forked from tech-srl/code2seq
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
717 lines (630 loc) · 40.7 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
import _pickle as pickle
import os
import time
import numpy as np
import shutil
import tensorflow as tf
import reader
from common import Common
from rouge import FilesRouge
class Model:
topk = 10
num_batches_to_log = 100
def __init__(self, config):
self.config = config
self.sess = tf.Session()
self.eval_queue = None
self.predict_queue = None
self.eval_placeholder = None
self.predict_placeholder = None
self.eval_predicted_indices_op, self.eval_top_values_op, self.eval_true_target_strings_op, self.eval_topk_values = None, None, None, None
self.predict_top_indices_op, self.predict_top_scores_op, self.predict_target_strings_op = None, None, None
self.subtoken_to_index = None
if config.LOAD_PATH:
self.load_model(sess=None)
else:
with open('{}.dict.c2s'.format(config.TRAIN_PATH), 'rb') as file:
subtoken_to_count = pickle.load(file)
node_to_count = pickle.load(file)
target_to_count = pickle.load(file)
max_contexts = pickle.load(file)
self.num_training_examples = pickle.load(file)
print('Dictionaries loaded.')
if self.config.DATA_NUM_CONTEXTS <= 0:
self.config.DATA_NUM_CONTEXTS = max_contexts
self.subtoken_to_index, self.index_to_subtoken, self.subtoken_vocab_size = \
Common.load_vocab_from_dict(subtoken_to_count, add_values=[Common.PAD, Common.UNK],
max_size=config.SUBTOKENS_VOCAB_MAX_SIZE)
print('Loaded subtoken vocab. size: %d' % self.subtoken_vocab_size)
self.target_to_index, self.index_to_target, self.target_vocab_size = \
Common.load_vocab_from_dict(target_to_count, add_values=[Common.PAD, Common.UNK, Common.SOS],
max_size=config.TARGET_VOCAB_MAX_SIZE)
print('Loaded target word vocab. size: %d' % self.target_vocab_size)
self.node_to_index, self.index_to_node, self.nodes_vocab_size = \
Common.load_vocab_from_dict(node_to_count, add_values=[Common.PAD, Common.UNK], max_size=None)
print('Loaded nodes vocab. size: %d' % self.nodes_vocab_size)
self.epochs_trained = 0
def close_session(self):
self.sess.close()
def train(self):
print('Starting training')
start_time = time.time()
batch_num = 0
sum_loss = 0
best_f1 = 0
best_epoch = 0
best_f1_precision = 0
best_f1_recall = 0
epochs_no_improve = 0
self.queue_thread = reader.Reader(subtoken_to_index=self.subtoken_to_index,
node_to_index=self.node_to_index,
target_to_index=self.target_to_index,
config=self.config)
optimizer, train_loss = self.build_training_graph(self.queue_thread.get_output())
self.print_hyperparams()
print('Number of trainable params:',
np.sum([np.prod(v.get_shape().as_list()) for v in tf.trainable_variables()]))
self.initialize_session_variables(self.sess)
print('Initalized variables')
if self.config.LOAD_PATH:
self.load_model(self.sess)
time.sleep(1)
print('Started reader...')
