-
Notifications
You must be signed in to change notification settings - Fork 35
/
Copy pathkepflatten.py
449 lines (366 loc) · 15.3 KB
/
kepflatten.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
import numpy as np
import scipy, sys, time, math, re
from astropy.io import fits as pyfits
import matplotlib.pyplot as plt
from copy import copy
import kepio, kepmsg, kepkey, kepfit, kepstat
def kepflatten(infile,outfile,datacol,errcol,nsig,stepsize,winsize,npoly,
niter,ranges,plot,clobber,verbose,logfile,status,
cmdLine=False):
# startup parameters
status = 0
labelsize = 32
ticksize = 18
xsize = 16
ysize = 10
lcolor = '#0000ff'
lwidth = 1.0
fcolor = '#ffff00'
falpha = 0.2
# log the call
hashline = '----------------------------------------------------------------------------'
kepmsg.log(logfile,hashline,verbose)
call = 'KEPFLATTEN -- '
call += 'infile='+infile+' '
call += 'outfile='+outfile+' '
call += 'datacol='+str(datacol)+' '
call += 'errcol='+str(errcol)+' '
call += 'nsig='+str(nsig)+' '
call += 'stepsize='+str(stepsize)+' '
call += 'winsize='+str(winsize)+' '
call += 'npoly='+str(npoly)+' '
call += 'niter='+str(niter)+' '
call += 'ranges='+str(ranges)+' '
plotit = 'n'
if (plot): plotit = 'y'
call += 'plot='+plotit+ ' '
overwrite = 'n'
if (clobber): overwrite = 'y'
call += 'clobber='+overwrite+ ' '
chatter = 'n'
if (verbose): chatter = 'y'
call += 'verbose='+chatter+' '
call += 'logfile='+logfile
kepmsg.log(logfile,call+'\n',verbose)
# start time
kepmsg.clock('KEPFLATTEN started at',logfile,verbose)
# test log file
logfile = kepmsg.test(logfile)
# test winsize > stepsize
if winsize < stepsize:
message = 'ERROR -- KEPFLATTEN: winsize must be greater than stepsize'
status = kepmsg.err(logfile,message,verbose)
# clobber output file
if clobber: status = kepio.clobber(outfile,logfile,verbose)
if kepio.fileexists(outfile):
message = 'ERROR -- KEPFLATTEN: ' + outfile + ' exists. Use clobber=yes'
status = kepmsg.err(logfile,message,verbose)
# open input file
if status == 0:
instr, status = kepio.openfits(infile,'readonly',logfile,verbose)
if status == 0:
tstart, tstop, bjdref, cadence, status = kepio.timekeys(instr,infile,logfile,verbose,status)
if status == 0:
try:
work = instr[0].header['FILEVER']
cadenom = 1.0
except:
cadenom = cadence
# fudge non-compliant FITS keywords with no values
if status == 0:
instr = kepkey.emptykeys(instr,file,logfile,verbose)
# read table structure
if status == 0:
table, status = kepio.readfitstab(infile,instr[1],logfile,verbose)
# filter input data table
if status == 0:
try:
datac = table.field(datacol)
except:
message = 'ERROR -- KEPFLATTEN: cannot find or read data column ' + datacol
status = kepmsg.err(logfile,message,verbose)
if status == 0:
try:
err = table.field(errcol)
except:
message = 'WARNING -- KEPFLATTEN: cannot find or read error column ' + errcol
errcol = 'None'
if status == 0:
if errcol.lower() == 'none' or errcol == 'PSF_FLUX_ERR':
err = datac * cadence
err = np.sqrt(np.abs(err)) / cadence
work1 = np.array([table.field('time'), datac, err])
else:
work1 = np.array([table.field('time'), datac, err])
work1 = np.rot90(work1,3)
work1 = work1[~np.isnan(work1).any(1)]
# read table columns
if status == 0:
intime = work1[:,2] + bjdref
