-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathwebcam_blind_voice.py
279 lines (207 loc) · 12.8 KB
/
webcam_blind_voice.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
# -*- coding: utf-8 -*-
import numpy as np
import os
import six.moves.urllib as urllib
import urllib.request as allib
import sys
import tarfile
import tensorflow as tf
import zipfile
import time
import pytesseract
import engineio
import torch
from torch.autograd import Variable as V
import models as models
from torchvision import transforms as trn
from torch.nn import functional as F
import pyttsx3
#from .engine import Engine
engine =pyttsx3.init()
from collections import defaultdict
from io import StringIO
from matplotlib import pyplot as plt
from PIL import Image
arch = 'resnet18'
model_file = 'whole_%s_places365_python36.pth.tar' % arch
if not os.access(model_file, os.W_OK):
weight_url = 'http://places2.csail.mit.edu/models_places365/' + model_file
os.system('wget ' + weight_url)
#= label_map_util.create_category_index(categories)
pytesseract.pytesseract.tesseract_cmd = 'C:\\Program Files (x86)\\Tesseract-OCR\\tesseract'
from utils import label_map_util
#/object_detection/' m2
from utils import visualization_utils as vis_util
MODEL_NAME = 'ssd_inception_v2_coco_2017_11_17'
MODEL_FILE = MODEL_NAME + '.tar.gz'
#DOWNLOAD_BASE = 'http://download.tensorflow.org/models m1
PATH_TO_CKPT = MODEL_NAME + '/frozen_inference_graph.pb'
PATH_TO_LABELS = os.path.join('data', 'mscoco_label_map.pbtxt')
NUM_CLASSES = 90
if not os.path.exists(MODEL_NAME + '/frozen_inference_graph.pb'):
print ('Downloading the model')
opener = urllib.request.URLopener()
opener.retrieve(DOWNLOAD_BASE + MODEL_FILE, MODEL_FILE)
tar_file = tarfile.open(MODEL_FILE)
for file in tar_file.getmembers():
file_name = os.path.basename(file.name)
if 'frozen_inference_graph.pb' in file_name:
tar_file.extract(file, os.getcwd())
print ('Download complete')
else:
print ('Model already exists')
detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.compat.v1.GraphDef()
with tf.io.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
category_index =
#
url='http://10.67.208.240:8080//shot.jpg'
import cv2
cap = cv2.VideoCapture(0)
with detection_graph.as_default():
with tf.compat.v1.Session(graph=detection_graph) as sess:
ret = True
while (ret):
ret,image_np = cap.read()
if cv2.waitKey(20) & 0xFF == ord('b'):
cv2.imwrite('opencv'+'.jpg', image_np)
model_file = 'whole_%s_places365_python36.pth.tar' % arch
if not os.access(model_file, os.W_OK):
weight_url = 'http://places2.csail.mit.edu/models_places365/' + model_file
os.system('wget ' + weight_url)
useGPU = 1
if useGPU == 1:
model = torch.load(model_file)
else:
model = torch.load(model_file, map_location=lambda storage, loc: storage) # model trained in GPU could be deployed in CPU machine like this!
model.eval()
centre_crop = trn.Compose([
trn.Resize((256,256)),
trn.CenterCrop(224),
trn.ToTensor(),
trn.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
file_name = 'categories_places365.txt'
if not os.access(file_name, os.W_OK):
synset_url = 'https://raw.githubusercontent.com/csailvision/places365/master/categories_places365.txt'
os.system('wget ' + synset_url)
classes = list()
with open(file_name) as class_file:
for line in class_file:
classes.append(line.strip().split(' ')[0][3:])
classes = tuple(classes)
img_name = 'opencv.jpg'
if not os.access(img_name, os.W_OK):
img_url = 'http://places.csail.mit.edu/demo/' + img_name
os.system('wget ' + img_url)
img = Image.open(img_name)
input_img = V(centre_crop(img).unsqueeze(0), volatile=True)
logit = model.forward(input_img)
h_x = F.softmax(logit, 1).data.squeeze()
probs, idx = h_x.sort(0, True)
print('POSSIBLE SCENES ARE: ' + img_name)
engine.say("Possible Scene may be")
engine.say(img_name)
for i in range(0, 5):
engine.say(classes[idx[i]])
print('{}'.format(classes[idx[i]]))
# Expand dimensions since the model expects images to have shape: [1, None, None, 3]
image_np_expanded = np.expand_dims(image_np, axis=0)