multi_batch_start_time = time.time()
for iteration in range(1, (self.config.NUM_EPOCHS // self.config.SAVE_EVERY_EPOCHS) + 1):
self.queue_thread.reset(self.sess)
try:
while True:
batch_num += 1
_, batch_loss = self.sess.run([optimizer, train_loss])
sum_loss += batch_loss
# print('SINGLE BATCH LOSS', batch_loss)
if batch_num % self.num_batches_to_log == 0:
self.trace(sum_loss, batch_num, multi_batch_start_time)
sum_loss = 0
multi_batch_start_time = time.time()
except tf.errors.OutOfRangeError:
self.epochs_trained += self.config.SAVE_EVERY_EPOCHS
print('Finished %d epochs' % self.config.SAVE_EVERY_EPOCHS)
results, precision, recall, f1, rouge = self.evaluate()
if self.config.BEAM_WIDTH == 0:
print('Accuracy after %d epochs: %.5f' % (self.epochs_trained, results))
else:
print('Accuracy after {} epochs: {}'.format(self.epochs_trained, results))
print('After %d epochs: Precision: %.5f, recall: %.5f, F1: %.5f' % (
self.epochs_trained, precision, recall, f1))
print('Rouge: ', rouge)
if f1 > best_f1:
best_f1 = f1
best_f1_precision = precision
best_f1_recall = recall
best_epoch = self.epochs_trained
epochs_no_improve = 0
self.save_model(self.sess, self.config.SAVE_PATH)
else:
epochs_no_improve += self.config.SAVE_EVERY_EPOCHS
if epochs_no_improve >= self.config.PATIENCE:
print('Not improved for %d epochs, stopping training' % self.config.PATIENCE)
print('Best scores - epoch %d: ' % best_epoch)
print('Precision: %.5f, recall: %.5f, F1: %.5f' % (best_f1_precision, best_f1_recall, best_f1))
return
if self.config.SAVE_PATH:
self.save_model(self.sess, self.config.SAVE_PATH + '.final')
print('Model saved in file: %s' % self.config.SAVE_PATH)
elapsed = int(time.time() - start_time)
print("Training time: %sh%sm%ss\n" % ((elapsed // 60 // 60), (elapsed // 60) % 60, elapsed % 60))
def trace(self, sum_loss, batch_num, multi_batch_start_time):
multi_batch_elapsed = time.time() - multi_batch_start_time
avg_loss = sum_loss / self.num_batches_to_log
print('Average loss at batch %d: %f, \tthroughput: %d samples/sec' % (batch_num, avg_loss,
self.config.BATCH_SIZE * self.num_batches_to_log / (
multi_batch_elapsed if multi_batch_elapsed > 0 else 1)))
def evaluate(self, release=False):
eval_start_time = time.time()
if self.eval_queue is None:
self.eval_queue = reader.Reader(subtoken_to_index=self.subtoken_to_index,
node_to_index=self.node_to_index,
target_to_index=self.target_to_index,
config=self.config, is_evaluating=True)
reader_output = self.eval_queue.get_output()
self.eval_predicted_indices_op, self.eval_topk_values, _, _ = \
self.build_test_graph(reader_output)
self.eval_true_target_strings_op = reader_output[reader.TARGET_STRING_KEY]
self.saver = tf.train.Saver(max_to_keep=10)
if self.config.LOAD_PATH and not self.config.TRAIN_PATH:
self.initialize_session_variables(self.sess)
self.load_model(self.sess)
if release:
release_name = self.config.LOAD_PATH + '.release'
print('Releasing model, output model: %s' % release_name)
self.saver.save(self.sess, release_name)
shutil.copyfile(src=self.config.LOAD_PATH + '.dict', dst=release_name + '.dict')
return None
model_dirname = os.path.dirname(self.config.SAVE_PATH if self.config.SAVE_PATH else self.config.LOAD_PATH)
ref_file_name = model_dirname + '/ref.txt'
predicted_file_name = model_dirname + '/pred.txt'
if not os.path.exists(model_dirname):
os.makedirs(model_dirname)
with open(model_dirname + '/log.txt', 'w') as output_file, open(ref_file_name, 'w') as ref_file, open(
predicted_file_name,
'w') as pred_file:
num_correct_predictions = 0 if self.config.BEAM_WIDTH == 0 \
else np.zeros([self.config.BEAM_WIDTH], dtype=np.int32)
total_predictions = 0
total_prediction_batches = 0
true_positive, false_positive, false_negative = 0, 0, 0
self.eval_queue.reset(self.sess)
start_time = time.time()
try:
while True:
predicted_indices, true_target_strings, top_values = self.sess.run(
[self.eval_predicted_indices_op, self.eval_true_target_strings_op, self.eval_topk_values],
