forked from abramjos/Scene-boundary-detection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_model.py
91 lines (79 loc) · 3.48 KB
/
test_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
'''
Sample code for prediction and displaying the scene cut using the trained weight file.
'''
import cv2
import argparse
import numpy as np
from math import ceil,floor
import pandas as pd
from model import model
class datagen():
def __init__(self,no_frames,model,model_weight,video_file=None,csv_file=None):
if video_file==None:
input_video=input('Enter Video name')
self.extra_frames=ceil(no_frames/2.0)
self.csv_file=csv_file
self.cap=cv2.VideoCapture(video_file)
self.len=int(self.cap.get(7))
channel=3
self.panel_pipe=np.zeros((no_frames,128,128,channel))
self.image_pipe=np.zeros((no_frames,64,64,channel))
self.prediction=0,0
self.model_3d=model
self.model_3d.load_weights(model_weight)
def _image_insert(self,frame_64,frame_128):
self.image_pipe=np.append(self.image_pipe[1:],[frame_64],axis=0)
self.panel_pipe=np.append(self.panel_pipe[1:],[frame_128],axis=0)
return()
def _create_pannel(self):
panel=np.hstack(self.panel_pipe)
h,w,_=panel.shape
panel_image=cv2.line(panel,(w/2,0),(w/2,h),(255,255,255),4)
panel_text=np.ones((20,w,3))
panel_text=cv2.rectangle(panel_text,(1,1),(w,20),(255,255,255),thickness=cv2.FILLED)
panel_text=cv2.putText(panel_text, 'Prediction val:{}'.format(self.prediction[0],self.prediction[1]), (w/2-10, 17), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 0), lineType=cv2.LINE_AA)
panel_final=np.vstack([panel_image,panel_text])
return(panel_final)
def test_set(self):
_,init_image=self.cap.read()
frame_64=cv2.resize(init_image,(64,64),cv2.INTER_LINEAR).astype(np.float32)
frame_64/=255.
frame_128=cv2.resize(init_image,(128,128),cv2.INTER_LINEAR)
self.image_pipe=np.tile(frame_64,(10,1,1,1))
self.panel_pipe=np.tile(frame_128,(10,1,1,1))
width = init_image.shape[1]
height = init_image.shape[0]
channel = init_image.shape[2]
count=1
while(self.cap.isOpened()):
# for i in range(self.extra_frames):
ret, frame = self.cap.read()
if ret==True:
count+=1
frame_64=cv2.resize(frame,(64,64),cv2.INTER_LINEAR).astype(np.float32)
frame_64/=255.
frame_128=cv2.resize(frame,(128,128),cv2.INTER_LINEAR)
self._image_insert(frame_64,frame_128)
image=self.image_pipe.reshape((1,)+self.image_pipe.shape)
image_reshaped=image.reshape((64, 64, 10, 3))
prediction=self.model_3d.predict(image_reshaped)
predictionX=(prediction[0]>.5).astype(np.uint8)
self.prediction=predictionX[1],predictionX[0]
panel=self._create_pannel()
cv2.imshow('panel',panel)
if predictionX[0]==1:
cv2.imwrite('./swap_pred/{}.jpg'.format(count),panel)
if cv2.waitKey(100) & 0xFF == ord('q'):
break
else:
break
self.cap.release()
cv2.destroyAllWindows()
return('Done')
if __name__ == '__main__':
#loading the model and passing it for prediction and returns CSV results
train_model=model()
model=train_model.model_3d
model_weight='cut_video_final.h5'
test_gen=datagen(no_frames=10,model=model,model_weight=model_weight,video_file='../dataset_creator/aug_final.mp4')
test_gen.test_set()