-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
196 lines (181 loc) · 6.13 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import argparse
from torch.utils.data import DataLoader
from torch.utils.data import WeightedRandomSampler
from torchvision import transforms
import lightning as L
from lightning.pytorch.loggers import TensorBoardLogger
from lightning.pytorch.callbacks import ModelCheckpoint
from model.baseline.baseline_3d import generate_model
from model.baseline.deepsignals import DeepsignalsBaseline
from model.vif_create import (
AttnBackboneConfig,
ResnetBackboneConfig,
VifConfig,
VitBackboneConfig,
create_vif,
)
from model.lightning import LitVisualIntentionFormer
from utils.augmentations import augment_sequences
from utils.dataset import VisualIntentionsDictDataset, create_data_dict
from utils.logging import TbImageLogger
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("train_annotations", type=str)
parser.add_argument("val_annotations", type=str)
parser.add_argument("train_images_dir", type=str)
parser.add_argument("val_images_dir", type=str)
parser.add_argument("method", type=str, default="vif")
parser.add_argument("--sequence_len", type=int, default=20, help="sequence length")
parser.add_argument("--num_gpus", type=int, default=1, help="Num GPUs (default: 1)")
parser.add_argument(
"--num_nodes", type=int, default=1, help="Num nodes (default: 1)"
)
parser.add_argument("--train_id", type=int, default=0, help="")
args = parser.parse_args()
train_annotations = args.train_annotations
val_annotations = args.val_annotations
train_images_dir = args.train_images_dir
val_images_dir = args.val_images_dir
method = args.method
sequence_len = args.sequence_len
num_gpus = args.num_gpus
num_nodes = args.num_nodes
train_id = args.train_id
TRAIN_HOURS = 1
BATCH_SIZE = 2*num_gpus
MIN_IMAGE_WIDTH = 120
EPOCHS = 10
START_LR = 1e-5
END_LR = 1e-6
GAMMA = 0.7
MAX_OCC = 1.0
print("create train data dict")
train_data_dict = create_data_dict(
train_annotations,
train_images_dir,
sequence_len=sequence_len,
min_image_width=MIN_IMAGE_WIDTH,
max_occupancy=MAX_OCC,
cache_file=f"train_{MAX_OCC}occ_{sequence_len}sl.pkl",
only_intentions=True,
)
print("create val data dict")
val_data_dict = create_data_dict(
val_annotations,
val_images_dir,
sequence_len=sequence_len,
min_image_width=MIN_IMAGE_WIDTH,
max_occupancy=MAX_OCC,
cache_file=f"val_{MAX_OCC}occ_{sequence_len}sl.pkl",
only_intentions=True,
)
mean = [0.27678646, 0.30232353, 0.34076891]
std = [0.13243662, 0.13241449, 0.14208872]
normalize = transforms.Normalize(
mean=mean,
std=std,
)
inv_normalize = transforms.Normalize(
mean=[-mean[0] / std[0], -mean[1] / std[1], -mean[2] / std[2]],
std=[1 / std[0], 1 / std[1], 1 / std[2]],
)
training_dataset = VisualIntentionsDictDataset(
train_data_dict,
image_transform=transforms.Compose(
[
transforms.ToPILImage(),
transforms.RandomResizedCrop(224),
transforms.ToTensor(),
normalize,
]
),
)
train_dataloader = DataLoader(
training_dataset,
batch_size=BATCH_SIZE,
shuffle=False,
num_workers=8,
collate_fn=augment_sequences,
)
validation_dataset = VisualIntentionsDictDataset(
val_data_dict,
image_transform=transforms.Compose(
[
transforms.ToPILImage(),
transforms.Resize([224, 224]),
transforms.ToTensor(),
normalize,
]
),
)
val_dataloader = DataLoader(
validation_dataset,
batch_size=BATCH_SIZE,
shuffle=False,
num_workers=24,
)
NUM_IND_CLASSES = 4
WITH_HEADING_FEATURE = True
if method == "vif":
DIM = 1024
model_config = VifConfig(
sequence_len=sequence_len,
min_img_width=MIN_IMAGE_WIDTH,
backbone=VitBackboneConfig(
frozen=False,
# pretrain="/code/checkpoints/pretrain_8x8.ckpt",
dim=DIM,
),
dim=DIM,
depth=2,
heads=16,
mlp_dim=DIM * 4,
dim_head=64,
attn_dropout=0.75, # 0.75
head_dropout=0.75, # 0.75
transformer_dropput=0.0, # 0.75
with_rear=True,
with_heading=True,
with_cls=True,
num_ind_classes=NUM_IND_CLASSES,
with_heading_feature=WITH_HEADING_FEATURE,
)
print(model_config)
model = create_vif(config=model_config)
logger = TensorBoardLogger("tb_logs", name=model_config.name())
elif method == "3dresnet":
model = generate_model(101, num_ind_classes=NUM_IND_CLASSES)
logger = TensorBoardLogger("tb_logs", name="3dresnet")
elif method == "deepsignals":
model = DeepsignalsBaseline(num_ind_classes=NUM_IND_CLASSES)
logger = TensorBoardLogger("tb_logs", name="deepsignals")
else:
import sys
sys.exit(-1)
# img_val_logger = TbImageLogger(logger, inv_normalize)
# img_train_logger = TbImageLogger(logger, inv_normalize)
lit = LitVisualIntentionFormer(
model, START_LR, END_LR, num_ind_classes=NUM_IND_CLASSES, max_epochs=EPOCHS
)
print("start training")
checkpoint_callback = ModelCheckpoint(
save_top_k=5,
monitor="val_ind_f1",
mode="max",
dirpath="checkpoints/",
filename=f"{method}_{sequence_len}_{train_id}_{int(WITH_HEADING_FEATURE)}"
+ "_{epoch:02d}-{val_ind_f1:.3f}",
)
trainer = L.Trainer(
precision="16-mixed",
accelerator="gpu",
devices=num_gpus,
num_nodes=num_nodes,
strategy="ddp_find_unused_parameters_true",
max_time={"days": 0, "hours": TRAIN_HOURS},
max_epochs=EPOCHS,
check_val_every_n_epoch=1,
logger=logger,
callbacks=[checkpoint_callback],
)
trainer.fit(lit, train_dataloader, val_dataloader)