forked from MEME-Phoenix/Autonomous-Driving-Cart-MEME
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrack.py
519 lines (460 loc) · 20.3 KB
/
track.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
import sys
sys.path.insert(0, './yolov5')
from yolov5.utils.datasets import LoadImages, LoadStreams
from yolov5.utils.general import check_img_size, non_max_suppression, scale_coords
from yolov5.utils.torch_utils import select_device, time_synchronized
from deep_sort_pytorch.utils.parser import get_config
from deep_sort_pytorch.deep_sort import DeepSort
import argparse
import platform
import shutil
import time
from pathlib import Path
import cv2
import torch
import torch.backends.cudnn as cudnn
import numpy as np
from concurrent.futures import ProcessPoolExecutor
import threading
from threading import Thread
import os
from queue import Queue
import sys
import matplotlib.mlab as mlab
import pyaudio
from keras.models import load_model
os.environ['KMP_DUPLICATE_LIB_OK']='True'
palette = (2 ** 11 - 1, 2 ** 15 - 1, 2 ** 20 - 1)
global track_modes, cli, height, width, cli_time, keyword, que,t
keyword=""
track = {}
cli =0
cli_time=0
data_c = None
# Use 1101 for 2sec input audio
Tx = 5511 # The number of time steps input to the model from the spectrogram
n_freq = 101 # Number of frequencies input to the model at each time step of the spectrogram
# Use 272 for 2sec input audio
Ty = 1375# The number of time steps in the output of our model
model = load_model('./keyword_spotting/tr_model_t.h5')
def detect_triggerword_spectrum(x):
x = x.swapaxes(0,1)
x = np.expand_dims(x, axis=0)
predictions = model.predict(x)
return predictions.reshape(-1)
def has_new_triggerword(predictions, chunk_duration, feed_duration, threshold=0.5):
predictions = predictions > threshold
chunk_predictions_samples = int(len(predictions) * chunk_duration / feed_duration)
chunk_predictions = predictions[-chunk_predictions_samples:]
level = chunk_predictions[0]
for pred in chunk_predictions:
if pred > level:
return True
else:
level = pred
return False
"""# Record audio stream from mic"""
chunk_duration = 0.5 # Each read length in seconds from mic.
fs = 44100 # sampling rate for mic
chunk_samples = int(fs * chunk_duration) # Each read length in number of samples.
# Each model input data duration in seconds, need to be an integer numbers of chunk_duration
feed_duration = 10
feed_samples = int(fs * feed_duration)
assert feed_duration/chunk_duration == int(feed_duration/chunk_duration)
def get_spectrogram(data):
nfft = 200 # Length of each window segment
fs = 8000 # Sampling frequencies
noverlap = 120 # Overlap between windows
nchannels = data.ndim
if nchannels == 1:
pxx, _, _ = mlab.specgram(data, nfft, fs, noverlap = noverlap)
elif nchannels == 2:
pxx, _, _ = mlab.specgram(data[:,0], nfft, fs, noverlap = noverlap)
return pxx
"""### Audio stream"""
def get_audio_input_stream(callback):
stream = pyaudio.PyAudio().open(
format=pyaudio.paInt16,
channels=1,
rate=fs,
input=True,
frames_per_buffer=chunk_samples,
input_device_index=0,
stream_callback=callback)
return stream
# Queue to communiate between the audio callback and main thread
q = Queue()
que = Queue()
run = True
silence_threshold = 100
timeout = 2*60 # 0.1 minutes from now
# Data buffer for the input wavform
data = np.zeros(feed_samples, dtype='int16')
def callback(in_data, frame_count, time_info, status):
global run, timeout, data, silence_threshold
if time.time() > timeout:
run = False
data0 = np.frombuffer(in_data, dtype='int16')
if np.abs(data0).mean() < silence_threshold:
sys.stdout.write('------------dddd-----')
return (in_data, pyaudio.paContinue)
else:
sys.stdout.write('.............dddd....')
