forked from NCATComp410/comp410_summer2020
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo.py
77 lines (62 loc) · 2.67 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
#import autonormalize
import dfstools as dt
import featuretools as ft
import sys
import click
import os
import pprint
pp = pprint.PrettyPrinter(width=41, compact=True)
def save_demo_data(es, file_list):
for f in file_list:
file_with_path = os.path.join('data', os.path.join(f, f + '.csv'))
print(f'Saving {f} to {file_with_path}')
es[f].df.to_csv(file_with_path, index=False)
def download_data():
# check to see if data is already downloaded
file_list = ['trip_logs', 'flights', 'airlines', 'airports']
# If any file in the list is missing, download and save them all
for f in file_list:
file_with_path = os.path.join('data', os.path.join(f, f+'.csv'))
if not os.path.exists(file_with_path):
if click.confirm('OK to download demo featuretools data?', default=False):
es = ft.demo.load_flight(verbose=True)
save_demo_data(es, file_list)
break
# demonstration - this will be removed later
if __name__ == "__main__":
# Show current system information
print(sys.version)
print(sys.executable)
# Download example data (if it doesn't exist)
download_data()
# Load the csv files into dataframes
print('=================')
print('Loading CSV Files')
dataframe_dict = dt.load_csv_to_df('data',
include_hidden=False,
traverse_subdir=True,
ignore_errors=True,
follow_symlink=False)
print('Found the following tables:')
print(dataframe_dict.keys())
print('================')
print("get datatypes...")
relationship_dict = dt.get_dataset_dtypes(dataframe_dict)
pp.pprint(relationship_dict)
print('===================')
print("get primary keys...")
relationship_dict = dt.find_primary_key_candidates(dataframe_dict, relationship_dict)
pp.pprint(relationship_dict)
print('===============================')
print('Finding related columns by name')
relationship_dict = dt.find_related_cols_by_name(dataframe_dict, relationship_dict)
# print('standard relationship dict unfiltered for relationships: ')
pp.pprint(relationship_dict)
print('===============================')
print('Find related columns by content')
relationship_dict = dt.find_related_cols_by_content(dataframe_dict, relationship_dict)
pp.pprint(relationship_dict)
print('==================================')
print("find parent child relationships...")
relationship_dict = dt.find_parent_child_relationships(dataframe_dict, relationship_dict)
pp.pprint(relationship_dict)