)
true_target_strings = Common.binary_to_string_list(true_target_strings)
ref_file.write(
'\n'.join(
[name.replace(Common.internal_delimiter, ' ') for name in true_target_strings]) + '\n')
if self.config.BEAM_WIDTH > 0:
# predicted indices: (batch, time, beam_width)
predicted_strings = [[[self.index_to_target[i] for i in timestep] for timestep in example] for
example in predicted_indices]
predicted_strings = [list(map(list, zip(*example))) for example in
predicted_strings] # (batch, top-k, target_length)
pred_file.write('\n'.join(
[' '.join(Common.filter_impossible_names(words)) for words in predicted_strings[0]]) + '\n')
else:
predicted_strings = [[self.index_to_target[i] for i in example]
for example in predicted_indices]
pred_file.write('\n'.join(
[' '.join(Common.filter_impossible_names(words)) for words in predicted_strings]) + '\n')
num_correct_predictions = self.update_correct_predictions(num_correct_predictions, output_file,
zip(true_target_strings,
predicted_strings))
true_positive, false_positive, false_negative = self.update_per_subtoken_statistics(
zip(true_target_strings, predicted_strings),
true_positive, false_positive, false_negative)
total_predictions += len(true_target_strings)
total_prediction_batches += 1
if total_prediction_batches % self.num_batches_to_log == 0:
elapsed = time.time() - start_time
self.trace_evaluation(output_file, num_correct_predictions, total_predictions, elapsed)
except tf.errors.OutOfRangeError:
pass
print('Done testing, epoch reached')
output_file.write(str(num_correct_predictions / total_predictions) + '\n')
# Common.compute_bleu(ref_file_name, predicted_file_name)
elapsed = int(time.time() - eval_start_time)
precision, recall, f1 = self.calculate_results(true_positive, false_positive, false_negative)
try:
files_rouge = FilesRouge()
rouge = files_rouge.get_scores(
hyp_path=predicted_file_name, ref_path=ref_file_name, avg=True, ignore_empty=True)
except ValueError:
rouge = 0
print("Evaluation time: %sh%sm%ss" % ((elapsed // 60 // 60), (elapsed // 60) % 60, elapsed % 60))
return num_correct_predictions / total_predictions, \
precision, recall, f1, rouge
def update_correct_predictions(self, num_correct_predictions, output_file, results):
for original_name, predicted in results:
original_name_parts = original_name.split(Common.internal_delimiter) # list
filtered_original = Common.filter_impossible_names(original_name_parts) # list
predicted_first = predicted
if self.config.BEAM_WIDTH > 0:
predicted_first = predicted[0]
filtered_predicted_first_parts = Common.filter_impossible_names(predicted_first) # list
if self.config.BEAM_WIDTH == 0:
output_file.write('Original: ' + Common.internal_delimiter.join(original_name_parts) +
' , predicted 1st: ' + Common.internal_delimiter.join(filtered_predicted_first_parts) + '\n')
if filtered_original == filtered_predicted_first_parts or Common.unique(filtered_original) == Common.unique(
filtered_predicted_first_parts) or ''.join(filtered_original) == ''.join(filtered_predicted_first_parts):
num_correct_predictions += 1
else:
filtered_predicted = [Common.internal_delimiter.join(Common.filter_impossible_names(p)) for p in predicted]
true_ref = original_name
output_file.write('Original: ' + ' '.join(original_name_parts) + '\n')
for i, p in enumerate(filtered_predicted):
output_file.write('\t@{}: {}'.format(i + 1, ' '.join(p.split(Common.internal_delimiter)))+ '\n')
if true_ref in filtered_predicted:
index_of_correct = filtered_predicted.index(true_ref)
update = np.concatenate(
[np.zeros(index_of_correct, dtype=np.int32),
np.ones(self.config.BEAM_WIDTH - index_of_correct, dtype=np.int32)])
num_correct_predictions += update
return num_correct_predictions
def update_per_subtoken_statistics(self, results, true_positive, false_positive, false_negative):
for original_name, predicted in results:
if self.config.BEAM_WIDTH > 0:
predicted = predicted[0]
