dd
return np.vectorize(drift_err)(z)
def normal_data(self):
z_d=np.asarray([2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0])
return z_d,self.drift(z_d),self.drift_s(z_d)
def dtoh(self,dv,z):
mpc=Mpc*1e2
c=c0*1e2
year=self.year*365.0*24.0*60.*60.
H0=self.H0*1e5/mpc
return (1-dv/c/H0/year)*(1+z)
def Ez(self,z):
Ezz,Ez_s=simp_err(self.dtoh,[self.drift(z),z],[self.drift_s(z),z*0])
return Ezz,Ez_s