-
Notifications
You must be signed in to change notification settings - Fork 0
/
ganja.js
1646 lines (1572 loc) · 128 KB
/
ganja.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/** Ganja.js - Geometric Algebra - Not Just Algebra.
* @author Enki
* @link https://github.com/enkimute/ganja.js
*/
/*********************************************************************************************************************/
//
// Ganja.js is an Algebra generator for javascript. It generates a wide variety of Algebra's and supports operator
// overloading, algebraic literals and a variety of graphing options.
//
// Ganja.js is designed with prototyping and educational purposes in mind. Clean mathematical syntax is the primary
// target.
//
// Ganja.js exports only one function called *Algebra*. This function is used to generate Algebra classes. (say complex
// numbers, minkowski or 3D CGA). The returned class can be used to create, add, multiply etc, but also to upgrade
// javascript functions with algebraic literals, operator overloading, vectors, matrices and much more.
//
// As a simple example, multiplying two complex numbers 3+2i and 1+4i could be done like this :
//
// var complex = Algebra(0,1);
// var a = new complex([3,2]);
// var b = new complex([1,3]);
// var result = a.Mul(b);
//
// But the same can be written using operator overloading and algebraic literals. (where scientific notation with
// lowercase e is overloaded to directly specify generators (e1, e2, e12, ...))
//
// var result = Algebra(0,1,()=>(3+2e1)*(1+4e1));
//
// Please see github for user documentation and examples.
//
/*********************************************************************************************************************/
// Documentation below is for implementors. I'll assume you know about Clifford Algebra's, grades, its products, etc ..
// I'll also assume you are familiar with ES6. My style may feel a bith mathematical, advise is to read slow.
(function (name, context, definition) {
if (typeof module != 'undefined' && module.exports) module.exports = definition();
else if (typeof define == 'function' && define.amd) define(name, definition);
else context[name] = definition();
}('Algebra', this, function () {
/** The Algebra class generator. Possible calling signatures :
* Algebra([func]) => algebra with no dimensions, i.e. R. Optional function for the translator.
* Algebra(p,[func]) => 'p' positive dimensions and an optional function to pass to the translator.
* Algebra(p,q,[func]) => 'p' positive and 'q' negative dimensions and optional function.
* Algebra(p,q,r,[func]) => 'p' positive, 'q' negative and 'r' zero dimensions and optional function.
* Algebra({ => for custom basis, cayley, mixing, etc pass in an object as first parameter.
* [p:p], => optional 'p' for # of positive dimensions
* [q:q], => optional 'q' for # of negative dimensions
* [r:r], => optional 'r' for # of zero dimensions
* [metric:array], => alternative for p,q,r. e.g. ([1,1,1,-1] for spacetime)
* [basis:array], => array of strings with basis names. (e.g. ['1','e1','e2','e12'])
* [Cayley:Cayley], => optional custom Cayley table (strings). (e.g. [['1','e1'],['e1','-1']])
* [mix:boolean], => Allows mixing of various algebras. (for space efficiency).
* [graded:boolean], => Use a graded algebra implementation. (automatic for +6D)
* [baseType:Float32Array] => optional basetype to use. (only for flat generator)
* },[func]) => optional function for the translator.
**/
return function Algebra(p,q,r) {
// Resolve possible calling signatures so we know the numbers for p,q,r. Last argument can always be a function.
var fu=arguments[arguments.length-1],options=p; if (options instanceof Object) {
q = (p.q || (p.metric && p.metric.filter(x=>x==-1).length))| 0;
r = (p.r || (p.metric && p.metric.filter(x=>x==0).length)) | 0;
p = p.p === undefined ? (p.metric && p.metric.filter(x=>x==1).length) || 0 : p.p || 0;
} else { options={}; p=p|0; r=r|0; q=q|0; };
// Support for multi-dual-algebras
if (options.dual || (p==0 && q==0 && r<0)) { r=options.dual=options.dual||-r; // Create a dual number algebra if r<0 (old) or options.dual set(new)
options.basis = [...Array(r+1)].map((a,i)=>i?'e0'+i:'1'); options.metric = [1,...Array(r)]; options.tot=r+1;
options.Cayley = [...Array(r+1)].map((a,i)=>[...Array(r+1)].map((y,j)=>i*j==0?((i+j)?'e0'+(i+j):'1'):'0'));
}
if (options.over) options.baseType = Array;
// Calculate the total number of dimensions.
var tot = options.tot = (options.tot||(p||0)+(q||0)+(r||0)||(options.basis&&options.basis.length))|0;
// Unless specified, generate a full set of Clifford basis names. We generate them as an array of strings by starting
// from numbers in binary representation and changing the set bits into their relative position.
// Basis names are ordered first per grade, then lexically (not cyclic!).
// For 10 or more dimensions all names will be double digits ! 1e01 instead of 1e1 ..
var basis=(options.basis&&(options.basis.length==2**tot||r<0||options.Cayley)&&options.basis)||[...Array(2**tot)] // => [undefined, undefined, undefined, undefined, undefined, undefined, undefined, undefined]
.map((x,xi)=>(((1<<30)+xi).toString(2)).slice(-tot||-1) // => ["000", "001", "010", "011", "100", "101", "110", "111"] (index of array in base 2)
.replace(/./g,(a,ai)=>a=='0'?'':String.fromCharCode(66+ai-(r!=0)))) // => ["", "3", "2", "23", "1", "13", "12", "123"] (1 bits replaced with their positions, 0's removed)
.sort((a,b)=>(a.toString().length==b.toString().length)?(a>b?1:b>a?-1:0):a.toString().length-b.toString().length) // => ["", "1", "2", "3", "12", "13", "23", "123"] (sorted numerically)
.map(x=>x&&'e'+(x.replace(/./g,x=>('0'+(x.charCodeAt(0)-65)).slice(tot>9?-2:-1) ))||'1') // => ["1", "e1", "e2", "e3", "e12", "e13", "e23", "e123"] (converted to commonly used basis names)
// See if the basis names start from 0 or 1, store grade per component and lowest component per grade.
var low=basis.length==1?1:basis[1].match(/\d+/g)[0]*1,
grades=options.grades||(options.dual&&basis.map((x,i)=>i?1:0))||basis.map(x=>tot>9?(x.length-1)/2:x.length-1),
grade_start=grades.map((a,b,c)=>c[b-1]!=a?b:-1).filter(x=>x+1).concat([basis.length]);
// String-simplify a concatenation of two basis blades. (and supports custom basis names e.g. e21 instead of e12)
// This is the function that implements e1e1 = +1/-1/0 and e1e2=-e2e1. The brm function creates the remap dictionary.
var simplify = (s,p,q,r)=>{
var sign=1,c,l,t=[],f=true,ss=s.match(tot>9?/(\d\d)/g:/(\d)/g);if (!ss) return s; s=ss; l=s.length;
while (f) { f=false;
// implement Ex*Ex = metric.
for (var i=0; i<l;) if (s[i]===s[i+1]) { if (options.metric) sign*=options.metric[s[i]-basis[1][1]]; else if ((s[i]-low)>=(p+r)) sign*=-1; else if ((s[i]-low)<r) sign=0;i+=2; f=true; } else t.push(s[i++]);
// implement Ex*Ey = -Ey*Ex while sorting basis vectors.
for (var i=0; i<t.length-1; i++) if (t[i]>t[i+1]) { c=t[i];t[i]=t[i+1];t[i+1]=c;sign*=-1;f=true; break;} if (f) { s=t;t=[];l=s.length; }
}
var ret=(sign==0)?'0':((sign==1)?'':'-')+(t.length?'e'+t.join(''):'1'); return (brm&&brm[ret])||(brm&&brm['-'+ret]&&'-'+brm['-'+ret])||ret;
},
brm=(x=>{ var ret={}; for (var i in basis) ret[basis[i]=='1'?'1':simplify(basis[i],p,q,r)] = basis[i]; return ret; })(basis);
// As an alternative to the string fiddling, one can also bit-fiddle. In this case the basisvectors are represented by integers with 1 bit per generator set.
var simplify_bits = (A,B,p2)=>{ var n=p2||(p+q+r),t=0,ab=A&B,res=A^B; if (ab&((1<<r)-1)) return [0,0]; while (n--) t^=(A=A>>1); t&=B; t^=ab>>(p+r); t^=t>>16; t^=t>>8; t^=t>>4; return [1-2*(27030>>(t&15)&1),res]; },
bc = (v)=>{ v=v-((v>>1)& 0x55555555); v=(v&0x33333333)+((v>>2)&0x33333333); var c=((v+(v>>4)&0xF0F0F0F)*0x1010101)>>24; return c };
if (!options.graded && tot <= 6 || options.graded===false || options.Cayley) {
// Faster and degenerate-metric-resistant dualization. (a remapping table that maps items into their duals).
var drm=basis.map((a,i)=>{ return {a:a,i:i} })
.sort((a,b)=>a.a.length>b.a.length?1:a.a.length<b.a.length?-1:(+a.a.slice(1).split('').sort().join(''))-(+b.a.slice(1).split('').sort().join('')) )
.map(x=>x.i).reverse(),
drms=drm.map((x,i)=>(x==0||i==0)?1:simplify(basis[x]+basis[i])[0]=='-'?-1:1);
/// Store the full metric (also for bivectors etc ..)
var metric = options.Cayley&&options.Cayley.map((x,i)=>x[i]) || basis.map((x,xi)=>simplify(x+x,p,q,r)|0); metric[0]=1;
/// Generate multiplication tables for the outer and geometric products.
var mulTable = options.Cayley||basis.map(x=>basis.map(y=>(x==1)?y:(y==1)?x:simplify(x+y,p,q,r)));
// subalgebra support. (must be bit-order basis blades, does no error checking.)
if (options.even) options.basis = basis.filter(x=>x.length%2==1);
if (options.basis && !options.Cayley && r>=0 && options.basis.length != 2**tot) {
metric = metric.filter((x,i)=>options.basis.indexOf(basis[i])!=-1);
mulTable = mulTable.filter((x,i)=>options.basis.indexOf(basis[i])!=-1).map(x=>x.filter((x,i)=>options.basis.indexOf(basis[i])!=-1));
basis = options.basis;
}
/// Convert Cayley table to product matrices. The outer product selects the strict sum of the GP (but without metric), the inner product
/// is the left contraction.
var gp=basis.map(x=>basis.map(x=>'0')), cp=gp.map(x=>gp.map(x=>'0')), cps=gp.map(x=>gp.map(x=>'0')), op=gp.map(x=>gp.map(x=>'0')), gpo={}; // Storage for our product tables.
basis.forEach((x,xi)=>basis.forEach((y,yi)=>{ var n = mulTable[xi][yi].replace(/^-/,''); if (!gpo[n]) gpo[n]=[]; gpo[n].push([xi,yi]); }));
basis.forEach((o,oi)=>{
gpo[o].forEach(([xi,yi])=>op[oi][xi]=(grades[oi]==grades[xi]+grades[yi])?((mulTable[xi][yi]=='0')?'0':((mulTable[xi][yi][0]!='-')?'':'-')+'b['+yi+']*this['+xi+']'):'0');
gpo[o].forEach(([xi,yi])=>{
gp[oi][xi] =((gp[oi][xi]=='0')?'':gp[oi][xi]+'+') + ((mulTable[xi][yi]=='0')?'0':((mulTable[xi][yi][0]!='-')?'':'-')+'b['+yi+']*this['+xi+']');
cp[oi][xi] =((cp[oi][xi]=='0')?'':cp[oi][xi]+'+') + ((grades[oi]==grades[yi]-grades[xi])?gp[oi][xi]:'0');
cps[oi][xi]=((cps[oi][xi]=='0')?'':cps[oi][xi]+'+') + ((grades[oi]==Math.abs(grades[yi]-grades[xi]))?gp[oi][xi]:'0');
});
});
/// Flat Algebra Multivector Base Class.
var generator = class MultiVector extends (options.baseType||Float32Array) {
/// constructor - create a floating point array with the correct number of coefficients.
constructor(a) { super(a||basis.length); return this; }
/// grade selection - return a only the part of the input with the specified grade.