filtered_predicted_names = Common.filter_impossible_names(predicted)
filtered_original_subtokens = Common.filter_impossible_names(original_name.split(Common.internal_delimiter))
if ''.join(filtered_original_subtokens) == ''.join(filtered_predicted_names):
true_positive += len(filtered_original_subtokens)
continue
for subtok in filtered_predicted_names:
if subtok in filtered_original_subtokens:
true_positive += 1
else:
false_positive += 1
for subtok in filtered_original_subtokens:
if not subtok in filtered_predicted_names:
false_negative += 1
return true_positive, false_positive, false_negative
def print_hyperparams(self):
print('Training batch size:\t\t\t', self.config.BATCH_SIZE)
print('Dataset path:\t\t\t\t', self.config.TRAIN_PATH)
print('Training file path:\t\t\t', self.config.TRAIN_PATH + '.train.c2s')
print('Validation path:\t\t\t', self.config.TEST_PATH)
print('Taking max contexts from each example:\t', self.config.MAX_CONTEXTS)
print('Random path sampling:\t\t\t', self.config.RANDOM_CONTEXTS)
print('Embedding size:\t\t\t\t', self.config.EMBEDDINGS_SIZE)
if self.config.BIRNN:
print('Using BiLSTMs, each of size:\t\t', self.config.RNN_SIZE // 2)
else:
print('Uni-directional LSTM of size:\t\t', self.config.RNN_SIZE)
print('Decoder size:\t\t\t\t', self.config.DECODER_SIZE)
print('Decoder layers:\t\t\t\t', self.config.NUM_DECODER_LAYERS)
print('Max path lengths:\t\t\t', self.config.MAX_PATH_LENGTH)
print('Max subtokens in a token:\t\t', self.config.MAX_NAME_PARTS)
print('Max target length:\t\t\t', self.config.MAX_TARGET_PARTS)
print('Embeddings dropout keep_prob:\t\t', self.config.EMBEDDINGS_DROPOUT_KEEP_PROB)
print('LSTM dropout keep_prob:\t\t\t', self.config.RNN_DROPOUT_KEEP_PROB)
print('============================================')
@staticmethod
def calculate_results(true_positive, false_positive, false_negative):
if true_positive + false_positive > 0:
precision = true_positive / (true_positive + false_positive)
else:
precision = 0
if true_positive + false_negative > 0:
recall = true_positive / (true_positive + false_negative)
else:
recall = 0
if precision + recall > 0:
f1 = 2 * precision * recall / (precision + recall)
else:
f1 = 0
return precision, recall, f1
@staticmethod
def trace_evaluation(output_file, correct_predictions, total_predictions, elapsed):
accuracy_message = str(correct_predictions / total_predictions)
throughput_message = "Prediction throughput: %d" % int(total_predictions / (elapsed if elapsed > 0 else 1))
output_file.write(accuracy_message + '\n')
output_file.write(throughput_message)
# print(accuracy_message)
print(throughput_message)
def build_training_graph(self, input_tensors):
target_index = input_tensors[reader.TARGET_INDEX_KEY]
target_lengths = input_tensors[reader.TARGET_LENGTH_KEY]
path_source_indices = input_tensors[reader.PATH_SOURCE_INDICES_KEY]
node_indices = input_tensors[reader.NODE_INDICES_KEY]
path_target_indices = input_tensors[reader.PATH_TARGET_INDICES_KEY]
valid_context_mask = input_tensors[reader.VALID_CONTEXT_MASK_KEY]
path_source_lengths = input_tensors[reader.PATH_SOURCE_LENGTHS_KEY]
path_lengths = input_tensors[reader.PATH_LENGTHS_KEY]
path_target_lengths = input_tensors[reader.PATH_TARGET_LENGTHS_KEY]
with tf.variable_scope('model'):
subtoken_vocab = tf.get_variable('SUBTOKENS_VOCAB',
shape=(self.subtoken_vocab_size, self.config.EMBEDDINGS_SIZE),
dtype=tf.float32,
initializer=tf.contrib.layers.variance_scaling_initializer(factor=1.0,
mode='FAN_OUT',
uniform=True))
target_words_vocab = tf.get_variable('TARGET_WORDS_VOCAB',
shape=(self.target_vocab_size, self.config.EMBEDDINGS_SIZE),
dtype=tf.float32,
initializer=tf.contrib.layers.variance_scaling_initializer(factor=1.0,
mode='FAN_OUT',
uniform=True))
nodes_vocab = tf.get_variable('NODES_VOCAB', shape=(self.nodes_vocab_size, self.config.EMBEDDINGS_SIZE),
dtype=tf.float32,
initializer=tf.contrib.layers.variance_scaling_initializer(factor=1.0,
mode='FAN_OUT',
uniform=True))
