forked from jeremyatia/mini_datathon
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathleaderboard.py
42 lines (36 loc) · 1.42 KB
/
leaderboard.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
from dataclasses import dataclass
import numpy as np
import pandas as pd
import os
@dataclass
class LeaderBoard:
benchmark_score: int = 0.6
db_file: str = 'leaderboard.csv'
current_path: str = os.path.abspath(os.path.dirname(__file__))
def get(self):
try:
leaderboard = pd.read_csv(os.path.join(self.current_path, self.db_file))
except FileNotFoundError:
leaderboard = self.create()
return leaderboard
def create(self):
ldb = pd.DataFrame(columns=['id', 'score'], index=[0])
ldb.loc[0, 'id'] = 'benchmark'
ldb.loc[0, 'score'] = self.benchmark_score
ldb.to_csv(os.path.join(self.current_path, self.db_file), index=False)
return ldb
def edit(self, leaderboard, id, score):
new_lb = leaderboard.copy()
if new_lb[new_lb.id == id].shape[0] == 0:
new_lb = new_lb.append({'id': id, 'score': score}, ignore_index=True)
else:
current_score = new_lb.loc[new_lb.id == id, 'score'].values[0]
if score > current_score:
new_lb.loc[new_lb.id == id, 'score'] = score
new_lb.to_csv(os.path.join(self.current_path, self.db_file), index=False)
return new_lb
@staticmethod
def show(leaderboard, ascending):
new_lb = leaderboard.sort_values('score', ascending=ascending)
new_lb['rank'] = np.arange(1, new_lb.shape[0] + 1)
return new_lb