Grade(grade,res) { res=res||new this.constructor(); for (var i=0,l=res.length; i<l; i++) if (grades[i]==grade) res[i]=this[i]; else res[i]=0; return res; }
Even(res) { res=res||new this.constructor(); for (var i=0,l=res.length; i<l; i++) if (grades[i]%2==0) res[i]=this[i]; else res[i]=0; return res; }
/// grade creation - convert array with just one grade to full multivector.
nVector(grade,...args) { this.set(args,grade_start[grade]); return this; }
/// Fill in coordinates (accepts sequence of index,value as arguments)
Coeff() { for (var i=0,l=arguments.length; i<l; i+=2) this[arguments[i]]=arguments[i+1]; return this; }
/// Negates specific grades (passed in as args)
Map(res, ...a) { for (var i=0, l=res.length; i<l; i++) res[i] = (~a.indexOf(grades[i]))?-this[i]:this[i]; return res; }
/// Returns the vector grade only.
get Vector () { return this.slice(grade_start[1],grade_start[2]); };
toString() { var res=[]; for (var i=0; i<basis.length; i++) if (Math.abs(this[i])>1e-10) res.push(((this[i]==1)&&i?'':((this[i]==-1)&&i)?'-':(this[i].toFixed(10)*1))+(i==0?'':tot==1&&q==1?'i':basis[i].replace('e','e_'))); return res.join('+').replace(/\+-/g,'-')||'0'; }
/// Reversion, Involutions, Conjugation for any number of grades, component acces shortcuts.
get Negative (){ var res = new this.constructor(); for (var i=0; i<this.length; i++) res[i]= -this[i]; return res; };
get Reverse (){ var res = new this.constructor(); for (var i=0; i<this.length; i++) res[i]= this[i]*[1,1,-1,-1][grades[i]%4]; return res; };
get Involute (){ var res = new this.constructor(); for (var i=0; i<this.length; i++) res[i]= this[i]*[1,-1,1,-1][grades[i]%4]; return res; };
get Conjugate (){ var res = new this.constructor(); for (var i=0; i<this.length; i++) res[i]= this[i]*[1,-1,-1,1][grades[i]%4]; return res; };
/// The Dual, Length, non-metric length and normalized getters.
get Dual (){ if (r) return this.map((x,i,a)=>a[drm[i]]*drms[i]); var res = new this.constructor(); res[res.length-1]=1; return res.Mul(this); };
get Length (){ return options.over?Math.sqrt(Math.abs(this.Mul(this.Conjugate).s.s)):Math.sqrt(Math.abs(this.Mul(this.Conjugate).s)); };
get VLength (){ var res = 0; for (var i=0; i<this.length; i++) res += this[i]*this[i]; return Math.sqrt(res); };
get Normalized (){ var res = new this.constructor(),l=this.Length; if (!l) return this; l=1/l; for (var i=0; i<this.length; i++) if (options.over) {res[i]=this[i].Scale(l);} else {res[i]=this[i]*l}; return res; };
}
/// Convert symbolic matrices to code. (skipping zero's on dot and wedge matrices).
/// These all do straightforward string fiddling. If the 'mix' option is set they reference basis components using e.g. '.e1' instead of eg '[3]' .. so that
/// it will work for elements of subalgebras etc.
generator.prototype.Add = new Function('b,res','res=res||new this.constructor();\n'+basis.map((x,xi)=>'res['+xi+']=b['+xi+']+this['+xi+']').join(';\n').replace(/(b|this)\[(.*?)\]/g,(a,b,c)=>options.mix?'('+b+'.'+(c|0?basis[c]:'s')+'||0)':a)+';\nreturn res')
generator.prototype.Scale = new Function('b,res','res=res||new this.constructor();\n'+basis.map((x,xi)=>'res['+xi+']=b*this['+xi+']').join(';\n').replace(/(b|this)\[(.*?)\]/g,(a,b,c)=>options.mix?'('+b+'.'+(c|0?basis[c]:'s')+'||0)':a)+';\nreturn res')
generator.prototype.Sub = new Function('b,res','res=res||new this.constructor();\n'+basis.map((x,xi)=>'res['+xi+']=this['+xi+']-b['+xi+']').join(';\n').replace(/(b|this)\[(.*?)\]/g,(a,b,c)=>options.mix?'('+b+'.'+(c|0?basis[c]:'s')+'||0)':a)+';\nreturn res')
generator.prototype.Mul = new Function('b,res','res=res||new this.constructor();\n'+gp.map((r,ri)=>'res['+ri+']='+r.join('+').replace(/\+\-/g,'-').replace(/(\w*?)\[(.*?)\]/g,(a,b,c)=>options.mix?'('+b+'.'+(c|0?basis[c]:'s')+'||0)':a).replace(/\+0/g,'')+';').join('\n')+'\nreturn res;');
generator.prototype.LDot = new Function('b,res','res=res||new this.constructor();\n'+cp.map((r,ri)=>'res['+ri+']='+r.join('+').replace(/\+\-/g,'-').replace(/\+0/g,'').replace(/(\w*?)\[(.*?)\]/g,(a,b,c)=>options.mix?'('+b+'.'+(c|0?basis[c]:'s')+'||0)':a)+';').join('\n')+'\nreturn res;');
generator.prototype.Dot = new Function('b,res','res=res||new this.constructor();\n'+cps.map((r,ri)=>'res['+ri+']='+r.join('+').replace(/\+\-/g,'-').replace(/\+0/g,'').replace(/(\w*?)\[(.*?)\]/g,(a,b,c)=>options.mix?'('+b+'.'+(c|0?basis[c]:'s')+'||0)':a)+';').join('\n')+'\nreturn res;');
generator.prototype.Wedge = new Function('b,res','res=res||new this.constructor();\n'+op.map((r,ri)=>'res['+ri+']='+r.join('+').replace(/\+\-/g,'-').replace(/\+0/g,'').replace(/(\w*?)\[(.*?)\]/g,(a,b,c)=>options.mix?'('+b+'.'+(c|0?basis[c]:'s')+'||0)':a)+';').join('\n')+'\nreturn res;');
// generator.prototype.Vee = new Function('b,res','res=res||new this.constructor();\n'+op.map((r,ri)=>'res['+drm[ri]+']='+r.map(x=>x.replace(/\[(.*?)\]/g,function(a,b){return '['+(drm[b|0])+']'})).join('+').replace(/\+\-/g,'-').replace(/\+0/g,'').replace(/(\w*?)\[(.*?)\]/g,(a,b,c)=>options.mix?'('+b+'.'+(c|0?basis[c]:'s')+'||0)':a)+';').join('\n')+'\nreturn res;');
/// Conforms to the new Chapter 11 now.
generator.prototype.Vee = new Function('b,res',('res=res||new this.constructor();\n'+op.map((r,ri)=>'res['+drm[ri]+']='+drms[ri]+'*('+r.map(x=>x.replace(/\[(.*?)\]/g,function(a,b){return '['+(drm[b|0])+']'+(drms[b|0]>0?"":"*-1")})).join('+').replace(/\+\-/g,'-').replace(/\+0/g,'').replace(/(\w*?)\[(.*?)\]/g,(a,b,c)=>options.mix?'('+b+'.'+(c|0?basis[c]:'s')+'||0)':a)+');').join('\n')+'\nreturn res;').replace(/(b\[)|(this\[)/g,a=>a=='b['?'this[':'b['));
/// Add getter and setters for the basis vectors/bivectors etc ..
basis.forEach((b,i)=>Object.defineProperty(generator.prototype, i?b:'s', {
configurable: true, get(){ return this[i] }, set(x){ this[i]=x; }
}));
/// Graded generator for high-dimensional algebras.
} else {
/// extra graded lookups.
var basisg = grade_start.slice(0,grade_start.length-1).map((x,i)=>basis.slice(x,grade_start[i+1]));
var counts = grade_start.map((x,i,a)=>i==a.length-1?0:a[i+1]-x).slice(0,tot+1);
var basis_bits = basis.map(x=>x=='1'?0:x.slice(1).match(tot>9?/\d\d/g:/\d/g).reduce((a,b)=>a+(1<<(b-low)),0)),
bits_basis = []; basis_bits.forEach((b,i)=>bits_basis[b]=i);
var metric = basisg.map((x,xi)=>x.map((y,yi)=>simplify_bits(basis_bits[grade_start[xi]+yi],basis_bits[grade_start[xi]+yi])[0]));
var drms = basisg.map((x,xi)=>x.map((y,yi)=>simplify_bits(basis_bits[grade_start[xi]+yi],(~basis_bits[grade_start[xi]+yi])&((1<<tot)-1))[0]));
/// Flat Algebra Multivector Base Class.
var generator = class MultiVector extends Array {
/// constructor - create a floating point array with the correct number of coefficients.
constructor(a) { super(a||tot); return this; }
/// grade selection - return a only the part of the input with the specified grade.
Grade(grade,res) { res=new this.constructor(); res[grade] = this[grade]; return res; }
/// grade creation - convert array with just one grade to full multivector.
nVector(grade,...args) { this[grade]=args; return this; }
/// Fill in coordinates (accepts sequence of index,value as arguments)
Coeff() {
for (var i=0,l=arguments.length; i<l; i+=2) if (arguments[i+1]) {
var gi = grades[arguments[i]];
if (this[gi]==undefined) this[gi]=[];
this[gi][arguments[i]-grade_start[gi]]=arguments[i+1];
}
return this;
}
/// Negates specific grades (passed in as args)
Map(res, ...a) { /* tbc */ }
/// Returns the vector grade only.
get Vector () { return this[1] };
/// multivector addition, subtraction and scalar multiplication.
