-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathnway-create-fake-catalogue.py
203 lines (167 loc) · 6.67 KB
/
nway-create-fake-catalogue.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
#!/usr/bin/env python
# -*- coding: utf-8 -*-
from __future__ import print_function, division
__doc__ = """Create a fake, random-position catalogue for testing the false association rate.
For each source, tries to find a new position, by choosing randomly one of its K
nearest neighbors and picking a random location between them. If the new
location is within --radius (arcsec) of an old or new source, the random process
is repeated. With 2/3 probability K=10, with 1/3 probability K=100, giving a
good balance between reproducing local structures and filling the field.
Example: nway-create-fake-catalogue.py --radius 20 COSMOS-XMM.fits fake-COSMOS-XMM.fits
"""
import sys
import numpy
from numpy import log10, pi, exp, logical_and, cos, arccos, sin, arcsin, tan, arctan, arctan2, sqrt
import matplotlib.pyplot as plt
import astropy.io.fits as pyfits
import argparse
import nwaylib.progress as progress
import healpy
import nwaylib.fastskymatch as match
class HelpfulParser(argparse.ArgumentParser):
def error(self, message):
sys.stderr.write('error: %s\n' % message)
self.print_help()
sys.exit(2)
parser = HelpfulParser(description=__doc__,
epilog="""Johannes Buchner (C) 2013-2017 <[email protected]>""",
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--radius', type=float, required=True,
help='Remove sources which are near original sources, within this radius (arcsec).')
parser.add_argument('inputfile', type=str, help="input catalogue fits file")
parser.add_argument('outputfile', help='output catalogue fits file')
# parsing arguments
args = parser.parse_args()
outfile = args.outputfile
filename = args.inputfile
radius = args.radius
print('opening', filename)
inputfitsfile = pyfits.open(filename)
header_hdu = inputfitsfile[0]
table = inputfitsfile[1].data
ra_key = match.get_tablekeys(table, 'RA')
print(' using RA column: %s' % ra_key)
dec_key = match.get_tablekeys(table, 'DEC')
print(' using DEC column: %s' % dec_key)
ra_orig = table[ra_key]
dec_orig = table[dec_key]
ra = ra_orig + 0
dec = dec_orig + 0
n = len(ra_orig)
i_select = numpy.random.randint(0, n, size=400)
ra_test = ra[i_select]
dec_test = dec[i_select]
phi_test = ra_test / 180 * pi
theta_test = dec_test / 180 * pi + pi/2.
phi = ra / 180 * pi
theta = dec / 180 * pi + pi/2.
# find a pixelation that has ~20 in each pixel
print('finding good pixelation...')
ntarget = 20
nside = 1
for nside_next in range(30):
# number of pixels
nside = 2**nside_next
npix = healpy.pixelfunc.nside2npix(nside)
if n > ntarget * npix:
# too few pixels, can not achieve target number per pixel
continue
i = healpy.pixelfunc.ang2pix(nside, phi=phi_test, theta=theta_test, nest=True)
#j = healpy.pixelfunc.get_all_neighbours(nside, phi=phi_test, theta=theta_test, nest=True)
#neighbors = numpy.hstack((i.reshape((-1,1)), j.transpose()))
k = healpy.pixelfunc.ang2pix(nside, phi=phi, theta=theta, nest=True)
nneighbors = []
#for rai, deci, neighborsi in zip(ra_test, dec_test, neighbors):
# find pixels and neighbors
#for neighbor in neighborsi:
# print(neighbor, k.shape, (k == neighbor).sum())
#nneighbors.append(sum([(k == neighbor).sum() for neighbor in neighborsi]))
for rai, deci, ii in zip(ra_test, dec_test, i):
nneighbors.append((k == ii).sum())
nneighbors_total = sum(nneighbors)
print(' nside=%d: the %d test objects have a total of %d neighbors' % (nside, len(ra_test), nneighbors_total))
if nneighbors_total < len(ra_test) * ntarget:
# small enough, accept
print(' accepting.')