# (batch, max_contexts, decoder_size)
batched_contexts = self.compute_contexts(subtoken_vocab=subtoken_vocab, nodes_vocab=nodes_vocab,
source_input=path_source_indices, nodes_input=node_indices,
target_input=path_target_indices,
valid_mask=valid_context_mask,
path_source_lengths=path_source_lengths,
path_lengths=path_lengths, path_target_lengths=path_target_lengths)
batch_size = tf.shape(target_index)[0]
outputs, final_states = self.decode_outputs(target_words_vocab=target_words_vocab,
target_input=target_index, batch_size=batch_size,
batched_contexts=batched_contexts,
valid_mask=valid_context_mask)
step = tf.Variable(0, trainable=False)
logits = outputs.rnn_output # (batch, max_output_length, dim * 2 + rnn_size)
crossent = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=target_index, logits=logits)
target_words_nonzero = tf.sequence_mask(target_lengths + 1,
maxlen=self.config.MAX_TARGET_PARTS + 1, dtype=tf.float32)
loss = tf.reduce_sum(crossent * target_words_nonzero) / tf.to_float(batch_size)
if self.config.USE_MOMENTUM:
learning_rate = tf.train.exponential_decay(0.01, step * self.config.BATCH_SIZE,
self.num_training_examples,
0.95, staircase=True)
optimizer = tf.train.MomentumOptimizer(learning_rate, 0.95, use_nesterov=True)
train_op = optimizer.minimize(loss, global_step=step)
else:
params = tf.trainable_variables()
gradients = tf.gradients(loss, params)
clipped_gradients, _ = tf.clip_by_global_norm(gradients, clip_norm=5)
optimizer = tf.train.AdamOptimizer()
train_op = optimizer.apply_gradients(zip(clipped_gradients, params))
self.saver = tf.train.Saver(max_to_keep=10)
return train_op, loss
def decode_outputs(self, target_words_vocab, target_input, batch_size, batched_contexts, valid_mask,
is_evaluating=False):
num_contexts_per_example = tf.count_nonzero(valid_mask, axis=-1)
start_fill = tf.fill([batch_size],
self.target_to_index[Common.SOS]) # (batch, )
decoder_cell = tf.nn.rnn_cell.MultiRNNCell([
tf.nn.rnn_cell.LSTMCell(self.config.DECODER_SIZE) for _ in range(self.config.NUM_DECODER_LAYERS)
])
contexts_sum = tf.reduce_sum(batched_contexts * tf.expand_dims(valid_mask, -1),
axis=1) # (batch_size, dim * 2 + rnn_size)
contexts_average = tf.divide(contexts_sum, tf.to_float(tf.expand_dims(num_contexts_per_example, -1)))
fake_encoder_state = tuple(tf.nn.rnn_cell.LSTMStateTuple(contexts_average, contexts_average) for _ in
range(self.config.NUM_DECODER_LAYERS))
projection_layer = tf.layers.Dense(self.target_vocab_size, use_bias=False)
if is_evaluating and self.config.BEAM_WIDTH > 0:
batched_contexts = tf.contrib.seq2seq.tile_batch(batched_contexts, multiplier=self.config.BEAM_WIDTH)
num_contexts_per_example = tf.contrib.seq2seq.tile_batch(num_contexts_per_example,
multiplier=self.config.BEAM_WIDTH)
attention_mechanism = tf.contrib.seq2seq.LuongAttention(
num_units=self.config.DECODER_SIZE,
memory=batched_contexts
)
# TF doesn't support beam search with alignment history
should_save_alignment_history = is_evaluating and self.config.BEAM_WIDTH == 0
decoder_cell = tf.contrib.seq2seq.AttentionWrapper(decoder_cell, attention_mechanism,
attention_layer_size=self.config.DECODER_SIZE,
alignment_history=should_save_alignment_history)
if is_evaluating:
if self.config.BEAM_WIDTH > 0:
decoder_initial_state = decoder_cell.zero_state(dtype=tf.float32,
batch_size=batch_size * self.config.BEAM_WIDTH)
decoder_initial_state = decoder_initial_state.clone(
cell_state=tf.contrib.seq2seq.tile_batch(fake_encoder_state, multiplier=self.config.BEAM_WIDTH))
decoder = tf.contrib.seq2seq.BeamSearchDecoder(
cell=decoder_cell,
embedding=target_words_vocab,
start_tokens=start_fill,
end_token=self.target_to_index[Common.PAD],
initial_state=decoder_initial_state,
beam_width=self.config.BEAM_WIDTH,
output_layer=projection_layer,
length_penalty_weight=0.0)
else:
helper = tf.contrib.seq2seq.GreedyEmbeddingHelper(target_words_vocab, start_fill, 0)