Add(b,r) {
r=r||new this.constructor();
for (var i=0,l=Math.max(this.length,b.length);i<l;i++)
if (!this[i] ^ !b[i]) r[i] = (!this[i]) ? b[i].slice():this[i].slice();
else if (!(this[i]||b[i])) {}
else { if (r[i]==undefined) r[i]=[]; for(var j=0,m=Math.max(this[i].length,b[i].length);j<m;j++)
{
if (typeof this[i][j]=="string" || typeof r[i][j]=="string" || typeof b[i][j]=="string") {
if (!this[i][j]) r[i][j] = ""+b[i][j];
else if (!b[i][j]) r[i][j] = ""+this[i][j];
else r[i][j]="("+(this[i][j]||"0")+(b[i][j][0]=="-"?"":"+")+(b[i][j]||"0")+")";
} else r[i][j]=(this[i][j]||0)+(b[i][j]||0);
}}
return r;
}
Sub(b,r) {
r=r||new this.constructor();
for (var i=0,l=Math.max(this.length,b.length);i<l;i++)
if (!this[i] || !b[i]) r[i] = (!this[i]) ? (b[i]?b[i].map(x=>(typeof x=="string")?"-"+x:-x):undefined):this[i];
else { if (r[i]==undefined) r[i]=[]; for(var j=0,m=Math.max(this[i].length,b[i].length);j<m;j++)
if (typeof this[i][j]=="string" || typeof r[i][j]=="string" || typeof b[i][j]=="string") r[i][j]="("+(this[i][j]||"0")+"-"+(b[i][j]||"0")+")";
else r[i][j]=(this[i][j]||0)-(b[i][j]||0);
}
return r;
}
Scale(s) { return this.map(x=>x&&x.map(y=>typeof y=="string"?y+"*"+s:y*s)); }
// geometric product.
Mul(b,r) {
r=r||new this.constructor(); var gotstring=false;
for (var i=0,x,gsx; gsx=grade_start[i],x=this[i],i<this.length; i++) if (x) for (var j=0,y,gsy;gsy=grade_start[j],y=b[j],j<b.length; j++) if (y) for (var a=0; a<x.length; a++) if (x[a]) for (var bb=0; bb<y.length; bb++) if (y[bb]) {
if (i==j && a==bb) { r[0] = r[0]||(typeof x[0]=="string" || typeof y[bb]=="string"?[""]:[0]);
if (typeof x[a]=="string" || typeof r[0][0]=="string" || typeof y[bb]=="string") {
r[0][0] = (r[0][0]?(r[0][0]+(x[a][0]=="-"?"":"+")):"")+ x[a]+"*"+y[bb]+(metric[i][a]!=1?"*"+metric[i][a]:""); gotstring=true;
} else r[0][0] += x[a]*y[bb]*metric[i][a];
} else {
var rn=simplify_bits(basis_bits[gsx+a],basis_bits[gsy+bb]), g=bc(rn[1]), e=bits_basis[rn[1]]-grade_start[g];
if (!r[g])r[g]=[];
if (typeof r[g][e]=="string"||typeof x[a]=="string"||typeof y[bb]=="string") {
r[g][e] = (r[g][e]?r[g][e]+"+":"") + (rn[0]!=1?rn[0]==-1?"-":rn[0]+"*":"")+ x[a]+(y[bb]!=1?"*"+y[bb]:""); gotstring=true;
} else r[g][e] = (r[g][e]||0) + rn[0]*x[a]*y[bb];
}
}
if (gotstring) return r.map(g=>g.map(e=>e&&(!(e+'').match(/-{0,1}\w+/))?'('+e+')':e))
return r;
}
// outer product.
Wedge(b,r) {
r=r||new this.constructor();
for (var i=0,x,gsx; gsx=grade_start[i],x=this[i],i<this.length; i++) if (x) for (var j=0,y,gsy;gsy=grade_start[j],y=b[j],j<b.length; j++) if (y) for (var a=0; a<x.length; a++) if (x[a]) for (var bb=0; bb<y.length; bb++) if (y[bb]) {
if (i!=j || a!=bb) {
var n1=basis_bits[gsx+a], n2=basis_bits[gsy+bb], rn=simplify_bits(n1,n2,tot), g=bc(rn[1]), e=bits_basis[rn[1]]-grade_start[g];
if (g == i+j) { if (!r[g]) r[g]=[]; r[g][e] = (r[g][e]||0) + rn[0]*x[a]*y[bb]; }
}
}
return r;
}
// outer product glsl output.
OPNS_GLSL(b,point_source) {
var r='',count=0,curg;
for (var i=0,x,gsx; gsx=grade_start[i],x=this[i],i<this.length; i++) if (x) for (var j=0,y,gsy;gsy=grade_start[j],y=b[j],j<b.length; j++) if (y) for (var a=0; a<counts[i]; a++) for (var bb=0; bb<counts[j]; bb++) {
if (i!=j || a!=bb) {
var n1=basis_bits[gsx+a], n2=basis_bits[gsy+bb], rn=simplify_bits(n1,n2,tot), g=bc(rn[1]), e=bits_basis[rn[1]]-grade_start[g];
if (g == i+j) { curg=g; r += `res[${e}]${rn[0]=='1'?"+=":"-="}(${(point_source[a]+'').replace(/1([^.\d])|1$/g,"1.0$1")})*b[${bb}]; //${count++}\n`; }
}
}
r=r.split('\n').filter(x=>x).sort((a,b)=>((a.match(/\d+/)[0]|0)-(b.match(/\d+/)[0]|0))||((a.match(/\d+$/)[0]|0)-(b.match(/\d+$/)[0]|0))).map(x=>x.replace(/\/\/\d+$/,''));
var r2 = 'float sum=0.0; float res=0.0;\n', g=0;
r.forEach(x=>{
var cg = x.match(/\d+/)[0]|0;
if (cg != g) r2 += "sum += res*res;\nres = 0.0;\n";
r2 += x.replace(/\[\d+\]/,'') + '\n';
g=cg;
});
r2+= "sum += res*res;\n";
return r2;
}
// Inner product glsl output.
IPNS_GLSL(b,point_source) {
var r='',count=0,curg;
for (var i=0,x,gsx; gsx=grade_start[i],x=this[i],i<this.length; i++) if (x) for (var j=0,y,gsy;gsy=grade_start[j],y=b[j],j<b.length; j++) if (y) for (var a=0; a<counts[i]; a++) for (var bb=0; bb<counts[j]; bb++) {
var n1=basis_bits[gsx+a], n2=basis_bits[gsy+bb], rn=simplify_bits(n1,n2,tot), g=bc(rn[1]), e=bits_basis[rn[1]]-grade_start[g];
if (g == Math.abs(i-j) && point_source[a]) { curg=g; r += `res[${e}]${rn[0]=='1'?"+=":"-="}(${(point_source[a]+'').replace(/1([^.\d])|1$/g,"1.0$1")})*b[${bb}]; //${count++}\n`; }
}
r=r.split('\n').filter(x=>x).sort((a,b)=>((a.match(/\d+/)[0]|0)-(b.match(/\d+/)[0]|0))||((a.match(/\d+$/)[0]|0)-(b.match(/\d+$/)[0]|0))).map(x=>x.replace(/\/\/\d+$/,''));
var r2 = 'float sum=0.0; float res=0.0;\n', g=0;
r.forEach(x=>{
var cg = x.match(/\d+/)[0]|0;
if (cg != g) r2 += "sum += res*res;\nres = 0.0;\n";
r2 += x.replace(/\[\d+\]/,'') + '\n';
g=cg;
});
r2+= "sum += res*res;\n";
return r2;
}
// Left contraction.
LDot(b,r) {
r=r||new this.constructor();
for (var i=0,x,gsx; gsx=grade_start[i],x=this[i],i<this.length; i++) if (x) for (var j=0,y,gsy;gsy=grade_start[j],y=b[j],j<b.length; j++) if (y) for (var a=0; a<x.length; a++) if (x[a]) for (var bb=0; bb<y.length; bb++) if (y[bb]) {
if (i==j && a==bb) { r[0] = r[0]||[0]; r[0][0] += x[a]*y[bb]*metric[i][a]; }
else {
var rn=simplify_bits(basis_bits[gsx+a],basis_bits[gsy+bb]), g=bc(rn[1]), e=bits_basis[rn[1]]-grade_start[g];
if (g == j-i) { if (!r[g])r[g]=[]; r[g][e] = (r[g][e]||0) + rn[0]*x[a]*y[bb]; }
}
}
return r;
}
// Symmetric contraction.
Dot(b,r) {
r=r||new this.constructor();
for (var i=0,x,gsx; gsx=grade_start[i],x=this[i],i<this.length; i++) if (x) for (var j=0,y,gsy;gsy=grade_start[j],y=b[j],j<b.length; j++) if (y) for (var a=0; a<x.length; a++) if (x[a]) for (var bb=0; bb<y.length; bb++) if (y[bb]) {
if (i==j && a==bb) { r[0] = r[0]||[0]; r[0][0] += x[a]*y[bb]*metric[i][a]; }
else {
var rn=simplify_bits(basis_bits[gsx+a],basis_bits[gsy+bb]), g=bc(rn[1]), e=bits_basis[rn[1]]-grade_start[g];
if (g == Math.abs(j-i)) { if (!r[g])r[g]=[]; r[g][e] = (r[g][e]||0) + rn[0]*x[a]*y[bb]; }
}
}
return r;
}
// Should be optimized..