break
def greatarc_interpolate(posa, posb, f):
(a_ra, a_dec), (b_ra, b_dec) = posa, posb
lon1 = a_ra / 180 * pi
lat1 = a_dec / 180 * pi
lon2 = b_ra / 180 * pi
lat2 = b_dec / 180 * pi
d = arccos(sin(lat1) * sin(lat2) + cos(lat1) * cos(lat2) * cos(lon1 - lon2))
A = sin((1 - f) * d) / sin(d)
B = sin(f * d) / sin(d)
x = A * cos(lat1) * cos(lon1) + B * cos(lat2) * cos(lon2)
y = A * cos(lat1) * sin(lon1) + B * cos(lat2) * sin(lon2)
z = A * sin(lat1) + B * sin(lat2)
lat_f = arctan2(z, sqrt(x**2 + y**2))
lon_f = arctan2(y, x)
c_ra = lon_f * 180 / pi
c_dec = lat_f * 180 / pi
return c_ra, c_dec
# for each of them, create a new one without collision
pbar = progress.bar(ndigits=6)
for index in pbar(range(n)):
# select random coordinate
#a = numpy.random.randint(0, n)
a = index
# select randomly from 10 nearest neighbors
# find neighbors
i = healpy.pixelfunc.ang2pix(nside, phi=phi[a], theta=theta[a], nest=True)
j = healpy.pixelfunc.get_all_neighbours(nside, phi=phi[a], theta=theta[a], nest=True)
neighbors = numpy.hstack((i, j))
#print(neighbors.shape, k.shape, neighbors.shape)
is_neighbor = (k.reshape((-1,1)) == neighbors.reshape((1,-1))).any(axis=1)
#print('found %d neighbors' % is_neighbor.sum())
ra_nearby = ra_orig[is_neighbor]
dec_nearby = dec_orig[is_neighbor]
d = match.dist((ra_orig[a], dec_orig[a]), (ra_nearby, dec_nearby))
b_nearest = numpy.argsort(d)
dmask = d[b_nearest] * 60 * 60 > radius
#d = d[dmask]
b_nearest = b_nearest[dmask]
assert len(b_nearest)>0, "Method failed: No sources found nearby, could not interpolate a fake source."
#print('have %d neighbors' % len(b_nearest))
b_nearest = b_nearest[:100]
#print('distances:', d[b_nearest] * 60 * 60)
#if len(b_nearest) > 10:
# print('skipping, too few neighbors')
# break
#for bindex in range(len(b_nearest)):
#b = b_nearest[bindex]
while True:
if numpy.random.randint(0,3) == 0:
b = b_nearest[numpy.random.randint(0, len(b_nearest))]
else:
b = b_nearest[numpy.random.randint(0, min(10, len(b_nearest)))]
# compute point in between
di = d[b]
#di = match.dist((ra_orig[a], dec_orig[a]), (ra_nearby[b], dec_nearby[b]))
#print(di*60*60, d[b]*60*60)
#assert di * 60 * 60 > radius, (di * 60 * 60, radius, b)
uexclude = radius / 60 / 60 / di
u = numpy.random.uniform(uexclude, 1 - uexclude)
ra_i, dec_i = greatarc_interpolate((ra_orig[a], dec_orig[a]), (ra_nearby[b], dec_nearby[b]), u)
#ra_i = ra_orig[a] * u + ra_nearby[b] * (1 - u)
#dec_i = dec_orig[a] * u + dec_nearby[b] * (1 - u)
# check for collision with original catalogue
d = match.dist((ra_i, dec_i), (ra_nearby, dec_nearby))
if (d * 60 * 60 < radius).any():
#print('rejecting, near a original source')
continue # try again
# check for collision with new sources?
d = match.dist((ra_i, dec_i), (ra[:i], dec[:i]))
if (d * 60 * 60 < radius).any():
#print('rejecting, near a new source')
continue # try again
ra[index] = numpy.fmod(ra_i + 360, 360)
dec[index] = dec_i
break
table[ra_key] = ra
table[dec_key] = dec
tbhdu = inputfitsfile[1]
print('writing "%s" (%d rows)' % (outfile, len(tbhdu.data)))
hdulist = pyfits.HDUList([header_hdu, tbhdu])
hdulist.writeto(outfile, **progress.kwargs_overwrite_true)