initial_state = decoder_cell.zero_state(batch_size, tf.float32).clone(cell_state=fake_encoder_state)
decoder = tf.contrib.seq2seq.BasicDecoder(cell=decoder_cell, helper=helper, initial_state=initial_state,
output_layer=projection_layer)
else:
decoder_cell = tf.nn.rnn_cell.DropoutWrapper(decoder_cell,
output_keep_prob=self.config.RNN_DROPOUT_KEEP_PROB)
target_words_embedding = tf.nn.embedding_lookup(target_words_vocab,
tf.concat([tf.expand_dims(start_fill, -1), target_input],
axis=-1)) # (batch, max_target_parts, dim * 2 + rnn_size)
helper = tf.contrib.seq2seq.TrainingHelper(inputs=target_words_embedding,
sequence_length=tf.ones([batch_size], dtype=tf.int32) * (
self.config.MAX_TARGET_PARTS + 1))
initial_state = decoder_cell.zero_state(batch_size, tf.float32).clone(cell_state=fake_encoder_state)
decoder = tf.contrib.seq2seq.BasicDecoder(cell=decoder_cell, helper=helper, initial_state=initial_state,
output_layer=projection_layer)
outputs, final_states, final_sequence_lengths = tf.contrib.seq2seq.dynamic_decode(decoder,
maximum_iterations=self.config.MAX_TARGET_PARTS + 1)
return outputs, final_states
def calculate_path_abstraction(self, path_embed, path_lengths, valid_contexts_mask, is_evaluating=False):
return self.path_rnn_last_state(is_evaluating, path_embed, path_lengths, valid_contexts_mask)
def path_rnn_last_state(self, is_evaluating, path_embed, path_lengths, valid_contexts_mask):
# path_embed: (batch, max_contexts, max_path_length+1, dim)
# path_length: (batch, max_contexts)
# valid_contexts_mask: (batch, max_contexts)
max_contexts = tf.shape(path_embed)[1]
flat_paths = tf.reshape(path_embed, shape=[-1, self.config.MAX_PATH_LENGTH,
self.config.EMBEDDINGS_SIZE]) # (batch * max_contexts, max_path_length+1, dim)
flat_valid_contexts_mask = tf.reshape(valid_contexts_mask, [-1]) # (batch * max_contexts)
lengths = tf.multiply(tf.reshape(path_lengths, [-1]),
tf.cast(flat_valid_contexts_mask, tf.int32)) # (batch * max_contexts)
if self.config.BIRNN:
rnn_cell_fw = tf.nn.rnn_cell.LSTMCell(self.config.RNN_SIZE / 2)
rnn_cell_bw = tf.nn.rnn_cell.LSTMCell(self.config.RNN_SIZE / 2)
if not is_evaluating:
rnn_cell_fw = tf.nn.rnn_cell.DropoutWrapper(rnn_cell_fw,
output_keep_prob=self.config.RNN_DROPOUT_KEEP_PROB)
rnn_cell_bw = tf.nn.rnn_cell.DropoutWrapper(rnn_cell_bw,
output_keep_prob=self.config.RNN_DROPOUT_KEEP_PROB)
_, (state_fw, state_bw) = tf.nn.bidirectional_dynamic_rnn(
cell_fw=rnn_cell_fw,
cell_bw=rnn_cell_bw,
inputs=flat_paths,
dtype=tf.float32,
sequence_length=lengths)
final_rnn_state = tf.concat([state_fw.h, state_bw.h], axis=-1) # (batch * max_contexts, rnn_size)
else:
rnn_cell = tf.nn.rnn_cell.LSTMCell(self.config.RNN_SIZE)
if not is_evaluating:
rnn_cell = tf.nn.rnn_cell.DropoutWrapper(rnn_cell, output_keep_prob=self.config.RNN_DROPOUT_KEEP_PROB)
_, state = tf.nn.dynamic_rnn(
cell=rnn_cell,
inputs=flat_paths,
dtype=tf.float32,
sequence_length=lengths
)
final_rnn_state = state.h # (batch * max_contexts, rnn_size)
return tf.reshape(final_rnn_state,
shape=[-1, max_contexts, self.config.RNN_SIZE]) # (batch, max_contexts, rnn_size)
def compute_contexts(self, subtoken_vocab, nodes_vocab, source_input, nodes_input,
target_input, valid_mask, path_source_lengths, path_lengths, path_target_lengths,
is_evaluating=False):
source_word_embed = tf.nn.embedding_lookup(params=subtoken_vocab,
ids=source_input) # (batch, max_contexts, max_name_parts, dim)
path_embed = tf.nn.embedding_lookup(params=nodes_vocab,
ids=nodes_input) # (batch, max_contexts, max_path_length+1, dim)
target_word_embed = tf.nn.embedding_lookup(params=subtoken_vocab,
ids=target_input) # (batch, max_contexts, max_name_parts, dim)
source_word_mask = tf.expand_dims(
tf.sequence_mask(path_source_lengths, maxlen=self.config.MAX_NAME_PARTS, dtype=tf.float32),
-1) # (batch, max_contexts, max_name_parts, 1)
target_word_mask = tf.expand_dims(
tf.sequence_mask(path_target_lengths, maxlen=self.config.MAX_NAME_PARTS, dtype=tf.float32),