Vee(b,r) { return (this.Dual.Wedge(b.Dual)).Dual; }
// Output, lengths, involutions, normalized, dual.
toString() { return [...this].map((g,gi)=>g&&g.map((c,ci)=>!c?undefined:((c+'').match(/[\+\-\*]/)?'('+c+')':c)+(gi==0?"":basisg[gi][ci])).filter(x=>x).join('+')).filter(x=>x).join('+').replace(/\+\-/g,'-')||"0"; }
get s () { if (this[0]) return this[0][0]||0; return 0; }
get Length () { var res=0; this.forEach((g,gi)=>g&&g.forEach((e,ei)=>res+=(e||0)**2*metric[gi][ei])); return Math.abs(res)**.5; }
get VLength () { var res=0; this.forEach((g,gi)=>g&&g.forEach((e,ei)=>res+=(e||0)**2)); return Math.abs(res)**.5; }
get Reverse () { var r=new this.constructor(); this.forEach((x,gi)=>x&&x.forEach((e,ei)=>{if(!r[gi])r[gi]=[]; r[gi][ei] = this[gi][ei]*[1,1,-1,-1][gi%4]; })); return r; }
get Involute () { var r=new this.constructor(); this.forEach((x,gi)=>x&&x.forEach((e,ei)=>{if(!r[gi])r[gi]=[]; r[gi][ei] = this[gi][ei]*[1,-1,1,-1][gi%4]; })); return r; }
get Conjugate () { var r=new this.constructor(); this.forEach((x,gi)=>x&&x.forEach((e,ei)=>{if(!r[gi])r[gi]=[]; r[gi][ei] = this[gi][ei]*[1,-1,-1,1][gi%4]; })); return r; }
get Dual() { var r=new this.constructor(); this.forEach((g,gi)=>{ if (!g) return; r[tot-gi]=[]; g.forEach((e,ei)=>r[tot-gi][counts[gi]-1-ei]=drms[gi][ei]*e); }); return r; }
get Normalized () { return this.Scale(1/this.Length); }
}
// This generator is UNDER DEVELOPMENT - I'm publishing it so I can test on observable.
}
// Generate a new class for our algebra. It extends the javascript typed arrays (default float32 but can be specified in options).
var res = class Element extends generator {
// constructor - create a floating point array with the correct number of coefficients.
constructor(a) { super(a); if (this.upgrade) this.upgrade(); return this; }
// Grade selection. (implemented by parent class).
Grade(grade,res) { res=res||new Element(); return super.Grade(grade,res); }
// Right and Left divide - Defined on the elements, shortcuts to multiplying with the inverse.
Div (b,res) { return this.Mul(b.Inverse,res); }
LDiv (b,res) { return b.Inverse.Mul(this,res); }
// Taylor exp - for PGA bivectors in 2D and 3D closed form solution is used.
Exp () {
if (options.dual) { var f=Math.exp(this.s); return this.map((x,i)=>i?x*f:f); }
if (r==1 && tot<=4 && Math.abs(this[0])<1E-9 && !options.over) {
var u = Math.sqrt(Math.abs(this.Dot(this).s)); if (Math.abs(u)<1E-5) return this.Add(Element.Scalar(1));
var v = this.Wedge(this).Scale(-1/(2*u));
var res2 = Element.Add(Element.Sub(Math.cos(u),v.Scale(Math.sin(u))),Element.Div(Element.Mul((Element.Add(Math.sin(u),v.Scale(Math.cos(u)))),this),(Element.Add(u,v))));
return res2;
}
var res = Element.Scalar(1), y=1, M= this.Scale(1), N=this.Scale(1); for (var x=1; x<15; x++) { res=res.Add(M.Scale(1/y)); M=M.Mul(N); y=y*(x+1); }; return res;
}
// Log - only for up to 3D PGA for now
Log () {
if (r!=1 || tot>4 || options.over) return;
var b = this.Grade(2), bdb = Element.Dot(b,b);
if (Math.abs(bdb.s)<=1E-5) return this.s<0?b.Scale(-1):b;
var s = Math.sqrt(-bdb), bwb = Element.Wedge(b,b);
if (Math.abs(bwb.e0123)<=1E-5) return b.Scale(Math.atan2(s,this.s)/s);
var p = bwb.Scale(-1/(2*s));
return Element.Div(Element.Mul(Element.Mul((Element.Add(Math.atan2(s,this.s),Element.Div(p,this.s))),b),(Element.Sub(s,p))),(Element.Mul(s,s)));
}
// Helper for efficient inverses. (custom involutions - negates grades in arguments).
Map () { var res=new Element(); return super.Map(res,...arguments); }
// Factories - Make it easy to generate vectors, bivectors, etc when using the functional API. None of the examples use this but
// users that have used other GA libraries will expect these calls. The Coeff() is used internally when translating algebraic literals.
static Element() { return new Element([...arguments]); };
static Coeff() { return (new Element()).Coeff(...arguments); }
static Scalar(x) { return (new Element()).Coeff(0,x); }
static Vector() { return (new Element()).nVector(1,...arguments); }
static Bivector() { return (new Element()).nVector(2,...arguments); }
static Trivector() { return (new Element()).nVector(3,...arguments); }
static nVector(n) { return (new Element()).nVector(...arguments); }
// Static operators. The parser will always translate operators to these static calls so that scalars, vectors, matrices and other non-multivectors can also be handled.
// The static operators typically handle functions and matrices, calling through to element methods for multivectors. They are intended to be flexible and allow as many
// types of arguments as possible. If performance is a consideration, one should use the generated element methods instead. (which only accept multivector arguments)
static toEl(x) { if (x instanceof Function) x=x(); if (!(x instanceof Element)) x=Element.Scalar(x); return x; }
// Addition and subtraction. Subtraction with only one parameter is negation.
static Add(a,b,res) {
// Resolve expressions passed in.
while(a.call)a=a(); while(b.call)b=b(); if (a.Add && b.Add) return a.Add(b,res);
// If either is a string, the result is a string.
if ((typeof a=='string')||(typeof b=='string')) return a.toString()+b.toString();
// If only one is an array, add the other element to each of the elements.
if ((a instanceof Array && !a.Add)^(b instanceof Array && !b.Add)) return (a instanceof Array)?a.map(x=>Element.Add(x,b)):b.map(x=>Element.Add(a,x));
// If both are equal length arrays, add elements one-by-one
if ((a instanceof Array)&&(b instanceof Array)&&a.length==b.length) return a.map((x,xi)=>Element.Add(x,b[xi]));
// If they're both not elements let javascript resolve it.
if (!(a instanceof Element || b instanceof Element)) return a+b;
// Here we're left with scalars and multivectors, call through to generated code.
a=Element.toEl(a); b=Element.toEl(b); return a.Add(b,res);
}
static Sub(a,b,res) {
// Resolve expressions passed in.
while(a.call)a=a(); while(b&&b.call) b=b(); if (a.Sub && b && b.Sub) return a.Sub(b,res);
// If only one is an array, add the other element to each of the elements.
if (b&&((a instanceof Array)^(b instanceof Array))) return (a instanceof Array)?a.map(x=>Element.Sub(x,b)):b.map(x=>Element.Sub(a,x));
// If both are equal length arrays, add elements one-by-one
if (b&&(a instanceof Array)&&(b instanceof Array)&&a.length==b.length) return a.map((x,xi)=>Element.Sub(x,b[xi]));
// Negation
if (arguments.length==1) return Element.Mul(a,-1);
// If none are elements here, let js do it.
if (!(a instanceof Element || b instanceof Element)) return a-b;
// Here we're left with scalars and multivectors, call through to generated code.
a=Element.toEl(a); b=Element.toEl(b); return a.Sub(b,res);
}
// The geometric product. (or matrix*matrix, matrix*vector, vector*vector product if called with 1D and 2D arrays)
static Mul(a,b,res) {
// Resolve expressions
while(a.call&&!a.length)a=a(); while(b.call&&!b.length)b=b(); if (a.Mul && b.Mul) return a.Mul(b,res);
// still functions -> experimental curry style (dont use this.)
if (a.call && b.call) return (ai,bi)=>Element.Mul(a(ai),b(bi));
// scalar mul.
if (Number.isFinite(a) && b.Scale) return b.Scale(a); else if (Number.isFinite(b) && a.Scale) return a.Scale(b);
// Handle matrices and vectors.
if ((a instanceof Array)&&(b instanceof Array)) {
// vector times vector performs a dot product. (which internally uses the GP on each component)
if((!(a[0] instanceof Array) || (a[0] instanceof Element)) &&(!(b[0] instanceof Array) || (b[0] instanceof Element))) { var r=tot?Element.Scalar(0):0; a.forEach((x,i)=>r=Element.Add(r,Element.Mul(x,b[i]),r)); return r; }
// Array times vector
if(!(b[0] instanceof Array)) return a.map((x,i)=>Element.Mul(a[i],b));
// Array times Array
var r=a.map((x,i)=>b[0].map((y,j)=>{ var r=tot?Element.Scalar(0):0; x.forEach((xa,k)=>r=Element.Add(r,Element.Mul(xa,b[k][j]))); return r; }));
// Return resulting array or scalar if 1 by 1.
if (r.length==1 && r[0].length==1) return r[0][0]; else return r;
}
// Only one is an array multiply each of its elements with the other.
if ((a instanceof Array)^(b instanceof Array)) return (a instanceof Array)?a.map(x=>Element.Mul(x,b)):b.map(x=>Element.Mul(a,x));
// Try js multiplication, else call through to geometric product.
var r=a*b; if (!isNaN(r)) return r;
a=Element.toEl(a); b=Element.toEl(b); return a.Mul(b,res);
}
// The inner product. (default is left contraction).
static LDot(a,b,res) {
// Expressions
while(a.call)a=a(); while(b.call)b=b(); //if (a.LDot) return a.LDot(b,res);
// Map elements in array
if (b instanceof Array && !(a instanceof Array)) return b.map(x=>Element.LDot(a,x));
if (a instanceof Array && !(b instanceof Array)) return a.map(x=>Element.LDot(x,b));
// js if numbers, else contraction product.
if (!(a instanceof Element || b instanceof Element)) return a*b;
a=Element.toEl(a);b=Element.toEl(b); return a.LDot(b,res);
}
// The symmetric inner product. (default is left contraction).
static Dot(a,b,res) {
// Expressions
while(a.call)a=a(); while(b.call)b=b(); //if (a.LDot) return a.LDot(b,res);
// js if numbers, else contraction product.
if (!(a instanceof Element || b instanceof Element)) return a|b;
a=Element.toEl(a);b=Element.toEl(b); return a.Dot(b,res);
}
// The outer product. (Grassman product - no use of metric)
static Wedge(a,b,res) {
// normal behavior for booleans/numbers
if (typeof a in {boolean:1,number:1} && typeof b in {boolean:1,number:1}) return a^b;
// Expressions
while(a.call)a=a(); while(b.call)b=b(); if (a.Wedge) return a.Wedge(Element.toEl(b),res);
// The outer product of two vectors is a matrix .. internally Mul not Wedge !
if (a instanceof Array && b instanceof Array) return a.map(xa=>b.map(xb=>Element.Mul(xa,xb)));
// js, else generated wedge product.
if (!(a instanceof Element || b instanceof Element)) return a*b;
a=Element.toEl(a);b=Element.toEl(b); return a.Wedge(b,res);
}
// The regressive product. (Dual of the outer product of the duals).