indata = work1[:,1]
inerr = work1[:,0]
if len(intime) == 0:
message = 'ERROR -- KEPFLATTEN: one of the input arrays is all NaN'
status = kepmsg.err(logfile,message,verbose)
# time ranges for region to be corrected
if status == 0:
t1, t2, status = kepio.timeranges(ranges,logfile,verbose)
cadencelis, status = kepstat.filterOnRange(intime,t1,t2)
# find limits of each time step
if status == 0:
tstep1 = []; tstep2 = []
work = intime[0]
while work <= intime[-1]:
tstep1.append(work)
tstep2.append(np.array([work+winsize,intime[-1]],dtype='float64').min())
work += stepsize
# find cadence limits of each time step
if status == 0:
cstep1 = []; cstep2 = []
for n in range(len(tstep1)):
for i in range(len(intime)-1):
if intime[i] <= tstep1[n] and intime[i+1] > tstep1[n]:
for j in range(i,len(intime)-1):
if intime[j] < tstep2[n] and intime[j+1] >= tstep2[n]:
cstep1.append(i)
cstep2.append(j+1)
# comment keyword in output file
if status == 0:
status = kepkey.history(call,instr[0],outfile,logfile,verbose)
# clean up x-axis unit
if status == 0:
intime0 = float(int(tstart / 100) * 100.0)
ptime = intime - intime0
xlab = 'BJD $-$ %d' % intime0
# clean up y-axis units
if status == 0:
pout = copy(indata)
nrm = len(str(int(pout.max())))-1
pout = pout / 10**nrm
ylab = '10$^%d$ e$^-$ s$^{-1}$' % nrm
# data limits
xmin = ptime.min()
xmax = ptime.max()
ymin = pout.min()
ymax = pout.max()
xr = xmax - xmin
yr = ymax - ymin
ptime = np.insert(ptime,[0],[ptime[0]])
ptime = np.append(ptime,[ptime[-1]])
pout = np.insert(pout,[0],[0.0])
pout = np.append(pout,0.0)
# plot light curve
if status == 0 and plot:
plotLatex = True
try:
params = {'backend': 'png',
'axes.linewidth': 2.5,
'axes.labelsize': labelsize,
'axes.font': 'sans-serif',
'axes.fontweight' : 'bold',
'text.fontsize': 12,
'legend.fontsize': 12,
'xtick.labelsize': ticksize,
'ytick.labelsize': ticksize}
rcParams.update(params)
except:
plotLatex = False
if status == 0 and plot:
plt.figure(figsize=[xsize,ysize])
plt.clf()
# plot data
ax = plt.axes([0.06,0.54,0.93,0.43])
# force tick labels to be absolute rather than relative
plt.gca().xaxis.set_major_formatter(plt.ScalarFormatter(useOffset=False))
plt.gca().yaxis.set_major_formatter(plt.ScalarFormatter(useOffset=False))
# rotate y labels by 90 deg
labels = ax.get_yticklabels()
plt.setp(labels, 'rotation', 90)
plt.setp(plt.gca(),xticklabels=[])
plt.plot(ptime[1:-1],pout[1:-1],color=lcolor,linestyle='-',linewidth=lwidth)
plt.fill(ptime,pout,color=fcolor,linewidth=0.0,alpha=falpha)
if not plotLatex:
ylab = '10**%d electrons/sec' % nrm
plt.ylabel(ylab, {'color' : 'k'})
plt.grid()
# loop over each time step, fit data, determine rms
if status == 0:
fitarray = np.zeros((len(indata),len(cstep1)),dtype='float32')
sigarray = np.zeros((len(indata),len(cstep1)),dtype='float32')
fitarray[:,:] = np.nan
sigarray[:,:] = np.nan
masterfit = indata * 0.0
mastersigma = np.zeros(len(masterfit))
functype = 'poly' + str(npoly)
for i in range(len(cstep1)):
timeSeries = intime[cstep1[i]:cstep2[i]+1]-intime[cstep1[i]]
dataSeries = indata[cstep1[i]:cstep2[i]+1]
fitTimeSeries = np.array([],dtype='float32')
fitDataSeries = np.array([],dtype='float32')
pinit = [dataSeries.mean()]
if npoly > 0:
for j in range(npoly):