-1) # (batch, max_contexts, max_name_parts, 1)
source_words_sum = tf.reduce_sum(source_word_embed * source_word_mask,
axis=2) # (batch, max_contexts, dim)
path_nodes_aggregation = self.calculate_path_abstraction(path_embed, path_lengths, valid_mask,
is_evaluating) # (batch, max_contexts, rnn_size)
target_words_sum = tf.reduce_sum(target_word_embed * target_word_mask, axis=2) # (batch, max_contexts, dim)
context_embed = tf.concat([source_words_sum, path_nodes_aggregation, target_words_sum],
axis=-1) # (batch, max_contexts, dim * 2 + rnn_size)
if not is_evaluating:
context_embed = tf.nn.dropout(context_embed, self.config.EMBEDDINGS_DROPOUT_KEEP_PROB)
batched_embed = tf.layers.dense(inputs=context_embed, units=self.config.DECODER_SIZE,
activation=tf.nn.tanh, trainable=not is_evaluating, use_bias=False)
return batched_embed
def build_test_graph(self, input_tensors):
target_index = input_tensors[reader.TARGET_INDEX_KEY]
path_source_indices = input_tensors[reader.PATH_SOURCE_INDICES_KEY]
node_indices = input_tensors[reader.NODE_INDICES_KEY]
path_target_indices = input_tensors[reader.PATH_TARGET_INDICES_KEY]
valid_mask = input_tensors[reader.VALID_CONTEXT_MASK_KEY]
path_source_lengths = input_tensors[reader.PATH_SOURCE_LENGTHS_KEY]
path_lengths = input_tensors[reader.PATH_LENGTHS_KEY]
path_target_lengths = input_tensors[reader.PATH_TARGET_LENGTHS_KEY]
with tf.variable_scope('model', reuse=self.get_should_reuse_variables()):
subtoken_vocab = tf.get_variable('SUBTOKENS_VOCAB',
shape=(self.subtoken_vocab_size, self.config.EMBEDDINGS_SIZE),
dtype=tf.float32, trainable=False)
target_words_vocab = tf.get_variable('TARGET_WORDS_VOCAB',
shape=(self.target_vocab_size, self.config.EMBEDDINGS_SIZE),
dtype=tf.float32, trainable=False)
nodes_vocab = tf.get_variable('NODES_VOCAB',
shape=(self.nodes_vocab_size, self.config.EMBEDDINGS_SIZE),
dtype=tf.float32, trainable=False)
batched_contexts = self.compute_contexts(subtoken_vocab=subtoken_vocab, nodes_vocab=nodes_vocab,
source_input=path_source_indices, nodes_input=node_indices,
target_input=path_target_indices,
valid_mask=valid_mask,
path_source_lengths=path_source_lengths,
path_lengths=path_lengths, path_target_lengths=path_target_lengths,
is_evaluating=True)
outputs, final_states = self.decode_outputs(target_words_vocab=target_words_vocab,
target_input=target_index, batch_size=tf.shape(target_index)[0],
batched_contexts=batched_contexts, valid_mask=valid_mask,
is_evaluating=True)
if self.config.BEAM_WIDTH > 0:
predicted_indices = outputs.predicted_ids
topk_values = outputs.beam_search_decoder_output.scores
attention_weights = [tf.no_op()]
else:
predicted_indices = outputs.sample_id
topk_values = tf.constant(1, shape=(1, 1), dtype=tf.float32)
attention_weights = tf.squeeze(final_states.alignment_history.stack(), 1)
return predicted_indices, topk_values, target_index, attention_weights
def predict(self, predict_data_lines):
if self.predict_queue is None:
self.predict_queue = reader.Reader(subtoken_to_index=self.subtoken_to_index,
node_to_index=self.node_to_index,
target_to_index=self.target_to_index,
config=self.config, is_evaluating=True)
self.predict_placeholder = tf.placeholder(tf.string)
reader_output = self.predict_queue.process_from_placeholder(self.predict_placeholder)
reader_output = {key: tf.expand_dims(tensor, 0) for key, tensor in reader_output.items()}
self.predict_top_indices_op, self.predict_top_scores_op, _, self.attention_weights_op = \
self.build_test_graph(reader_output)
self.predict_source_string = reader_output[reader.PATH_SOURCE_STRINGS_KEY]
self.predict_path_string = reader_output[reader.PATH_STRINGS_KEY]
self.predict_path_target_string = reader_output[reader.PATH_TARGET_STRINGS_KEY]
self.predict_target_strings_op = reader_output[reader.TARGET_STRING_KEY]
self.initialize_session_variables(self.sess)
self.saver = tf.train.Saver()
self.load_model(self.sess)
results = []
for line in predict_data_lines:
