-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathmlp_dropout_bn.py
230 lines (191 loc) · 5.19 KB
/
mlp_dropout_bn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import numpy as np
try:
import cupy as cp
cp.random.seed(42)
except:
print("Cupy is not installed!")
import matplotlib.pyplot as plt
from sklearn.datasets import fetch_olivetti_faces
from sklearn.preprocessing import MinMaxScaler
from sklearn.model_selection import train_test_split
from tqdm import tqdm
import sys
sys.path.append('../pydynet')
import pydynet as pdn
import pydynet.nn.functional as F
import pydynet.nn as nn
from pydynet.optim import Adam
from pydynet.data import data_loader
try:
import seaborn as sns
sns.set_theme()
except:
pass
np.random.seed(42)
data_X, data_y = fetch_olivetti_faces(return_X_y=True)
print(data_X.shape)
train_X, test_X, train_y, test_y = train_test_split(
data_X,
data_y,
train_size=0.8,
)
scaler = MinMaxScaler()
train_X = scaler.fit_transform(train_X)
test_X = scaler.transform(test_X)
class DNN(nn.Module):
def __init__(self) -> None:
super().__init__()
self.fc1 = nn.Linear(4096, 512)
self.fc2 = nn.Linear(512, 128)
self.fc3 = nn.Linear(128, 40)
def forward(self, x):
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
return self.fc3(x)
class DNN_dropout(DNN):
def __init__(self) -> None:
super().__init__()
self.dropout = nn.Dropout(p=0.05)
def forward(self, x):
x = F.relu(self.dropout(self.fc1(x)))
x = F.relu(self.dropout(self.fc2(x)))
return self.fc3(x)
class DNN_BN(DNN):
def __init__(self) -> None:
super().__init__()
self.bn1 = nn.BatchNorm1d(512)
self.bn2 = nn.BatchNorm1d(128)
def forward(self, x):
x = F.relu(self.bn1(self.fc1(x)))
x = F.relu(self.bn2(self.fc2(x)))
return self.fc3(x)
use_cuda = True
device = 'cuda' if pdn.cuda.is_available() and use_cuda else 'cpu'
net1 = DNN().to(device)
net2 = DNN_dropout().to(device)
net3 = DNN_BN().to(device)
print(net1)
print(net2)
print(net3)
optim1 = Adam(net1.parameters(), lr=1e-3)
optim2 = Adam(net2.parameters(), lr=1e-3)
optim3 = Adam(net3.parameters(), lr=1e-3)
loss = nn.CrossEntropyLoss()
EPOCHES = 50
BATCH_SIZE = 40
train_loader = data_loader(
pdn.Tensor(train_X),
pdn.Tensor(train_y),
BATCH_SIZE,
True,
)
train_accs, test_accs = [], []
test_X_cuda = pdn.Tensor(test_X, device=device)
test_y_cuda = pdn.Tensor(test_y, device=device)
bar = tqdm(range(EPOCHES))
from time import time
for epoch in bar:
# 相同数据训练3个网络
net1.train()
net2.train()
net3.train()
for batch_X, batch_y in train_loader:
input_, label = batch_X.to(device), batch_y.to(device)
output1 = net1(input_)
l1 = loss(output1, label)
optim1.zero_grad()
l1.backward()
optim1.step()
output2 = net2(input_)
l2 = loss(output2, label)
optim2.zero_grad()
l2.backward()
optim2.step()
output3 = net3(input_)
l3 = loss(output3, label)
optim3.zero_grad()
l3.backward()
optim3.step()
net1.eval()
net2.eval()
net3.eval()
# train
train_right = [0, 0, 0]
with pdn.no_grad():
for batch_X, batch_y in train_loader:
input_, label = batch_X.to(device), batch_y.to(device)
pred1 = net1(input_).argmax(-1)
pred2 = net2(input_).argmax(-1)
pred3 = net3(input_).argmax(-1)
train_right[0] += (pred1.data == label.data).sum().item()
train_right[1] += (pred2.data == label.data).sum().item()
train_right[2] += (pred3.data == label.data).sum().item()
train_acc = np.array(train_right) / len(train_X)
pred1, pred2, pred3 = (
net1(test_X_cuda).argmax(-1),
net2(test_X_cuda).argmax(-1),
net3(test_X_cuda).argmax(-1),
)
test_acc = np.array([
(pred1.data == test_y_cuda.data).mean().item(),
(pred2.data == test_y_cuda.data).mean().item(),
(pred3.data == test_y_cuda.data).mean().item(),
])
bar.set_postfix(
TRAIN_ACC="{:.3f}, {:.3f}, {:.3f}".format(*train_acc),
TEST_ACC="{:.3f}, {:.3f}, {:.3f}".format(*test_acc),
)
train_accs.append(train_acc)
test_accs.append(test_acc)
train_accs = np.array(train_accs)
test_accs = np.array(test_accs)
plt.plot(
range(0, 50, 2),
train_accs[::2, 0],
label="Train Acc of MLP",
linewidth=0.7,
color='blue',
marker='^',
)
plt.plot(
range(0, 50, 2),
test_accs[::2, 0],
label="Test Acc of MLP",
linewidth=0.7,
color='blue',
marker='*',
)
plt.plot(
range(0, 50, 2),
train_accs[::2, 1],
label="Train Acc of MLP with Dropout",
linewidth=0.7,
color='red',
marker='^',
)
plt.plot(
range(0, 50, 2),
test_accs[::2, 1],
label="Test Acc of MLP with Dropout",
linewidth=0.7,
color='red',
marker='*',
)
plt.plot(
range(0, 50, 2),
train_accs[::2, 2],
label="Train Acc of MLP with BN",
linewidth=0.7,
color='orange',
marker='^',
)
plt.plot(
range(0, 50, 2),
test_accs[::2, 2],
label="Test Acc of MLP with BN",
linewidth=0.7,
color='orange',
marker='*',
)
plt.legend()
plt.savefig("src/dropout_BN.png")