static Vee(a,b,res) {
// normal behavior for booleans/numbers
if (typeof a in {boolean:1,number:1} && typeof b in {boolean:1,number:1}) return a&b;
// Expressions
while(a.call)a=a(); while(b.call)b=b(); if (a.Vee) return a.Vee(Element.toEl(b),res);
// js, else generated vee product. (shortcut for dual of wedge of duals)
if (!(a instanceof Element || b instanceof Element)) return 0;
a=Element.toEl(a);b=Element.toEl(b); return a.Vee(b,res);
}
// The sandwich product. Provided for convenience (>>> operator)
static sw(a,b) {
// Skip strings/colors
if (typeof b == "string" || typeof b =="number") return b;
// Expressions
while(a.call)a=a(); while(b.call)b=b(); if (a.sw) return a.sw(b);
// Map elements in array
if (b instanceof Array && !b.Add) return b.map(x=>Element.sw(a,x));
// Call through. no specific generated code for it so just perform the muls.
a=Element.toEl(a); b=Element.toEl(b); return a.Mul(b).Mul(a.Reverse);
}
// Division - scalars or cal through to element method.
static Div(a,b,res) {
// Expressions
while(a.call)a=a(); while(b.call)b=b();
// For DDG experiments, I'll include a quick cholesky on matrices here. (vector/matrix)
if ((a instanceof Array) && (b instanceof Array) && (b[0] instanceof Array)) {
// factor
var R = b.flat(), i, j, k, sum, i_n, j_n, n=b[0].length, s=new Array(n), x=new Array(n), yi;
for (i=0;i<n;i++) { i_n = i*n;
for (j=0; j<i; j++) { j_n=j*n;
s[j] = R[i_n+j];
for (k=0;k<j;k++) s[j] -= s[k]*R[j_n+k];
if (R[j_n+j] == 0) return null;
R[i_n+j] = s[j]/R[j_n+j];
}
sum = R[i_n+i];
for (k=0;k<i; k++) sum -= s[k]*R[i_n+k];
R[i_n+i] = sum;
}
// subst
for (i=0; i<n; i++) for (x[i]=a[i],j=0;j<=i-1;j++) x[i]-=R[i*n+j]*x[j];
for (i=n-1; i>=0; i--) for (x[i] /= R[i*n+i], j=i+1; j<n; j++) x[i] -= R[j*n+i]*x[j];
return x;
}
// js or call through to element divide.
if (!(a instanceof Element || b instanceof Element)) return a/b;
a=Element.toEl(a);
if (Number.isFinite(b)) { return a.Scale(1/b,res); }
b=Element.toEl(b); return a.Div(b,res);
}
// Pow - needs obvious extensions for natural powers. (exponentiation by squaring)
static Pow(a,b,res) {
// Expressions
while(a.call)a=a(); while(b.call)b=b(); if (a.Pow) return a.Pow(b,res);
// Exponentiation.
if (a===Math.E && b.Exp) return b.Exp();
// Squaring
if (b===2) return this.Mul(a,a,res);
// No elements, call through to js
if (!(a instanceof Element || b instanceof Element)) return a**b;
// Inverse
if (b===-1) return a.Inverse;
// Call through to element pow.
a=Element.toEl(a); return a.Pow(b);
}
// Handles scalars and calls through to element method.
static exp(a) {
// Expressions.
while(a.call)a=a();
// If it has an exp callthrough, use it, else call through to math.
if (a.Exp) return a.Exp();
return Math.exp(a);
}
// Dual, Involute, Reverse, Conjugate, Normalize and length, all direct call through. Conjugate handles matrices.
static Dual(a) { if (typeof a=='boolean') return !a; return Element.toEl(a).Dual; };
static Involute(a) { return Element.toEl(a).Involute; };
static Reverse(a) { return Element.toEl(a).Reverse; };
static Conjugate(a) { if (a.Conjugate) return a.Conjugate; if (a instanceof Array) return a[0].map((c,ci)=>a.map((r,ri)=>Element.Conjugate(a[ri][ci]))); return Element.toEl(a).Conjugate; }
static Normalize(a) { return Element.toEl(a).Normalized; };
static Length(a) { return Element.toEl(a).Length };
// Comparison operators always use length. Handle expressions, then js or length comparison
static eq(a,b) { if (!(a instanceof Element)||!(b instanceof Element)) return a==b; while(a.call)a=a(); while(b.call)b=b(); for (var i=0; i<a.length; i++) if (a[i]!=b[i]) return false; return true; }
static neq(a,b) { if (!(a instanceof Element)||!(b instanceof Element)) return a!=b; while(a.call)a=a(); while(b.call)b=b(); for (var i=0; i<a.length; i++) if (a[i]!=b[i]) return true; return false; }
static lt(a,b) { while(a.call)a=a(); while(b.call)b=b(); return (a instanceof Element?a.Length:a)<(b instanceof Element?b.Length:b); }
static gt(a,b) { while(a.call)a=a(); while(b.call)b=b(); return (a instanceof Element?a.Length:a)>(b instanceof Element?b.Length:b); }
static lte(a,b) { while(a.call)a=a(); while(b.call)b=b(); return (a instanceof Element?a.Length:a)<=(b instanceof Element?b.Length:b); }
static gte(a,b) { while(a.call)a=a(); while(b.call)b=b(); return (a instanceof Element?a.Length:a)>=(b instanceof Element?b.Length:b); }
// Debug output and printing multivectors.
static describe(x) { if (x===true) console.log(`Basis\n${basis}\nMetric\n${metric.slice(1,1+tot)}\nCayley\n${mulTable.map(x=>(x.map(x=>(' '+x).slice(-2-tot)))).join('\n')}\nMatrix Form:\n`+gp.map(x=>x.map(x=>x.match(/(-*b\[\d+\])/)).map(x=>x&&((x[1].match(/-/)||' ')+String.fromCharCode(65+1*x[1].match(/\d+/)))||' 0')).join('\n')); return {basis:basisg||basis,metric,mulTable,matrix:gp.map(x=>x.map(x=>x.replace(/\*this\[.+\]/,'').replace(/b\[(\d+)\]/,(a,x)=>(metric[x]==-1||metric[x]==0&&grades[x]>1&&(-1)**grades[x]==(metric[basis.indexOf(basis[x].replace('0',''))]||(-1)**grades[x])?'-':'')+basis[x]).replace('--','')))} }
// Direct sum of algebras - experimental
static sum(B){
var A = Element;
// Get the multiplication tabe and basis.
var T1 = A.describe().mulTable, T2 = B.describe().mulTable;
var B1 = A.describe().basis, B2 = B.describe().basis;
// Get the maximum index of T1, minimum of T2 and rename T2 if needed.
var max_T1 = B1.filter(x=>x.match(/e/)).map(x=>x.match(/\d/g)).flat().map(x=>x|0).sort((a,b)=>b-a)[0];
var max_T2 = B2.filter(x=>x.match(/e/)).map(x=>x.match(/\d/g)).flat().map(x=>x|0).sort((a,b)=>b-a)[0];
var min_T2 = B2.filter(x=>x.match(/e/)).map(x=>x.match(/\d/g)).flat().map(x=>x|0).sort((a,b)=>a-b)[0];
// remapping ..
T2 = T2.map(x=>x.map(y=>y.match(/e/)?y.replace(/(\d)/g,(x)=>(x|0)+max_T1):y.replace("1","e"+(1+max_T2+max_T1))));
B2 = B2.map((y,i)=>i==0?y.replace("1","e"+(1+max_T2+max_T1)):y.replace(/(\d)/g,(x)=>(x|0)+max_T1));
// Build the new basis and multable..
var basis = [...B1,...B2];
var Cayley = T1.map((x,i)=>[...x,...T2[0].map(x=>"0")]).concat(T2.map((x,i)=>[...T1[0].map(x=>"0"),...x]))
// Build the new algebra.
var grades = [...B1.map(x=>x=="1"?0:x.length-1),...B2.map((x,i)=>i?x.length-1:0)];
var a = Algebra({basis,Cayley,grades,tot:Math.log2(B1.length)+Math.log2(B2.length)})
// And patch up ..
a.Scalar = function(x) {
var res = new a();
for (var i=0; i<res.length; i++) res[i] = basis[i] == Cayley[i][i] ? x:0;
return res;
}
return a;
}
// The graphing function supports several modes. It can render 1D functions and 2D functions on canvas, and PGA2D, PGA3D and CGA2D functions using SVG.
// It handles animation and interactivity.
// graph(function(x)) => function of 1 parameter will be called with that parameter from -1 to 1 and graphed on a canvas. Returned values should also be in the [-1 1] range
// graph(function(x,y)) => functions of 2 parameters will be called from -1 to 1 on both arguments. Returned values can be 0-1 for greyscale or an array of three RGB values.
// graph(array) => array of algebraic elements (points, lines, circles, segments, texts, colors, ..) is graphed.
// graph(function=>array) => same as above, for animation scenario's this function is called each frame.
// An optional second parameter is an options object { width, height, animate, camera, scale, grid, canvas }
static graph(f,options) {
// Store the original input
if (!f) return; var origf=f;
// generate default options.
options=options||{}; options.scale=options.scale||1; options.camera=options.camera||(tot<4?Element.Scalar(1): ( Element.Bivector(0,0,0,0,0,options.p||0).Exp() ).Mul( Element.Bivector(0,0,0,0,options.h||0,0).Exp()) );
if (options.conformal && tot==4) var ni = options.ni||this.Coeff(4,1,3,1), no = options.no||this.Coeff(4,0.5,3,-0.5), minus_no = no.Scale(-1);
var ww=options.width, hh=options.height, cvs=options.canvas, tpcam=new Element([0,0,0,0,0,0,0,0,0,0,0,-5,0,0,1,0]),tpy=this.Coeff(4,1),tp=new Element(),
// project 3D to 2D. This allows to render 3D and 2D PGA with the same code.
project=(o)=>{ if (!o) return o; while (o.call) o=o();
// Clip 3D lines so they don't go past infinity.
if (tot == 4 && o instanceof Element && o.length == 16 && o[8]**2+o[9]**2+o[10]**2>0.0001) {
o = [[2,1,0,0],[-2,1,0,0],[2,0,1,0],[-2,0,1,0],[2,0,0,1],[-2,0,0,1]].map(v=>{
var r = Element.Vector(...v).Wedge(o); return r[14]?r.Scale(1/r[14], r):undefined;
}).filter(x=>x && Math.abs(x[13])<=2.001 && Math.abs(x[12]) <= 2.001 && Math.abs(x[11]) <= 2.001);
return o.map(o=>(tpcam).Vee(options.camera.Mul(o).Mul(options.camera.Conjugate)).Wedge(tpy));
}
// Convert 3D planes to polies.
