From d2945b00875e2bf025765a16a1d97537d925e883 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?J=C3=BAlio=20Hoffimann?= Date: Tue, 5 Dec 2023 15:59:53 -0300 Subject: [PATCH] Bump version --- Project.toml | 6 +++--- docs/src/variography/fitting.md | 8 ++++---- ext/variogram.jl | 2 +- 3 files changed, 8 insertions(+), 8 deletions(-) diff --git a/Project.toml b/Project.toml index e8a29723..f2496d3c 100644 --- a/Project.toml +++ b/Project.toml @@ -1,7 +1,7 @@ name = "GeoStats" uuid = "dcc97b0b-8ce5-5539-9008-bb190f959ef6" author = "Júlio Hoffimann " -version = "0.47.10" +version = "0.48.0" [deps] CategoricalArrays = "324d7699-5711-5eae-9e2f-1d82baa6b597" @@ -52,7 +52,7 @@ GeoStatsTransforms = "0.2" GeoTables = "1.8" LossFunctions = "0.11" Makie = "0.20" -Meshes = "0.36" +Meshes = "0.37" Reexport = "1.0" Rotations = "1.5" Statistics = "1.9" @@ -60,5 +60,5 @@ StatsLearnModels = "0.2" TableTransforms = "1.9" Tables = "1.10" Unitful = "1.15" -Variography = "0.19" +Variography = "0.20" julia = "1.9" diff --git a/docs/src/variography/fitting.md b/docs/src/variography/fitting.md index 6c63974b..e5f6543e 100644 --- a/docs/src/variography/fitting.md +++ b/docs/src/variography/fitting.md @@ -12,7 +12,7 @@ modeling step to ensure valid mathematical models of spatial continuity. Given an empirical variogram, the `fit` function can be used to perform the fit: ```@docs -fit(::Type{Variogram}, ::EmpiricalVariogram, ::VariogramFitAlgo) +Variography.fit(::Type{Variogram}, ::EmpiricalVariogram, ::VariogramFitAlgo) ``` ## Example @@ -30,7 +30,7 @@ Mke.plot(g) We can fit specific models to the empirical variogram: ```@example variofit -γ = fit(SineHoleVariogram, g) +γ = Variography.fit(SineHoleVariogram, g) Mke.plot(g) Mke.plot!(γ, maxlag = 25.) @@ -40,7 +40,7 @@ Mke.current_figure() or let the framework find the model with minimum error: ```@example variofit -γ = fit(Variogram, g) +γ = Variography.fit(Variogram, g) Mke.plot(g) Mke.plot!(γ, maxlag = 25.) @@ -53,7 +53,7 @@ of this example is sinusoidal. Optionally, we can specify a weighting function to give different weights to the lags: ```@example variofit -γ = fit(SineHoleVariogram, g, h -> exp(-h)) +γ = Variography.fit(SineHoleVariogram, g, h -> exp(-h)) Mke.plot(g) Mke.plot!(γ, maxlag = 25.) diff --git a/ext/variogram.jl b/ext/variogram.jl index d8c6f313..8918e9b7 100644 --- a/ext/variogram.jl +++ b/ext/variogram.jl @@ -112,7 +112,7 @@ function Makie.plot!(plot::VarioPlot{<:Tuple{EmpiricalVarioplane}}) # show model range if rshow[] - ls = Makie.@lift [range(fit($rmodel, γ)) for γ in $γs] + ls = Makie.@lift [range(Variography.fit($rmodel, γ)) for γ in $γs] ls = Makie.@lift [$ls; $ls] zs = Makie.@lift fill(maximum($Z) + 1, length($ls)) Makie.lines!(plot, θs, ls, zs, color=plot[:rcolor])