-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathgrid.jl
186 lines (138 loc) · 5.72 KB
/
grid.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
const ParameterName=Union{Symbol,Expr}
"""
Grid(goal=nothing, resolution=10, rng=Random.GLOBAL_RNG, shuffle=true)
Instantiate a Cartesian grid-based hyperparameter tuning strategy with
a specified number of grid points as `goal`, or using a specified
default `resolution` in each numeric dimension.
### Supported ranges:
A single one-dimensional range or vector of one-dimensioinal ranges
can be specified. Specifically, in `Grid` search, the `range` field
of a `TunedModel` instance can be:
- A single one-dimensional range - ie, `ParamRange` object - `r`, or
pair of the form `(r, res)` where `res` specifies a resolution to
override the default `resolution`.
- Any vector of objects of the above form
Two elements of a `range` vector may share the same `field` attribute,
with the effect that their grids are combined, as in Example 3 below.
`ParamRange` objects are constructed using the `range` method.
Example 1:
range(model, :hyper1, lower=1, origin=2, unit=1)
Example 2:
[(range(model, :hyper1, lower=1, upper=10), 15),
range(model, :hyper2, lower=2, upper=4),
range(model, :hyper3, values=[:ball, :tree])]
Example 3:
# a range generating the grid `[1, 2, 10, 20, 30]` for `:hyper1`:
[range(model, :hyper1, values=[1, 2]),
(range(model, :hyper1, lower= 10, upper=30), 3)]
Note: All the `field` values of the `ParamRange` objects (`:hyper1`,
`:hyper2`, `:hyper3` in the preceding example) must refer to field
names a of single model (the `model` specified during `TunedModel`
construction).
### Algorithm
This is a standard grid search with the following specifics: In all
cases all `values` of each specified `NominalRange` are exhausted. If
`goal` is specified, then all resolutions are ignored, and a global
resolution is applied to the `NumericRange` objects that maximizes the
number of grid points, subject to the restriction that this not exceed
`goal`. (This assumes no field appears twice in the `range` vector.)
Otherwise the default `resolution` and any parameter-specific
resolutions apply.
In all cases the models generated are shuffled using `rng`, unless
`shuffle=false`.
See also [`TunedModel`](@ref), [`range`](@ref).
"""
mutable struct Grid <: TuningStrategy
goal::Union{Nothing,Int}
resolution::Int
shuffle::Bool
rng::Random.AbstractRNG
end
# Constructor with keywords
Grid(; goal=nothing, resolution=10, shuffle=true,
rng=Random.GLOBAL_RNG) =
Grid(goal, resolution, MLJBase.shuffle_and_rng(shuffle, rng)...)
isnumeric(::Any) = false
isnumeric(::NumericRange) = true
# To replace resolutions for numeric ranges with goal-adjusted ones if
# a goal is specified:
adjusted_resolutions(::Nothing, ranges, resolutions) = resolutions
function adjusted_resolutions(goal, ranges, resolutions)
# get the product Π of the lengths of the NominalRanges:
len(::NumericRange) = 1
len(r::NominalRange) = length(r.values)
Π = prod(len.(ranges))
n_numeric = sum(isnumeric.(ranges))
# compute new uniform resolution:
goal = goal/Π
res = round(Int, goal^(1/n_numeric))
return map(eachindex(resolutions)) do j
isnumeric(ranges[j]) ? res : resolutions[j]
end
end
# For deciding scale for duplicated fields:
_merge(s1, s2) = (s1 == :none ? s2 : s1)
function fields_iterators_and_scales(ranges, resolutions)
# following could have non-unique entries:
fields = map(r -> r.field, ranges)
iterator_given_field = Dict{Union{Symbol,Expr},Vector}()
scale_given_field = Dict{Union{Symbol,Expr},Any}()
for i in eachindex(ranges)
fld = fields[i]
r = ranges[i]
if haskey(iterator_given_field, fld)
iterator_given_field[fld] =
vcat(iterator_given_field[fld], iterator(r, resolutions[i]))
scale_given_field[fld] =
_merge(scale_given_field[fld], scale(r))
else
iterator_given_field[fld] = iterator(r, resolutions[i])
scale_given_field[fld] = scale(r)
end
end
fields = unique(fields)
iterators = map(fld->iterator_given_field[fld], fields)
scales = map(fld->scale_given_field[fld], fields)
return fields, iterators, scales
end
function setup(tuning::Grid, model, user_range, n, verbosity)
ranges, resolutions =
process_grid_range(user_range, tuning.resolution, verbosity)
resolutions = adjusted_resolutions(tuning.goal, ranges, resolutions)
fields, iterators, parameter_scales =
fields_iterators_and_scales(ranges, resolutions)
if tuning.shuffle
models = grid(tuning.rng, model, fields, iterators)
else
models = grid(model, fields, iterators)
end
state = (models=models,
fields=fields,
parameter_scales=parameter_scales,
models_delivered=false)
return state
end
# models returns all models on first call:
function MLJTuning.models(tuning::Grid,
model,
history,
state,
n_remaining,
verbosity)
state.models_delivered && return nothing, state
state = (models=state.models,
fields=state.fields,
parameter_scales=state.parameter_scales,
models_delivered=true)
return state.models, state
end
tuning_report(tuning::Grid, history, state) =
(plotting = plotting_report(state.fields, state.parameter_scales, history),)
function default_n(tuning::Grid, user_range)
ranges, resolutions =
process_grid_range(user_range, tuning.resolution, -1)
resolutions = adjusted_resolutions(tuning.goal, ranges, resolutions)
fields, iterators, parameter_scales =
fields_iterators_and_scales(ranges, resolutions)
return prod(length.(iterators))
end