-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinference.py
164 lines (133 loc) · 5 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import argparse
import os
from importlib import import_module
import albumentations as A
import numpy as np
import pandas as pd
import torch
from torch.utils.data import DataLoader
from tqdm import tqdm
from datasets.dataset import CustomDataLoader, collate_fn
from datasets.transform_test import create_transforms
@torch.no_grad()
def inference(model_dir, args):
print("Start prediction..")
use_cuda = torch.cuda.is_available()
device = torch.device("cuda" if use_cuda else "cpu")
if args.custom_trs:
# override
custom = create_transforms(criterion_name=args.model, seed=None)
test_transform = custom.test_transform_img
else:
from datasets.dataset import test_transform
test_dataset = CustomDataLoader(
data_dir=args.test_path, mode="test", transform=test_transform
)
test_loader = DataLoader(
dataset=test_dataset,
batch_size=args.batch_size,
num_workers=4,
shuffle=False,
pin_memory=use_cuda,
collate_fn=collate_fn,
)
model_module = getattr(import_module("models.model"), args.model)
model = model_module(num_classes=11, pretrained=False)
model_path = os.path.join(model_dir)
checkpoint = torch.load(
model_path, map_location=device
) # every model has to be state_dict
model.load_state_dict(checkpoint)
model = model.to(device)
size = 256
transform = A.Compose([A.Resize(size, size)])
model.eval()
file_name_list = []
preds_array = np.empty((0, size * size), dtype=np.compat.long)
with torch.no_grad():
for step, (imgs, image_infos) in enumerate(tqdm(test_loader, leave=False)):
# inference
if args.model in (
"FCNRes50",
"FCNRes101",
"DeepLabV3_Res50",
"DeepLabV3_Res101",
):
outs = model(torch.stack(imgs).to(device))["out"]
oms = torch.argmax(outs.squeeze(), dim=1).detach().cpu().numpy()
elif args.model in ("MscaleOCRNet"):
outs = model(torch.stack(imgs).to(device))
oms = torch.argmax(outs["pred"].squeeze(), dim=1).detach().cpu().numpy()
else:
outs = model(torch.stack(imgs).to(device))
oms = torch.argmax(outs.squeeze(), dim=1).detach().cpu().numpy()
# resize (256 x 256)
temp_mask = []
for img, mask in zip(np.stack(imgs), oms):
transformed = transform(image=img, mask=mask)
mask = transformed["mask"]
temp_mask.append(mask)
oms = np.array(temp_mask)
oms = oms.reshape([oms.shape[0], size * size]).astype(int)
preds_array = np.vstack((preds_array, oms))
file_name_list.append([i["file_name"] for i in image_infos])
print("End prediction!")
file_names = [y for x in file_name_list for y in x]
return file_names, preds_array
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Data and model checkpoints directories
parser.add_argument(
"--batch_size",
type=int,
default=16,
help="input batch size for validing (default: 16)",
)
parser.add_argument(
"--model", type=str, default="FCNRes50", help="model type (default: FCNRes50)"
)
# Container environment
parser.add_argument(
"--test_path",
type=str,
default=os.environ.get(
"SM_CHANNEL_TRAIN",
"/opt/ml/segmentation/semantic-segmentation-level2-cv-06/sample_data/train.json",
),
)
parser.add_argument(
"--model_dir", type=str, default=os.environ.get("SM_CHANNEL_MODEL", "./model")
)
parser.add_argument(
"--output_dir",
type=str,
default=os.environ.get("SM_OUTPUT_DATA_DIR", "./output"),
)
# custom args
parser.add_argument(
"--custom_trs", default=False, help="option for custom transform function"
)
args = parser.parse_args()
model_dir = args.model_dir
output_dir = args.output_dir
os.makedirs(output_dir, exist_ok=True)
# load sample_submission.csv
submission = pd.read_csv(
"/opt/ml/segmentation/baseline_code/submission/sample_submission.csv",
index_col=None,
)
# prediction using test set
file_names, preds = inference(model_dir, args)
# write PredictionString / revised for efficiency
id_list, mask_list = [], []
for file_name, string in tqdm(
zip(file_names, preds), leave=False, total=preds.shape[0]
):
# submission = submission.append({"image_id": file_name, "PredictionString": ' '.join(str(e) for e in string.tolist())},
# ignore_index=True)
id_list.append(file_name)
mask_list.append(" ".join(str(e) for e in string.tolist()))
submission["image_id"] = id_list
submission["PredictionString"] = mask_list
# save submission.csv
submission.to_csv(output_dir + "/submission.csv", index=False)