data = np.append(data,data0)
if len(data) > feed_samples:
data = data[-feed_samples:]
# Process data async by sending a queue.
q.put(data)
return (in_data, pyaudio.paContinue)
def check_where():
stream = get_audio_input_stream(callback)
stream.start_stream()
count=0
global run, timeout,s
try:
while count<timeout:
data = q.get()
spectrum = get_spectrogram(data)
preds = detect_triggerword_spectrum(spectrum)
new_trigger = has_new_triggerword(preds, chunk_duration, feed_duration)
if new_trigger:
print('I CAN HEAR TRIGGER##################')
que.put('RESTART TRACKING')
else:
print('I CAN HEAR NOTHING$$$$$$$$$$$$$$$$$$')
que.put('HEAR NOTHING')
#time.sleep(1)
count = count+1
except (KeyboardInterrupt, SystemExit):
stream.stop_stream()
stream.close()
timeout = time.time()
run = False
stream.stop_stream()
stream.close()
def bbox_rel(*xyxy):
"""" Calculates the relative bounding box from absolute pixel values. """
bbox_left = min([xyxy[0].item(), xyxy[2].item()])
bbox_top = min([xyxy[1].item(), xyxy[3].item()])
bbox_w = abs(xyxy[0].item() - xyxy[2].item())
bbox_h = abs(xyxy[1].item() - xyxy[3].item())
x_c = (bbox_left + bbox_w / 2)
y_c = (bbox_top + bbox_h / 2)
w = bbox_w
h = bbox_h
return x_c, y_c, w, h
def compute_color_for_labels(label):
"""
Simple function that adds fixed color depending on the class
"""
color = [int((p * (label ** 2 - label + 1)) % 255) for p in palette]
return tuple(color)
#class mapping-> 객체 받는식
def draw_boxes_after_no(img, bbox, identities=None, offset=(0,0)):
global cli_time,track_modes, track, cli,t
cli_time += 1
if (cli_time < 20):
if (cli in identities):
track_modes=2
return draw_boxes_after_yes(img, bbox, identities, offset)
else:
return draw_boxes_after_yes(img, bbox, identities, offset)
if (cli_time == 20):
t = threading.Thread(target=check_where)
t.start()
# t.join()
cv2.putText(img, "Client Missing! Listening...", (int(width / 5), int(height / 9)),cv2.FONT_HERSHEY_SIMPLEX, 3, [0, 0, 0], 10)
return draw_boxes_plain(img, bbox,identities, offset)
if (cli_time > 20 and cli_time <110):
cv2.putText(img, "Listening the word...", (int(width / 5), int(height / 9)),cv2.FONT_HERSHEY_SIMPLEX, 3, [0, 0, 0], 10)
string = que.get()
if(string is 'RESTART TRACKING'):
track_modes = 1
cli = 0
for i in range(1, 100):
track[i] = 0
cv2.putText(img, 'RESTART TRACKING ', (int(width / 3), int(height / 4)), cv2.FONT_HERSHEY_SIMPLEX, 3, [0, 0, 0], 10)
return draw_boxes_before(img, bbox, identities, offset)
else:
cv2.putText(img,'HEAR NOTHING ', (int(width/3), int(height / 4)),cv2.FONT_HERSHEY_SIMPLEX, 3, [0, 0, 0], 10)
return draw_boxes_plain(img, bbox, identities, offset)
if (cli_time >= 110):
track_modes =1
cli=0
for i in range(1, 100):
track[i] = 0
return draw_boxes_before(img, bbox, identities, offset)
return img
def draw_boxes_plain(img, bbox, identities=None, offset=(0,0)):
for i, box in enumerate(bbox):
x1, y1, x2, y2 = [int(i) for i in box]
x1 += offset[0]
x2 += offset[0]
y1 += offset[1]
y2 += offset[1]
# box text and bar
id = int(identities[i]) if identities is not None else 0
color = compute_color_for_labels(id)
label = '{}{:d}'.format("", id)
t_size = cv2.getTextSize(label, cv2.FONT_HERSHEY_PLAIN, 2, 2)[0]
cv2.rectangle(img, (x1, y1), (x2, y2), color, 3)
cv2.rectangle(img, (x1, y1), (x1 + t_size[0] + 3, y1 + t_size[1] + 4), color, -1)