predicted_indices, top_scores, true_target_strings, attention_weights, path_source_string, path_strings, path_target_string = self.sess.run(
[self.predict_top_indices_op, self.predict_top_scores_op, self.predict_target_strings_op,
self.attention_weights_op,
self.predict_source_string, self.predict_path_string, self.predict_path_target_string],
feed_dict={self.predict_placeholder: line})
top_scores = np.squeeze(top_scores, axis=0)
path_source_string = path_source_string.reshape((-1))
path_strings = path_strings.reshape((-1))
path_target_string = path_target_string.reshape((-1))
predicted_indices = np.squeeze(predicted_indices, axis=0)
true_target_strings = Common.binary_to_string(true_target_strings[0])
if self.config.BEAM_WIDTH > 0:
predicted_strings = [[self.index_to_target[sugg] for sugg in timestep]
for timestep in predicted_indices] # (target_length, top-k)
predicted_strings = list(map(list, zip(*predicted_strings))) # (top-k, target_length)
top_scores = [np.exp(np.sum(s)) for s in zip(*top_scores)]
else:
predicted_strings = [self.index_to_target[idx]
for idx in predicted_indices] # (batch, target_length)
attention_per_path = None
if self.config.BEAM_WIDTH == 0:
attention_per_path = self.get_attention_per_path(path_source_string, path_strings, path_target_string,
attention_weights)
results.append((true_target_strings, predicted_strings, top_scores, attention_per_path))
return results
@staticmethod
def get_attention_per_path(source_strings, path_strings, target_strings, attention_weights):
# attention_weights: (time, contexts)
results = []
for time_step in attention_weights:
attention_per_context = {}
for source, path, target, weight in zip(source_strings, path_strings, target_strings, time_step):
string_triplet = (
Common.binary_to_string(source), Common.binary_to_string(path), Common.binary_to_string(target))
attention_per_context[string_triplet] = weight
results.append(attention_per_context)
return results
def save_model(self, sess, path):
save_target = path + '_iter%d' % self.epochs_trained
dirname = os.path.dirname(save_target)
if not os.path.exists(dirname):
os.makedirs(dirname)
self.saver.save(sess, save_target)
dictionaries_path = save_target + '.dict'
with open(dictionaries_path, 'wb') as file:
pickle.dump(self.subtoken_to_index, file)
pickle.dump(self.index_to_subtoken, file)
pickle.dump(self.subtoken_vocab_size, file)
pickle.dump(self.target_to_index, file)
pickle.dump(self.index_to_target, file)
pickle.dump(self.target_vocab_size, file)
pickle.dump(self.node_to_index, file)
pickle.dump(self.index_to_node, file)
pickle.dump(self.nodes_vocab_size, file)
pickle.dump(self.num_training_examples, file)
pickle.dump(self.epochs_trained, file)
pickle.dump(self.config, file)
print('Saved after %d epochs in: %s' % (self.epochs_trained, save_target))
def load_model(self, sess):
if not sess is None:
self.saver.restore(sess, self.config.LOAD_PATH)
print('Done loading model')
with open(self.config.LOAD_PATH + '.dict', 'rb') as file:
if self.subtoken_to_index is not None:
return
print('Loading dictionaries from: ' + self.config.LOAD_PATH)
self.subtoken_to_index = pickle.load(file)
self.index_to_subtoken = pickle.load(file)
self.subtoken_vocab_size = pickle.load(file)
self.target_to_index = pickle.load(file)
self.index_to_target = pickle.load(file)
self.target_vocab_size = pickle.load(file)
self.node_to_index = pickle.load(file)
self.index_to_node = pickle.load(file)
self.nodes_vocab_size = pickle.load(file)
self.num_training_examples = pickle.load(file)
self.epochs_trained = pickle.load(file)
saved_config = pickle.load(file)
self.config.take_model_hyperparams_from(saved_config)
print('Done loading dictionaries')
@staticmethod
def initialize_session_variables(sess):
sess.run(tf.group(tf.global_variables_initializer(), tf.local_variables_initializer(), tf.tables_initializer()))
def get_should_reuse_variables(self):
if self.config.TRAIN_PATH:
return True
else:
return None