pinit.append(0.0)
pinit = np.array(pinit,dtype='float32')
try:
if len(fitarray[cstep1[i]:cstep2[i]+1,i]) > len(pinit):
coeffs, errors, covar, iiter, sigma, chi2, dof, fit, plotx, ploty, status = \
kepfit.lsqclip(functype,pinit,timeSeries,dataSeries,None,nsig,nsig,niter,
logfile,verbose)
fitarray[cstep1[i]:cstep2[i]+1,i] = 0.0
sigarray[cstep1[i]:cstep2[i]+1,i] = sigma
for j in range(len(coeffs)):
fitarray[cstep1[i]:cstep2[i]+1,i] += coeffs[j] * timeSeries**j
except:
for j in range(cstep1[i],cstep2[i]+1):
fitarray[cstep1[i]:cstep2[i]+1,i] = 0.0
sigarray[cstep1[i]:cstep2[i]+1,i] = 1.0e-10
message = 'WARNING -- KEPFLATTEN: could not fit range '
message += str(intime[cstep1[i]]) + '-' + str(intime[cstep2[i]])
kepmsg.warn(None,message)
# find mean fit for each timestamp
if status == 0:
for i in range(len(indata)):
masterfit[i] = np.nanmean(fitarray[i,:])
mastersigma[i] = np.nanmean(sigarray[i,:])
masterfit[-1] = masterfit[-4] #fudge
masterfit[-2] = masterfit[-4] #fudge
masterfit[-3] = masterfit[-4] #fudge
plt.plot(intime-intime0, masterfit / 10**nrm,'g',lw='3')
# reject outliers
if status == 0:
rejtime = []; rejdata = []; naxis2 = 0
for i in range(len(masterfit)):
if abs(indata[i] - masterfit[i]) > nsig * mastersigma[i] and i in cadencelis:
rejtime.append(intime[i])
rejdata.append(indata[i])
rejtime = np.array(rejtime,dtype='float64')
rejdata = np.array(rejdata,dtype='float32')
if plot:
plt.plot(rejtime-intime0,rejdata / 10**nrm,'ro')
# new data for output file
if status == 0:
outdata = indata / masterfit
outerr = inerr / masterfit
# plot ranges
if status == 0 and plot:
plt.xlim(xmin-xr*0.01,xmax+xr*0.01)
if ymin >= 0.0:
plt.ylim(ymin-yr*0.01,ymax+yr*0.01)
else:
plt.ylim(1.0e-10,ymax+yr*0.01)
# plot residual data
if status == 0 and plot:
ax = plt.axes([0.06,0.09,0.93,0.43])
# force tick labels to be absolute rather than relative
if status == 0 and plot:
plt.gca().xaxis.set_major_formatter(plt.ScalarFormatter(useOffset=False))
plt.gca().yaxis.set_major_formatter(plt.ScalarFormatter(useOffset=False))
# rotate y labels by 90 deg
labels = ax.get_yticklabels()
plt.setp(labels, 'rotation', 90)
# clean up y-axis units
if status == 0:
pout = copy(outdata)
ylab = 'Normalized Flux'
# data limits
if status == 0 and plot:
ymin = pout.min()
ymax = pout.max()
yr = ymax - ymin
pout = np.insert(pout,[0],[0.0])
pout = np.append(pout,0.0)
plt.plot(ptime[1:-1],pout[1:-1],color=lcolor,linestyle='-',linewidth=lwidth)
plt.fill(ptime,pout,color=fcolor,linewidth=0.0,alpha=falpha)
plt.xlabel(xlab, {'color' : 'k'})
plt.ylabel(ylab, {'color' : 'k'})
plt.grid()
# plot ranges
if status == 0 and plot:
plt.xlim(xmin-xr*0.01,xmax+xr*0.01)
if ymin >= 0.0:
plt.ylim(ymin-yr*0.01,ymax+yr*0.01)
else:
plt.ylim(1.0e-10,ymax+yr*0.01)
# render plot
if status == 0 and plot:
plt.savefig(re.sub('.fits','.png',outfile))
plt.ion()
plt.show()
# add NaNs back into data
if status == 0:
n = 0
work1 = np.array([],dtype='float32')
work2 = np.array([],dtype='float32')
instr, status = kepio.openfits(infile,'readonly',logfile,verbose)
table, status = kepio.readfitstab(infile,instr[1],logfile,verbose)
tn = table.field('time')
dn = table.field(datacol)
for i in range(len(table.field(0))):