track[id] = track[id] + 1
cv2.putText(img, label, (x1, y1 + t_size[1] + 4), cv2.FONT_HERSHEY_PLAIN, 2, [255, 255, 255], 2)
return img
def draw_boxes_before(img, bbox, identities=None, offset=(0,0)):
global track_modes, cli, track
if(track_modes==1):
cv2.putText(img, "Tracking Client...", (int(width/3), int(height/9)), cv2.FONT_HERSHEY_SIMPLEX, 3, [0, 0, 0], 10)
if(track_modes==3):
cv2.putText(img, "Client Missing! Start Finding", (int(width / 5), int(height / 9)),cv2.FONT_HERSHEY_SIMPLEX, 3, [0, 0, 0], 10)
for i in range(1, 100):
if (track[i] >= 500):
track_modes = 2
cli = i
print("Finding Client client is " + str(cli))
for i, box in enumerate(bbox):
x1, y1, x2, y2 = [int(i) for i in box]
x1 += offset[0]
x2 += offset[0]
y1 += offset[1]
y2 += offset[1]
# box text and bar
id = int(identities[i]) if identities is not None else 0
color = compute_color_for_labels(id)
label = '{}{:d}'.format("", id)
t_size = cv2.getTextSize(label, cv2.FONT_HERSHEY_PLAIN, 2, 2)[0]
cv2.rectangle(img, (x1, y1), (x2, y2), color, 3)
cv2.rectangle(img, (x1, y1), (x1 + t_size[0] + 3, y1 + t_size[1] + 4), color, -1)
track[id] = track[id] + 1
cv2.putText(img, label, (x1, y1 + t_size[1] + 4), cv2.FONT_HERSHEY_PLAIN, 2, [255, 255, 255], 2)
return img
def draw_boxes_after(img, bbox, identities=None, offset=(0,0)):
global cli_time, track_modes
if(cli in identities): # detect 잘되면
cli_time=0
track_modes=2
return draw_boxes_after_yes(img, bbox, identities, offset)
else: # detect 안되
track_modes=3
return draw_boxes_after_no(img, bbox, identities, offset)
def draw_boxes_after_yes(img, bbox, identities=None, offset=(0,0)):
global cli_time, track_modes
if(track_modes==2):
cli_time=0
cv2.putText(img, "Client Detected! Following...", (int(width/5), int(height/9)), cv2.FONT_HERSHEY_SIMPLEX, 3, [0, 0, 0], 10)
if(track_modes==3):
cv2.putText(img, "Client Missing! Start Finding " + str(cli_time), (int(width / 5), int(height / 9)),cv2.FONT_HERSHEY_SIMPLEX, 3, [0, 0, 0], 10)
for i, box in enumerate(bbox):
x1, y1, x2, y2 = [int(i) for i in box]
x1 += offset[0]
x2 += offset[0]
y1 += offset[1]
y2 += offset[1]
# box text and bar
id = int(identities[i]) if identities is not None else 0
color = compute_color_for_labels(id)
label = '{}{:d}'.format("", id)
t_size = cv2.getTextSize(label, cv2.FONT_HERSHEY_PLAIN, 2, 2)[0]
cv2.rectangle(img, (x1, y1), (x2, y2), color, 3)
cv2.rectangle(img, (x1, y1), (x1 + t_size[0] + 3, y1 + t_size[1] + 4), color, -1)
track[id] = track[id] + 1
cv2.putText(img, label, (x1, y1 + t_size[1] + 4), cv2.FONT_HERSHEY_PLAIN, 2, [255, 255, 255], 2)
if (id == cli):
cv2.rectangle(img, (x1, y1), (x2, y2), (0, 0, 255), 6)
cv2.rectangle(img, (x1, y1), (x1 + t_size[0] + 100, y1 + t_size[1] + 8), (0, 0, 255), -1)
cv2.putText(img, "CLIENT", (x1, y1 +t_size[1] + 4), cv2.FONT_HERSHEY_PLAIN, 2, [255, 255, 255], 2)
cv2.ellipse(img, (int(width/2), int(height/10*9)), (300, 300), 0, 180, 360, (255, 255, 255), -1)
d = pow(pow(int(width/2)-int((x1 + x2) / 2),2)+pow(int(height/10*9)- int((y1 + y2) / 2),2),1/2)
line_x = int(width/2)+(int((x1 + x2) / 2)-int(width/2))*300/d
line_y = int(height/10*9)+ (int((y1 + y2) / 2) - int(height/10*9)) * 300 / d