if (tot == 4 && o instanceof Element && o.length == 16 && o.Grade(1).Length>0.01) {
var m = Element.Add(1, Element.Mul(o.Normalized, Element.Coeff(3,1))).Normalized, e0 = 0;
o=Element.sw(m,[[-1,-1],[-1,1],[1,1],[-1,-1],[1,1],[1,-1]].map(([x,z])=>Element.Trivector(x*o.Length,e0,z*o.Length,1)));
return o.map(o=>(tpcam).Vee(options.camera.Mul(o).Mul(options.camera.Conjugate)).Wedge(tpy));
}
return (tot==4 && o instanceof Element && o.length==16)?(tpcam).Vee(options.camera.Mul(o).Mul(options.camera.Conjugate)).Wedge(tpy):(o.length==2**tot)?Element.sw(options.camera,o):o;
};
// gl escape.
if (options.gl && !(tot==4 && options.conformal)) return Element.graphGL(f,options); if (options.up) return Element.graphGL2(f,options);
// if we get an array or function without parameters, we render c2d or p2d SVG points/lines/circles/etc
if (!(f instanceof Function) || f.length===0) {
// Our current cursor, color, animation state and 2D mapping.
var lx,ly,lr,color,res,anim=false,to2d=(tot==3)?[0,1,2,3,4,5,6,7]:[0,7,9,10,13,12,14,15];
// Make sure we have an array of elements. (if its an object, convert to array with elements and names.)
if (f instanceof Function) f=f(); if (!(f instanceof Array)) f=[].concat.apply([],Object.keys(f).map((k)=>typeof f[k]=='number'?[f[k]]:[f[k],k]));
// The build function generates the actual SVG. It will be called everytime the user interacts or the anim flag is set.
function build(f,or) {
// Make sure we have an aray.
if (or && f && f instanceof Function) f=f();
// Reset position and color for cursor.
lx=-2;ly=options.conformal?-1.85:1.85;lr=0;color='#444';
// Create the svg element. (master template string till end of function)
var svg=new DOMParser().parseFromString(`<SVG viewBox="-2 -${2*(hh/ww||1)} 4 ${4*(hh/ww||1)}" style="width:${ww||512}px; height:${hh||512}px; background-color:#eee; -webkit-user-select:none; -moz-user-select:none; -ms-user-select:none; user-select:none">
${// Add a grid (option)
options.grid?(()=>{
if (tot==4 && !options.conformal) {
const lines3d = (n,from,to,j,l=0, ox=0, oy=0, alpha=1)=>[`<G stroke-opacity="${alpha}" fill-opacity="${alpha}">`,...[...Array(n+1)].map((x,i)=>{
var f=from.slice(), t=to.slice(); f[j] = t[j] = (i-(n/2))/(n/2);
var D3a = Element.Trivector(...f), D2a = project(D3a), D3b = Element.Trivector(...t), D2b = project(D3b);
var lx=options.scale*D2a[drm[2]]/D2a[drm[1]]; if (drm[1]==6||drm[1]==14) lx*=-1; var ly=-options.scale*D2a[drm[3]]/D2a[drm[1]];
var lx2=options.scale*D2b[drm[2]]/D2b[drm[1]]; if (drm[1]==6||drm[1]==14) lx2*=-1; var ly2=-options.scale*D2b[drm[3]]/D2b[drm[1]];
var r = `<line x1="${lx}" y1="${ly}" x2="${lx2}" y2="${ly2}" stroke="black" stroke-width="${i%10==0?0.005:i%5==0?0.002:0.0005}" />`;
if (l && i && i!= n) r += `<text text-anchor="middle" font-size="0.04" fill="black" x="${l==1?lx+ox:lx2+ox}" y="${oy+(l==1?ly:ly2)}" >${((from[j]<0?-1:1)*(i-(n/2))/(n/2)).toFixed(1)}</text>`
return r;
}),'</G>'];
var front = Element.sw(options.camera,Element.Trivector(1,0,0,0)).Dual.Dot(Element.Vector(0,0,0,1)).s, ff = front>0?1:-1;
var left = Element.sw(options.camera,Element.Trivector(0,0,1,0)).Dual.Dot(Element.Vector(0,0,0,1)).s, ll = left>0?1:-1;
var fa = Math.max(0,Math.min(1,5*Math.abs(left))), la = Math.max(0,Math.min(1,5*Math.abs(front)));
return [
...lines3d(20,[-1,-1,-1,1],[1,-1,1,1],2,options.labels?ff:0, 0, 0.05),
...lines3d(20,[-1,-1,-1,1],[1,-1,1,1],0,options.labels?ll:0, 0, 0.05),
...lines3d(20,[-1,-1,ll,1],[1,1,ll,1],0,0,0,0,fa),
...lines3d(20,[-1,1,ll,1],[1,-1,ll,1],1,!options.labels?0:(ff!=-1)?1:2, ll*ff*-0.05, 0, fa),
...lines3d(20,[ff,1,-1,1],[ff,-1,1,1],1,!options.labels?0:(ll!=-1)?1:2, ll*ff*0.05, 0, la),
...lines3d(20,[ff,-1,-1,1],[ff,1,1,1],2,0,0,0,la),
].join('');
}
const s = options.scale, n = (10/s)|0, cx = options.camera.e02, cy = options.camera.e01, alpha = Math.min(1,(s-0.2)*10); if (options.scale<0.1) return;
const lines = (n,dir,space,width,color)=>[...Array(2*n+1)].map((x,xi)=>`<line x1="${dir?-10:((xi-n)*space-(tot<4?2*cy:0))*s}" y1="${dir?((xi-n)*space-(tot<4?2*cx:0))*s:-10}" x2="${dir?10:((xi-n)*space-(tot<4?2*cy:0))*s}" y2="${dir?((xi-n)*space-(tot<4?2*cx:0))*s:10}" stroke-width="${width}" stroke="${color}"/>`)
return [`<G stroke-opacity='${alpha}' fill-opacity='${alpha}'>`,...lines(n*2,0,0.2,0.005,'#DDD'),...lines(n*2,1,0.2,0.005,'#DDD'),...lines(n,0,1,0.005,'#AAA'),...lines(n,1,1,0.005,'#AAA'),...lines(n,0,5,0.005,'#444'),...lines(n,1,5,0.005,'#444')]
.concat(options.labels?[...Array(4*n+1)].map((x,xi)=>(xi-n*2==0)?``:`<text text-anchor="middle" font-size="0.05" x="${((xi-n*2)*0.2-(tot<4?2*cy:0))*s}" y="0.06" >${((xi-n*2)*0.2).toFixed(1)}</text>`):[])
.concat(options.labels?[...Array(4*n+1)].map((x,xi)=>`<text text-anchor="end" font-size="0.05" y="${((xi-n*2)*0.2-(tot<4?2*cx:0))*s-0.01}" x="-0.01" >${((xi-n*2)*-0.2).toFixed(1)}</text>`):[]).join('')+'</G>';
})():''}
// Handle conformal 2D elements.
${options.conformal?f.map&&f.map((o,oidx)=>{
// Optional animation handling.
if((o==Element.graph && or!==false)||(oidx==0&&options.animate&&or!==false)) { anim=true; requestAnimationFrame(()=>{var r=build(origf,(!res)||(document.body.contains(res))).innerHTML; if (res) res.innerHTML=r; }); if (!options.animate) return; }
// Resolve expressions passed in.
while (o.call) o=o();
if (options.ipns && o instanceof Element) o = o.Dual;
var sc = options.scale;
var lineWidth = options.lineWidth || 1;
var pointRadius = options.pointRadius || 1;
var dash_for_r2 = (r2, render_r, target_width) => {
// imaginary circles are dotted
if (r2 >= 0) return 'none';
var half_circum = render_r*Math.PI;
var width = half_circum / Math.max(Math.round(half_circum / target_width), 1);
return `${width} ${width}`;
};
// Arrays are rendered as segments or polygons. (2 or more elements)
if (o instanceof Array) { lx=ly=lr=0; o=o.map(o=>{ while(o.call)o=o(); return o.Scale(-1/o.Dot(ni).s); }); o.forEach((o)=>{lx+=sc*(o.e1);ly+=sc*(-o.e2)});lx/=o.length;ly/=o.length; return o.length>2?`<POLYGON STYLE="pointer-events:none; fill:${color};opacity:0.7" points="${o.map(o=>(sc*o.e1+','+(-o.e2*sc)+' '))}"/>`:`<LINE style="pointer-events:none" x1=${o[0].e1*sc} y1=${-o[0].e2*sc} x2=${o[1].e1*sc} y2=${-o[1].e2*sc} stroke="${color||'#888'}"/>`; }
// Allow insertion of literal svg strings.
if (typeof o =='string' && o[0]=='<') { return o; }
// Strings are rendered at the current cursor position.
if (typeof o =='string') { var res2=(o[0]=='_')?'':`<text x="${lx}" y="${ly}" font-family="Verdana" font-size="${options.fontSize*0.1||0.1}" style="pointer-events:none" fill="${color||'#333'}" transform="rotate(${lr},${lx},${ly})"> ${o} </text>`; ly+=0.14; return res2; }
// Numbers change the current color.
if (typeof o =='number') { color='#'+(o+(1<<25)).toString(16).slice(-6); return ''; };
// All other elements are rendered ..
var ni_part = o.Dot(no.Scale(-1)); // O_i + n_o O_oi
var no_part = ni.Scale(-1).Dot(o); // O_o + O_oi n_i
if (ni_part.VLength * 1e-6 > no_part.VLength) {
// direction or dual - nothing to render
return "";
}
var no_ni_part = no_part.Dot(no.Scale(-1)); // O_oi
var no_only_part = ni.Wedge(no_part).Dot(no.Scale(-1)); // O_o
/* Note: making 1e-6 smaller increases the maximum circle radius before they are drawn as lines */
if (no_ni_part.VLength * 1e-6 > no_only_part.VLength) {
var is_flat = true;
var direction = no_ni_part;
}
else {
var is_flat = false;
var direction = no_only_part;
}
// normalize to make the direction unitary
var dl = direction.Length;
o = o.Scale(1/dl);
direction = direction.Scale(1/dl)
var b0=direction.Grade(0).VLength>0.001,b1=direction.Grade(1).VLength>0.001,b2=direction.Grade(2).VLength>0.001;
if (!is_flat && b0 && !b1 && !b2) {
// Points
if (direction.s < 0) { o = Element.Sub(o); }
lx=sc*(o.e1); ly=sc*(-o.e2); lr=0; return res2=`<CIRCLE onmousedown="this.parentElement.sel=${oidx}" cx="${lx}" cy="${ly}" r="${pointRadius*0.03}" fill="${color||'green'}"/>`;
} else if (is_flat && !b0 && b1 && !b2) {
// Lines.