if np.isfinite(tn[i]) and np.isfinite(dn[i]) and np.isfinite(err[i]):
try:
work1 = np.append(work1,outdata[n])
work2 = np.append(work2,outerr[n])
n += 1
except:
pass
else:
work1 = np.append(work1,np.nan)
work2 = np.append(work2,np.nan)
# history keyword in output file
if status == 0:
status = kepkey.history(call,instr[0],outfile,logfile,verbose)
# write output file
try:
col1 = pyfits.Column(name='DETSAP_FLUX',format='E13.7',array=work1)
col2 = pyfits.Column(name='DETSAP_FLUX_ERR',format='E13.7',array=work2)
cols = instr[1].data.columns + col1 + col2
instr[1] = pyfits.BinTableHDU.from_columns(cols,header=instr[1].header)
instr.writeto(outfile)
except ValueError:
try:
instr[1].data.field('DETSAP_FLUX')[:] = work1
instr[1].data.field('DETSAP_FLUX_ERR')[:] = work2
instr.writeto(outfile)
except:
message = 'ERROR -- KEPFLATTEN: cannot add DETSAP_FLUX data to FITS file'
status = kepmsg.err(logfile,message,verbose)
# close input file
if status == 0:
status = kepio.closefits(instr,logfile,verbose)
## end time
if status == 0:
message = 'KEPFLATTEN completed at'
else:
message = '\nKEPFLATTEN aborted at'
kepmsg.clock(message,logfile,verbose)
# main
if '--shell' in sys.argv:
import argparse
parser = argparse.ArgumentParser(description='Remove or replace data outliers from a time series')
parser.add_argument('--shell', action='store_true', help='Are we running from the shell?')
parser.add_argument('infile', help='Name of input file', type=str)
parser.add_argument('outfile', help='Name of FITS file to output', type=str)
parser.add_argument('--datacol', default='PDCSAP_FLUX', help='Name of data column to plot', type=str)
parser.add_argument('--errcol', default='PDCSAP_FLUX_ERR', help='Name of data error column to plot', type=str)
parser.add_argument('--nsig', default=3., help='Sigma clipping threshold for outliers', type=float)
parser.add_argument('--stepsize', default=0.5, help='Stepsize on which to fit data [days]', type=float)
parser.add_argument('--winsize', default=5.0,
help='Window size of data to fit after each step (>= stepsize) [days]', type=float)
parser.add_argument('--npoly', default=3, help='Polynomial order for each fit', type=int)
parser.add_argument('--niter', default=1, help='Maximum number of clipping iterations', type=int)
parser.add_argument('--ranges', default='0,0', help='Time ranges of regions to filter', type=str)
parser.add_argument('--plot', action='store_true', help='Plot result?', default=False)
parser.add_argument('--clobber', action='store_true', help='Overwrite output file?')
parser.add_argument('--verbose', action='store_true', help='Write to a log file?')
parser.add_argument('--logfile', '-l', help='Name of ascii log file', default='kepflatten.log', dest='logfile', type=str)
parser.add_argument('--status', '-e', help='Exit status (0=good)', default=0, dest='status', type=int)
args = parser.parse_args()
cmdLine=True
kepflatten(args.infile,args.outfile,args.datacol,args.errcol,args.nsig,args.stepsize,
args.winsize,args.npoly,args.niter,args.ranges,args.plot,args.clobber,
args.verbose,args.logfile,args.status, cmdLine)
else:
from pyraf import iraf
parfile = iraf.osfn("kepler$kepflatten.par")
t = iraf.IrafTaskFactory(taskname="kepflatten", value=parfile, function=kepflatten)