# ros integration 시 주석 처리 풀고 실행시킬 것
# from ros_integration import deepsort_ros
# deepsort_ros.deepsort_result_to_ros(linex, liney)
cv2.arrowedLine(img, (int(width/2), int(height/10*9)), (int(line_x), int(line_y)), (0, 0, 255), 10, 8, 0, 0.1)
else:
cv2.putText(img, label, (x1, y1 + t_size[1] + 4), cv2.FONT_HERSHEY_PLAIN, 2, (255, 255, 255), 2)
return img
def detect(opt, save_img=False):
out, source, weights, view_img, save_txt, imgsz = \
opt.output, opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size
webcam = source == '0' or source.startswith(
'rtsp') or source.startswith('http') or source.endswith('.txt')
# initialize deepsort
cfg = get_config()
cfg.merge_from_file(opt.config_deepsort)
deepsort = DeepSort(cfg.DEEPSORT.REID_CKPT,
max_dist=cfg.DEEPSORT.MAX_DIST, min_confidence=cfg.DEEPSORT.MIN_CONFIDENCE,
nms_max_overlap=cfg.DEEPSORT.NMS_MAX_OVERLAP, max_iou_distance=cfg.DEEPSORT.MAX_IOU_DISTANCE,
max_age=cfg.DEEPSORT.MAX_AGE, n_init=cfg.DEEPSORT.N_INIT, nn_budget=cfg.DEEPSORT.NN_BUDGET,
use_cuda=True)
# Initialize
device = select_device(opt.device)
if os.path.exists(out):
shutil.rmtree(out) # delete output folder
os.makedirs(out) # make new output folder
half = device.type != 'cpu' # half precision only supported on CUDA
# Load model
model = torch.load(weights, map_location=device)[
'model'].float() # load to FP32
model.to(device).eval()
if half:
model.half() # to FP16
# Set Dataloader
vid_path, vid_writer = None, None
if webcam:
view_img = True
cudnn.benchmark = True # set True to speed up constant image size inference
dataset = LoadStreams(source, img_size=imgsz)
else:
view_img = True
save_img = True
dataset = LoadImages(source, img_size=imgsz)
# Get names and colors
names = model.module.names if hasattr(model, 'module') else model.names
# Run inference
t0 = time.time()
img = torch.zeros((1, 3, imgsz, imgsz), device=device) # init img
# run once
_ = model(img.half() if half else img) if device.type != 'cpu' else None
save_path = str(Path(out))
txt_path = str(Path(out)) + '/results.txt'
for frame_idx, (path, img, im0s, vid_cap) in enumerate(dataset):
img = torch.from_numpy(img).to(device)
img = img.half() if half else img.float() # uint8 to fp16/32
img /= 255.0 # 0 - 255 to 0.0 - 1.0
if img.ndimension() == 3:
img = img.unsqueeze(0)
# Inference
t1 = time_synchronized()
pred = model(img, augment=opt.augment)[0]
# Apply NMS
pred = non_max_suppression(
pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms)
t2 = time_synchronized()
# Process detections
for i, det in enumerate(pred): # detections per image
if webcam: # batch_size >= 1
p, s, im0 = path[i], '%g: ' % i, im0s[i].copy()
else:
p, s, im0 = path, '', im0s
s += '%gx%g ' % img.shape[2:] # print string
save_path = str(Path(out) / Path(p).name)
if det is not None and len(det):
# Rescale boxes from img_size to im0 size
det[:, :4] = scale_coords(
img.shape[2:], det[:, :4], im0.shape).round()
# Print results
for c in det[:, -1].unique():
n = (det[:, -1] == c).sum() # detections per class
s += '%g %ss, ' % (n, names[int(c)]) # add to string
bbox_xywh = []
confs = []
# Adapt detections to deep sort input format
for *xyxy, conf, cls in det:
x_c, y_c, bbox_w, bbox_h = bbox_rel(*xyxy)
obj = [x_c, y_c, bbox_w, bbox_h]
bbox_xywh.append(obj)
confs.append([conf.item()])
xywhs = torch.Tensor(bbox_xywh)
confss = torch.Tensor(confs)
# Pass detections to deepsort
outputs = deepsort.update(xywhs, confss, im0)