var loc=minus_no.LDot(o).Div(o), att=ni.Dot(o);
lx=sc*(-loc.e1); ly=sc*(loc.e2); lr=Math.atan2(-o[14],o[13])/Math.PI*180; return `<LINE style="pointer-events:none" x1=${lx-10} y1=${ly} x2=${lx+10} y2=${ly} stroke="${color||'#888'}" transform="rotate(${lr},${lx},${ly})"/>`;
} else if (!is_flat && !b0 && !b1 && b2) {
// Circles
var loc=o.Div(ni.LDot(o)); lx=sc*(-loc.e1); ly=sc*(loc.e2);
var r2=o.Mul(o.Conjugate).s;
var r = Math.sqrt(Math.abs(r2))*sc;
return `<CIRCLE onmousedown="this.parentElement.sel=${oidx}" cx="${lx}" cy="${ly}" r="${r}" fill="none" stroke="${color||'green'}" stroke-dasharray="${dash_for_r2(r2, r, lineWidth*0.020)}"/>`;
} else if (!is_flat && !b0 && b1 && !b2) {
// Point Pairs.
lr=0; var ei=ni,eo=no, nix=o.Wedge(ei), sqr=o.LDot(o).s/nix.LDot(nix).s, r=Math.sqrt(Math.abs(sqr)), attitude=((ei.Wedge(eo)).LDot(nix)).Normalized.Mul(Element.Scalar(r)), pos=o.Div(nix); pos=pos.Div( pos.LDot(Element.Sub(ei)));
if (nix==0) { pos = o.Dot(Element.Coeff(4,-1)); sqr=-1; }
lx=sc*(pos.e1); ly=sc*(-pos.e2);
if (sqr==0) return `<CIRCLE onmousedown="this.parentElement.sel=${oidx}" cx="${lx}" cy="${ly}" r="${pointRadius*0.03}" stroke-width="${lineWidth*0.01}" fill="none" stroke="${color||'green'}"/>`;
// Draw imaginary pairs hollow
if (sqr > 0) var fill = color||'green', stroke = 'none', dash_array = 'none';
else var fill = 'none', stroke = color||'green';
lx=sc*(pos.e1+attitude.e1); ly=sc*(-pos.e2-attitude.e2);
var res2=`<CIRCLE onmousedown="this.parentElement.sel=${oidx}" cx="${lx}" cy="${ly}" r="${pointRadius*0.03}" fill="${fill}" stroke-width="${lineWidth*0.01}" stroke="${stroke}" stroke-dasharray="${dash_for_r2(sqr, pointRadius*0.03, lineWidth*0.020)}" />`;
lx=sc*(pos.e1-attitude.e1); ly=sc*(-pos.e2+attitude.e2);
return res2+`<CIRCLE onmousedown="this.parentElement.sel=${oidx}" cx="${lx}" cy="${ly}" r="${pointRadius*0.03}" fill="${fill}" stroke-width="${lineWidth*0.01}" stroke="${stroke}" stroke-dasharray="${dash_for_r2(sqr, pointRadius*0.03, lineWidth*0.020)}" />`;
} else {
/* Unrecognized */
return "";
}
// Handle projective 2D and 3D elements.
}):f.map&&f.map((o,oidx)=>{ if((o==Element.graph && or!==false)||(oidx==0&&options.animate&&or!==false)) { anim=true; requestAnimationFrame(()=>{var r=build(origf,(!res)||(document.body.contains(res))).innerHTML; if (res) res.innerHTML=r; }); if (!options.animate) return; } while (o instanceof Function) o=o(); o=(o instanceof Array)?o.map(project):project(o); if (o===undefined) return;
// dual option dualizes before render
if (options.dual && o instanceof Element) o = o.Dual;
// line segments and polygons
if (o instanceof Array && o.length) { lx=ly=lr=0; o.forEach((o)=>{while (o.call) o=o(); lx+=options.scale*((drm[1]==6||drm[1]==14)?-1:1)*o[drm[2]]/o[drm[1]];ly+=options.scale*o[drm[3]]/o[drm[1]]});lx/=o.length;ly/=o.length; return o.length>2?`<POLYGON STYLE="pointer-events:none; fill:${color};opacity:0.7" points="${o.map(o=>((drm[1]==6||drm[1]==14)?-1:1)*options.scale*o[drm[2]]/o[drm[1]]+','+(-options.scale)*o[drm[3]]/o[drm[1]]+' ')}"/>`:`<LINE style="pointer-events:none" x1=${options.scale*((drm[1]==6||drm[1]==14)?-1:1)*o[0][drm[2]]/o[0][drm[1]]} y1=${-options.scale*o[0][drm[3]]/o[0][drm[1]]} x2=${options.scale*((drm[1]==6||drm[1]==14)?-1:1)*o[1][drm[2]]/o[1][drm[1]]} y2=${-options.scale*o[1][drm[3]]/o[1][drm[1]]} stroke="${color||'#888'}"/>`; }
// svg
if (typeof o =='string' && o[0]=='<') { return o; }
// Labels
if (typeof o =='string') { var res2=(o[0]=='_')?'':`<text x="${lx}" y="${-ly}" font-family="Verdana" font-size="${options.fontSize*0.1||0.1}" style="pointer-events:none" fill="${color||'#333'}" transform="rotate(${-lr},0,0)"> ${o} </text>`; ly-=0.14; return res2; }
// Colors
if (typeof o =='number') { color='#'+(o+(1<<25)).toString(16).slice(-6); return ''; };
// Points
if (o[to2d[6]]**2 >0.0001) { lx=options.scale*o[drm[2]]/o[drm[1]]; if (drm[1]==6||drm[1]==14) lx*=-1; ly=options.scale*o[drm[3]]/o[drm[1]]; lr=0; var res2=`<CIRCLE onmousedown="this.parentElement.sel=${oidx}" cx="${lx}" cy="${-ly}" r="${options.pointRadius*0.03||0.03}" fill="${color||'green'}"/>`; ly+=0.05; lx-=0.1; return res2; }
// Lines
if (o[to2d[2]]**2+o[to2d[3]]**2>0.0001) { var l=Math.sqrt(o[to2d[2]]**2+o[to2d[3]]**2); o[to2d[2]]/=l; o[to2d[3]]/=l; o[to2d[1]]/=l; lx=0.5; ly=options.scale*((drm[1]==6)?-1:-1)*o[to2d[1]]; lr=-Math.atan2(o[to2d[2]],o[to2d[3]])/Math.PI*180; var res2=`<LINE style="pointer-events:none" x1=-10 y1=${-ly} x2=10 y2=${-ly} stroke="${color||'#888'}" transform="rotate(${-lr},0,0)"/>`; ly+=0.05; return res2; }
// Vectors
if (o[to2d[4]]**2+o[to2d[5]]**2>0.0001) { lr=0; ly+=0.05; lx+=0.1; var res2=`<LINE style="pointer-events:none" x1=${lx} y1=${-ly} x2=${lx-o.e02} y2=${-(ly+o.e01)} stroke="${color||'#888'}"/>`; ly=ly+o.e01/4*3-0.05; lx=lx-o.e02/4*3; return res2; }
}).join()}`,'text/html').body;
// return the inside of the created svg element.
return svg.removeChild(svg.firstChild);
};
// Create the initial svg and install the mousehandlers.
res=build(f); res.value=f; res.options=options; res.setAttribute("stroke-width",options.lineWidth*0.005||0.005);
//onmousedown="if(evt.target==this)this.sel=undefined"
var mousex,mousey,cammove=false;
res.onwheel=(e)=>{ e.preventDefault(); options.scale = Math.min(5,Math.max(0.1,(options.scale||1)-e.deltaY*0.0001)); if (!anim) {var r=build(origf,(!res)||(document.body.contains(res))).innerHTML; if (res) res.innerHTML=r; } }
res.onmousedown=(e)=>{ if (e.target == res) res.sel=undefined; mousex = e.clientX; mousey = e.clientY; cammove = true; }
res.onmousemove=(e)=>{
if (cammove && tot==4 && !options.conformal) {
if (!e.buttons) { cammove=false; return; };
var [dx,dy] = [e.clientX - mousex, e.clientY - mousey];
[mousex,mousey] = [e.clientX,e.clientY];
if (res.sel && f[res.sel].set) {
f[res.sel].set( Element.sw(Element.sw(options.camera.Reverse,Element.Bivector(-dx/500,dy/500,0,0,0,0).Exp()),f[res.sel]) );
} else {
options.h = (options.h||0) + dx/300;
options.p = (options.p||0) - dy/600;
if (options.camera) options.camera.set( ( Element.Bivector(0,0,0,0,0,options.p).Exp() ).Mul( Element.Bivector(0,0,0,0,options.h,0).Exp() )/*.Mul(options.camera)*/ )
}
if (!anim) {var r=build(origf,(!res)||(document.body.contains(res))).innerHTML; if (res) res.innerHTML=r; }
return;
}
if (res.sel===undefined || !e.buttons) return;
var resx=res.getBoundingClientRect().width,resy=res.getBoundingClientRect().height,
x=((e.clientX-res.getBoundingClientRect().left)/(resx/4||128)-2)*(resx>resy?resx/resy:1),y=((e.clientY-res.getBoundingClientRect().top)/(resy/4||128)-2)*(resy>resx?resy/resx:1);
x/=options.scale;y/=options.scale;
if (options.conformal) { f[res.sel].set(this.Coeff(1,x,2,-y).Add(no).Add(ni.Scale(0.5*(x*x+y*y))) ) }
else {f[res.sel][drm[2]]=((drm[1]==6)?-x:x)-((tot<4)?2*options.camera.e01:0); f[res.sel][drm[3]]=-y+((tot<4)?2*options.camera.e02:0); f[res.sel][drm[1]]=1; f[res.sel].set(f[res.sel].Normalized)}
if (!anim) {var r=build(origf,(!res)||(document.body.contains(res))).innerHTML; if (res) res.innerHTML=r; }
res.dispatchEvent(new CustomEvent('input')) };
return res;
}
// 1d and 2d functions are rendered on a canvas.
cvs=cvs||document.createElement('canvas'); if(ww)cvs.width=ww; if(hh)cvs.height=hh; var w=cvs.width,h=cvs.height,context=cvs.getContext('2d'), data=context.getImageData(0,0,w,h);
// Grid support for the canvas.