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
# Each box represents a part of the image where a particular object was detected.
boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
# Each score represent how level of confidence for each of the objects.
# Score is shown on the result image, together with the class label.
scores = detection_graph.get_tensor_by_name('detection_scores:0')
classes = detection_graph.get_tensor_by_name('detection_classes:0')
num_detections = detection_graph.get_tensor_by_name('num_detections:0')
# Actual detection.
(boxes, scores, classes, num_detections) = sess.run(
[boxes, scores, classes, num_detections],
feed_dict={image_tensor: image_np_expanded})
# Visualization of the results of a detection.
if cv2.waitKey(2) & 0xFF == ord('a'):
vis_util.vislize_boxes_and_labels_on_image_array(
image_np,
np.squeeze(boxes),
np.squeeze(classes).astype(np.int32),
np.squeeze(scores),
category_index,
use_normalized_coordinates=True,
line_thickness=8)
else:
vis_util.visualize_boxes_and_labels_on_image_array(
image_np,
np.squeeze(boxes),
np.squeeze(classes).astype(np.int32),
np.squeeze(scores),
category_index,
use_normalized_coordinates=True,
line_thickness=8)
if cv2.waitKey(2) & 0xFF == ord('r'):
text=pytesseract.image_to_string(image_np)
print(text)
engine.say(text)
engine.runAndWait()
for i,b in enumerate(boxes[0]):
# car bus truck
if classes[0][i] == 3 or classes[0][i] == 6 or classes[0][i] == 8:
if scores[0][i] >= 0.5:
mid_x = (boxes[0][i][1]+boxes[0][i][3])/2
mid_y = (boxes[0][i][0]+boxes[0][i][2])/2
apx_distance = round(((1 - (boxes[0][i][3] - boxes[0][i][1]))**4),1)
cv2.putText(image_np, '{}'.format(apx_distance), (int(mid_x*800),int(mid_y*450)), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255,255,255), 2)
if apx_distance <=0.5:
if mid_x > 0.3 and mid_x < 0.7:
cv2.putText(image_np, 'WARNING!!!', (50,50), cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0,0,255), 3)
print("Warning -Vehicles Approaching")
engine.say("Warning -Vehicles Approaching")
engine.runAndWait()
if classes[0][i] ==44:
if scores[0][i] >= 0.5:
mid_x = (boxes[0][i][1]+boxes[0][i][3])/2
mid_y = (boxes[0][i][0]+boxes[0][i][2])/2
apx_distance = round(((1 - (boxes[0][i][3] - boxes[0][i][1]))**4),1)
cv2.putText(image_np, '{}'.format(apx_distance), (int(mid_x*800),int(mid_y*450)), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255,255,255), 2)
print(apx_distance)
engine.say(apx_distance)
engine.say("units")
engine.say("BOTTLE IS AT A SAFER DISTANCE")
if apx_distance <=0.5:
if mid_x > 0.3 and mid_x < 0.7:
cv2.putText(image_np, 'WARNING!!!', (50,50), cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0,0,255), 3)
print("Warning -BOTTLE very close to the frame")
engine.say("Warning -BOTTLE very close to the frame")
engine.runAndWait()
if classes[0][i] ==1:
if scores[0][i] >= 0.5:
mid_x = (boxes[0][i][1]+boxes[0][i][3])/2
mid_y = (boxes[0][i][0]+boxes[0][i][2])/2
apx_distance = round(((1 - (boxes[0][i][3] - boxes[0][i][1]))**4),1)
cv2.putText(image_np, '{}'.format(apx_distance), (int(mid_x*800),int(mid_y*450)), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255,255,255), 2)
print(apx_distance)
engine.say(apx_distance)
engine.say("units")
engine.say("Person is AT A SAFER DISTANCE")
if apx_distance <=0.5:
if mid_x > 0.3 and mid_x < 0.7:
cv2.putText(image_np, 'WARNING!!!', (50,50), cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0,0,255), 3)
print("Warning -Person very close to the frame")
engine.say("Warning -Person very close to the frame")
engine.runAndWait()
# plt.figure(figsize=IMAGE_SIZE)
# plt.imshow(image_np)
#cv2.imshow('IPWebcam',image_np)
cv2.imshow('image',cv2.resize(image_np,(1024,768)))
if cv2.waitKey(2) & 0xFF == ord('t'):
cv2.destroyAllWindows()
cap.release()
break
#{1: {'id': 1, 'name': 'person'}, 2: {'id': 2, 'name': 'bicycle'}, 3: {'id': 3, 'name': 'car'}, 4: {'id': 4, 'name': 'motorcycle'}, 5: {'id': 5, 'name': 'airplane'}, 6: {'id': 6, 'name': 'bus'}, 7: {'id': 7, 'name': 'train'}, 8: {'id': 8, 'name': 'truck'}, 9: {'id': 9, 'name': 'boat'}, 10: {'id': 10, 'name': 'traffic light'}, 11: {'id': 11, 'name': 'fire hydrant'}, 13: {'id': 13, 'name': 'stop sign'}, 14: {'id': 14, 'name': 'parking meter'}, 15: {'id': 15, 'name': 'bench'}, 16: {'id': 16, 'name': 'bird'}, 17: {'id': 17, 'name': 'cat'}, 18: {'id': 18, 'name': 'dog'}, 19: {'id': 19, 'name': 'horse'}, 20: {'id': 20, 'name': 'sheep'}, 21: {'id': 21, 'name': 'cow'}, 22: {'id': 22, 'name': 'elephant'}, 23: {'id': 23, 'name': 'bear'}, 24: {'id': 24, 'name': 'zebra'}, 25: {'id': 25, 'name': 'giraffe'}, 27: {'id': 27, 'name': 'backpack'}, 28: {'id': 28, 'name': 'umbrella'}, 31: {'id': 31, 'name': 'handbag'}, 32: {'id': 32, 'name': 'tie'}, 33: {'id': 33, 'name': 'suitcase'}, 34: {'id': 34, 'name': 'frisbee'}, 35: {'id': 35, 'name': 'skis'}, 36: {'id': 36, 'name': 'snowboard'}, 37: {'id': 37, 'name': 'sports ball'}, 38: {'id': 38, 'name': 'kite'}, 39: {'id': 39, 'name': 'baseball bat'}, 40: {'id': 40, 'name': 'baseball glove'}, 41: {'id': 41, 'name': 'skateboard'}, 42: {'id': 42, 'name': 'surfboard'}, 43: {'id': 43, 'name': 'tennis racket'}, 44: {'id': 44, 'name': 'bottle'}, 46: {'id': 46, 'name': 'wine glass'}, 47: {'id': 47, 'name': 'cup'}, 48: {'id': 48, 'name': 'fork'}, 49: {'id': 49, 'name': 'knife'}, 50: {'id': 50, 'name': 'spoon'}, 51: {'id': 51, 'name': 'bowl'}, 52: {'id': 52, 'name': 'banana'}, 53: {'id': 53, 'name': 'apple'}, 54: {'id': 54, 'name': 'sandwich'}, 55: {'id': 55, 'name': 'orange'}, 56: {'id': 56, 'name': 'broccoli'}, 57: {'id': 57, 'name': 'carrot'}, 58: {'id': 58, 'name': 'hot dog'}, 59: {'id': 59, 'name': 'pizza'}, 60: {'id': 60, 'name': 'donut'}, 61: {'id': 61, 'name': 'cake'}, 62: {'id': 62, 'name': 'chair'}, 63: {'id': 63, 'name': 'couch'}, 64: {'id': 64, 'name': 'potted plant'}, 65: {'id': 65, 'name': 'bed'}, 67: {'id': 67, 'name': 'dining table'}, 70: {'id': 70, 'name': 'toilet'}, 72: {'id': 72, 'name': 'tv'}, 73: {'id': 73, 'name': 'laptop'}, 74: {'id': 74, 'name': 'mouse'}, 75: {'id': 75, 'name': 'remote'}, 76: {'id': 76, 'name': 'keyboard'}, 77: {'id': 77, 'name': 'cell phone'}, 78: {'id': 78, 'name': 'microwave'}, 79: {'id': 79, 'name': 'oven'}, 80: {'id': 80, 'name': 'toaster'}, 81: {'id': 81, 'name': 'sink'}, 82: {'id': 82, 'name': 'refrigerator'}, 84: {'id': 84, 'name': 'book'}, 85: {'id': 85, 'name': 'clock'}, 86: {'id': 86, 'name': 'vase'}, 87: {'id': 87, 'name': 'scissors'}, 88: {'id': 88, 'name': 'teddy bear'}, 89: {'id': 89, 'name': 'hair drier'}, 90: {'id': 90, 'name': 'toothbrush'}}
#open("yolo-coco/coco.names").read().strip().split("\n")