# draw boxes for visualization
if len(outputs) > 0:
bbox_xyxy = outputs[:, :4]
identities = outputs[:, -1]
global track_modes
if(track_modes==1):
draw_boxes_before(im0, bbox_xyxy, identities)
if (track_modes==2):
draw_boxes_after(im0, bbox_xyxy, identities)
if (track_modes==3):
draw_boxes_after_no(im0, bbox_xyxy, identities)
# Write MOT compliant results to file
if save_txt and len(outputs) != 0:
for j, output in enumerate(outputs):
bbox_left = output[0]
bbox_top = output[1]
bbox_w = output[2]
bbox_h = output[3]
identity = output[-1]
with open(txt_path, 'a') as f:
f.write(('%g ' * 10 + '\n') % (frame_idx, identity, bbox_left,
bbox_top, bbox_w, bbox_h, -1, -1, -1, -1)) # label format
else:
deepsort.increment_ages()
# Print time (inference + NMS)
print('%sDone. (%.3fs)' % (s, t2 - t1))
# Stream results
if view_img:
cv2.imshow(p, im0)
global height, width
height = im0.shape[0]
width = im0.shape[1]
if cv2.waitKey(1) == ord('q'): # q to quit
raise StopIteration
# Save results (image with detections)
if save_img:
print('saving img!')
if dataset.mode == 'images':
cv2.imwrite(save_path, im0)
else:
print('saving video!')
if vid_path != save_path: # new video
vid_path = save_path
if isinstance(vid_writer, cv2.VideoWriter):
vid_writer.release() # release previous video writer
fps = vid_cap.get(cv2.CAP_PROP_FPS)
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
vid_writer = cv2.VideoWriter(
save_path, cv2.VideoWriter_fourcc(*opt.fourcc), fps, (w, h))
vid_writer.write(im0)
if save_txt or save_img:
print('Results saved to %s' % os.getcwd() + os.sep + out)
if platform == 'darwin': # MacOS
os.system('open ' + save_path)
print('Done. (%.3fs)' % (time.time() - t0))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--weights', type=str,
default='yolov5/weights/yolov5s.pt', help='model.pt path')
# file/folder, 0 for webcam
parser.add_argument('--source', type=str,
default='inference/images', help='source')
parser.add_argument('--output', type=str, default='inference/output',
help='output folder') # output folder
parser.add_argument('--img-size', type=int, default=640,
help='inference size (pixels)')
parser.add_argument('--conf-thres', type=float,
default=0.4, help='object confidence threshold')
parser.add_argument('--iou-thres', type=float,
default=0.5, help='IOU threshold for NMS')
parser.add_argument('--fourcc', type=str, default='mp4v',
help='output video codec (verify ffmpeg support)')
parser.add_argument('--device', default='',
help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--view-img', action='store_true',
help='display results')
parser.add_argument('--save-txt', action='store_true',
help='save results to *.txt')
# class 0 is person
parser.add_argument('--classes', nargs='+', type=int,
default=[0], help='filter by class')
parser.add_argument('--agnostic-nms', action='store_true',
help='class-agnostic NMS')
parser.add_argument('--augment', action='store_true',
help='augmented inference')
parser.add_argument("--config_deepsort", type=str,
default="deep_sort_pytorch/configs/deep_sort.yaml")
args = parser.parse_args()
args.img_size = check_img_size(args.img_size)
print(args)
pool = ProcessPoolExecutor(2)
for i in range(1, 100):
track[i]=0
cli = 0;
track_modes= 1
with torch.no_grad():
detect(args)