const [x_from,x_to,y_from,y_to]=options.range||[-1,1,1,-1];
function drawGrid() {
const [X,Y]=[x=>(x-x_from)*w/(x_to-x_from),y=>(y-y_from)*h/(y_to-y_from)]
context.strokeStyle = "#008800"; context.lineWidth = 1;
// X and Y axis
context.beginPath();
context.moveTo(X(x_from), Y(0)); context.lineTo(X(x_to ), Y(0)); context.stroke();
context.moveTo(X(0), Y(y_from)); context.lineTo(X(0), Y(y_to )); context.stroke();
// Draw ticks
context.strokeStyle = "#00FF00"; context.lineWidth = 2; context.font = "10px Arial"; context.fillStyle = "#448844";
for (var i=x_from,j=y_from,ii=0; ii<=10; ++ii) {
context.beginPath(); j+= (y_to-y_from)/10; i+=(x_to-x_from)/10;
context.moveTo(X(i), Y(-(y_to - y_from)/200)); context.lineTo(X(i), Y((y_to - y_from)/200)); context.stroke();
if(i.toFixed(1)!=0) context.fillText(i.toFixed(1), X(i-(x_to-x_from)/100), Y(-(y_to-y_from)/40));
context.moveTo(X((x_to-x_from)/200), Y(j)); context.lineTo(X(-(x_to-x_from)/200), Y(j)); context.stroke();
if(j.toFixed(1)!=0) context.fillText(j.toFixed(1), X((x_to-x_from)/100), Y(j));
}
}
// two parameter functions .. evaluate for both and set resulting color.
if (f.length==2) for (var px=0; px<w; px++) for (var py=0; py<h; py++) { var res=f(px/w*(x_to-x_from)+x_from, py/h*(y_to-y_from)+y_from); res=res.buffer?[].slice.call(res):res.slice?res:[res,res,res]; data.data.set(res.map(x=>x*255).concat([255]),py*w*4+px*4); }
// one parameter function.. go over x range, use result as y.
else if (f.length==1) for (var px=0; px<w; px++) { var res=f(px/w*(x_to-x_from)+x_from); res=Math.round((res/(y_to-y_from)+(-y_from/(y_to-y_from)))*h); if (res > 0 && res < h-1) data.data.set([0,0,0,255],res*w*4+px*4); }
context.putImageData(data,0,0);
if (f.length == 1 || f.length == 2) if (options.grid) drawGrid();
return cvs;
}
// webGL2 Graphing function. (for OPNS/IPNS implicit 2D and 1D surfaces in 3D space).
static graphGL2(f,options) {
// Create canvas, get webGL2 context.
var canvas=document.createElement('canvas'); canvas.style.width=options.width||''; canvas.style.height=options.height||''; canvas.style.backgroundColor='#EEE';
if (options.width && options.width.match && options.width.match(/px/i)) canvas.width = parseFloat(options.width)*(options.devicePixelRatio||1); if (options.height && options.height.match && options.height.match(/px/i)) canvas.height = parseFloat(options.height)*(options.devicePixelRatio||1);
var gl=canvas.getContext('webgl2',{alpha:options.alpha||false,preserveDrawingBuffer:true,antialias:true,powerPreference:'high-performance'});
var gl2=!!gl; if (!gl) gl=canvas.getContext('webgl',{alpha:options.alpha||false,preserveDrawingBuffer:true,antialias:true,powerPreference:'high-performance'});
gl.clearColor(240/255,240/255,240/255,1.0); gl.enable(gl.DEPTH_TEST); if (!gl2) { gl.getExtension("EXT_frag_depth"); gl.va = gl.getExtension('OES_vertex_array_object'); }
else gl.va = { createVertexArrayOES : gl.createVertexArray.bind(gl), bindVertexArrayOES : gl.bindVertexArray.bind(gl), deleteVertexArrayOES : gl.deleteVertexArray.bind(gl) }
// Compile vertex and fragment shader, return program.
var compile=(vs,fs)=>{
var s=[gl.VERTEX_SHADER,gl.FRAGMENT_SHADER].map((t,i)=>{
var r=gl.createShader(t); gl.shaderSource(r,[vs,fs][i]); gl.compileShader(r);
return gl.getShaderParameter(r, gl.COMPILE_STATUS)&&r||console.error(gl.getShaderInfoLog(r));
});
var p = gl.createProgram(); gl.attachShader(p, s[0]); gl.attachShader(p, s[1]); gl.linkProgram(p);
gl.getProgramParameter(p, gl.LINK_STATUS)||console.error(gl.getProgramInfoLog(p));
return p;
};
// Create vertex array and buffers, upload vertices and optionally texture coordinates.
var createVA=function(vtx) {
var r = gl.va.createVertexArrayOES(); gl.va.bindVertexArrayOES(r);
var b = gl.createBuffer(); gl.bindBuffer(gl.ARRAY_BUFFER, b);
gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(vtx), gl.STATIC_DRAW);
gl.vertexAttribPointer(0, 3, gl.FLOAT, false, 0, 0); gl.enableVertexAttribArray(0);
return {r,b}
},
// Destroy Vertex array and delete buffers.
destroyVA=function(va) {
if (va.b) gl.deleteBuffer(va.b); if (va.r) gl.va.deleteVertexArrayOES(va.r);
}
// Drawing function
var M=[1,0,0,0,0,1,0,0,0,0,1,0,0,0,5,1];
var draw=function(p, tp, vtx, color, color2, ratio, texc, va, b,color3,r,g){
gl.useProgram(p); gl.uniformMatrix4fv(gl.getUniformLocation(p, "mv"),false,M);
gl.uniformMatrix4fv(gl.getUniformLocation(p, "p"),false, [5,0,0,0,0,5*(ratio||1),0,0,0,0,1,2,0,0,-1,0])
gl.uniform3fv(gl.getUniformLocation(p, "color"),new Float32Array(color));
gl.uniform3fv(gl.getUniformLocation(p, "color2"),new Float32Array(color2));
if (color3) gl.uniform3fv(gl.getUniformLocation(p, "color3"),new Float32Array(color3));
if (b) gl.uniform1fv(gl.getUniformLocation(p, "b"),(new Float32Array(counts[g])).map((x,i)=>b[g][i]||0));
if (texc) gl.uniform1i(gl.getUniformLocation(p, "texc"),0);
if (r) gl.uniform1f(gl.getUniformLocation(p,"ratio"),r);
var v; if (!va) v = createVA(vtx); else gl.va.bindVertexArrayOESOES(va.r);
gl.drawArrays(tp, 0, (va&&va.tcount)||vtx.length/3);
if (v) destroyVA(v);
}
// Compile the OPNS renderer. (sphere tracing)
var programs = [], genprog = grade=>compile(`${gl2?"#version 300 es":""}
${gl2?"in":"attribute"} vec4 position; ${gl2?"out":"varying"} vec4 Pos; uniform mat4 mv; uniform mat4 p;
void main() { Pos=mv*position; gl_Position = p*Pos; }`,
`${!gl2?"#extension GL_EXT_frag_depth : enable":"#version 300 es"}
precision highp float;
uniform vec3 color; uniform vec3 color2;
uniform vec3 color3; uniform float b[${counts[grade]}];
uniform float ratio; ${gl2?"out vec4 col;":""}
${gl2?"in":"varying"} vec4 Pos;
float product_len (in float z, in float y, in float x, in float[${counts[grade]}] b) {
${this.nVector(options.up.length>tot?2:1,[])[options.IPNS?"IPNS_GLSL":"OPNS_GLSL"](this.nVector(grade,[]), options.up)}
return sqrt(abs(sum));
}
vec3 find_root (in vec3 start, vec3 dir, in float thresh) {
vec3 orig=start;
float lastd = 1000.0;
const int count=${(options.maxSteps||80)};
for (int i=0; i<count; i++) {
float d = product_len(start[0],start[1],start[2],b);
float diff = ${(options.stepSize||0.0001)}*(1.0+2000.0*d);
if (d < thresh) return start + dir*(lastd-thresh)/(lastd-d)*diff;
lastd = d; start += dir*diff;
}
return orig;
}
void main() {
vec3 dir = ((-Pos[0]/5.0)*color + color2 + vec3(0.0,Pos[1]/5.0*ratio,0.0));
vec3 p = -5.0*normalize(color2) + dir+vec3(0.0,0.0,1.0); dir = normalize(dir);
vec3 L = 5.0*normalize( -0.5*color + 0.85*color2 + vec3(0.0,-0.5,0.0) );
vec3 d2 = find_root( p , dir, ${grade!=tot-1?(options.thresh||0.2):"0.0075"} );
float dl2 = dot(d2-p,d2-p); const float h=0.0001;
if (dl2>0.0) {
vec3 n = normalize(vec3(
product_len(d2[0]+h,d2[1],d2[2],b)-product_len(d2[0]-h,d2[1],d2[2],b),
product_len(d2[0],d2[1]+h,d2[2],b)-product_len(d2[0],d2[1]-h,d2[2],b),
product_len(d2[0],d2[1],d2[2]+h,b)-product_len(d2[0],d2[1],d2[2]-h,b)
));
${gl2?"gl_FragDepth":"gl_FragDepthEXT"} = dl2/50.0;
${gl2?"col":"gl_FragColor"} = vec4(max(0.2,abs(dot(n,normalize(L-d2))))*color3 + pow(abs(dot(n,normalize(normalize(L-d2)+dir))),100.0),1.0);
} else discard;
}`),genprog2D = grade=>compile(`${gl2?"#version 300 es":""}
${gl2?"in":"attribute"} vec4 position; ${gl2?"out":"varying"} vec4 Pos; uniform mat4 mv; uniform mat4 p;
void main() { Pos=mv*position; gl_Position = p*Pos; }`,
`${!gl2?"#extension GL_EXT_frag_depth : enable":"#version 300 es"}
precision highp float;
uniform vec3 color; uniform vec3 color2;
uniform vec3 color3; uniform float b[${counts[grade]}];
uniform float ratio; ${gl2?"out vec4 col;":""}
${gl2?"in":"varying"} vec4 Pos;
float product_len (in float z, in float y, in float x, in float[${counts[grade]}] b) {
${this.nVector(1,[])[options.IPNS?"IPNS_GLSL":"OPNS_GLSL"](this.nVector(grade,[]), options.up)}
return sqrt(abs(sum));
}
void main() {
vec3 p = -5.0*normalize(color2) -Pos[0]/5.0*color + color2 + vec3(0.0,Pos[1]/5.0*ratio,0.0);
float d2 = 1.0 - 150.0*pow(product_len( p[0]*5.0, p[1]*5.0, p[2]*5.0, b),2.0);
if (d2>0.0) {
${gl2?"col":"gl_FragColor"} = vec4(color3,d2);
} else discard;
}`)
// canvas update will (re)render the content.
var armed=0;
canvas.update = (x)=>{
// Start by updating canvas size if needed and viewport.
var s = getComputedStyle(canvas); if (s.width) { canvas.width = parseFloat(s.width)*(options.devicePixelRatio||1); canvas.height = parseFloat(s.height)*(options.devicePixelRatio||1); }
gl.viewport(0,0, canvas.width|0,canvas.height|0); var r=canvas.width/canvas.height;