-
Notifications
You must be signed in to change notification settings - Fork 35
/
Copy pathkeppca.py
747 lines (638 loc) · 32.1 KB
/
keppca.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
import sys, re
from astropy.io import fits as pyfits
import numpy as np
from scipy import optimize as opt
from matplotlib import pyplot as plt
import kepmsg, kepio, kepkey, kepplot
import random
# -----------------------------------------------------------
# core code
def keppca(infile, maskfile, outfile, components, plotpca, nreps, clobber,
verbose, logfile, status, cmdLine=False):
try:
import mdp
except:
msg = ("ERROR -- KEPPCA: this task has an external python dependency "
"to MDP, a Modular toolkit for Data Processing "
"(http://mdp-toolkit.sourceforge.net). In order to take "
"advantage of this PCA task, the user must first install "
"MDP with their current python distribution. Note carefully "
"that you may have more than python installation on your "
"machine, and ensure that MDP is installed with the same "
"version of python that the PyKE tools employ. Installation "
"instructions for MDP can be found at the URL provided above.")
status = kepmsg.err(None,msg,True)
# startup parameters
status = 0
labelsize = 32
ticksize = 18
xsize = 16
ysize = 10
lcolor = '#0000ff'
lwidth = 1.0
fcolor = '#ffff00'
falpha = 0.2
np.seterr(all="ignore")
# log the call
if status == 0:
hashline = '----------------------------------------------------------------------------'
kepmsg.log(logfile,hashline,verbose)
call = 'KEPPCA -- '
call += 'infile='+infile+' '
call += 'maskfile='+maskfile+' '
call += 'outfile='+outfile+' '
call += 'components='+components+' '
ppca = 'n'
if (plotpca): ppca = 'y'
call += 'plotpca='+ppca+ ' '
call += 'nmaps='+str(nreps)+' '
overwrite = 'n'
if (clobber): overwrite = 'y'
call += 'clobber='+overwrite+ ' '
chatter = 'n'
if (verbose): chatter = 'y'
call += 'verbose='+chatter+' '
call += 'logfile='+logfile
kepmsg.log(logfile,call+'\n',verbose)
# start time
if status == 0:
kepmsg.clock('KEPPCA started at',logfile,verbose)
# test log file
if status == 0:
logfile = kepmsg.test(logfile)
# clobber output file
if status == 0:
if clobber: status = kepio.clobber(outfile,logfile,verbose)
if kepio.fileexists(outfile):
message = 'ERROR -- KEPPCA: ' + outfile + ' exists. Use clobber=yes'
status = kepmsg.err(logfile,message,verbose)
# Set output file names - text file with data and plot
if status == 0:
dataout = np.copy(outfile)
repname = re.sub('.fits','.png',outfile)
# open input file
if status == 0:
instr = pyfits.open(infile,mode='readonly',memmap=True)
tstart, tstop, bjdref, cadence, status = kepio.timekeys(instr,infile,logfile,verbose,status)
# open TPF FITS file
if status == 0:
kepid, channel, skygroup, module, output, quarter, season, \
ra, dec, column, row, kepmag, xdim, ydim, barytime, status = \
kepio.readTPF(infile,'TIME',logfile,verbose)
if status == 0:
kepid, channel, skygroup, module, output, quarter, season, \
ra, dec, column, row, kepmag, xdim, ydim, tcorr, status = \
kepio.readTPF(infile,'TIMECORR',logfile,verbose)
if status == 0:
kepid, channel, skygroup, module, output, quarter, season, \
ra, dec, column, row, kepmag, xdim, ydim, cadno, status = \
kepio.readTPF(infile,'CADENCENO',logfile,verbose)
if status == 0:
kepid, channel, skygroup, module, output, quarter, season, \
ra, dec, column, row, kepmag, xdim, ydim, fluxpixels, status = \
kepio.readTPF(infile,'FLUX',logfile,verbose)
if status == 0:
kepid, channel, skygroup, module, output, quarter, season, \
ra, dec, column, row, kepmag, xdim, ydim, errpixels, status = \
kepio.readTPF(infile,'FLUX_ERR',logfile,verbose)
if status == 0:
kepid, channel, skygroup, module, output, quarter, season, \
ra, dec, column, row, kepmag, xdim, ydim, flux_bkg, status = \
kepio.readTPF(infile,'FLUX_BKG',logfile,verbose)
if status == 0:
kepid, channel, skygroup, module, output, quarter, season, \
ra, dec, column, row, kepmag, xdim, ydim, flux_bkg_err, status = \
kepio.readTPF(infile,'FLUX_BKG_ERR',logfile,verbose)
if status == 0:
kepid, channel, skygroup, module, output, quarter, season, \
ra, dec, column, row, kepmag, xdim, ydim, qual, status = \
kepio.readTPF(infile,'QUALITY',logfile,verbose)
if status == 0:
kepid, channel, skygroup, module, output, quarter, season, \
ra, dec, column, row, kepmag, xdim, ydim, pcorr1, status = \
kepio.readTPF(infile,'POS_CORR1',logfile,verbose)
if status == 0:
kepid, channel, skygroup, module, output, quarter, season, \
ra, dec, column, row, kepmag, xdim, ydim, pcorr2, status = \
kepio.readTPF(infile,'POS_CORR2',logfile,verbose)
# Save original data dimensions, in case of using maskfile
if status == 0:
xdimorig = xdim
ydimorig = ydim
# read mask definition file if it has been supplied
if status == 0 and 'aper' not in maskfile.lower() and maskfile.lower() != 'all':
maskx = np.array([],'int')
masky = np.array([],'int')
lines, status = kepio.openascii(maskfile,'r',logfile,verbose)
for line in lines:
line = line.strip().split('|')
if len(line) == 6:
y0 = int(line[3])
x0 = int(line[4])
line = line[5].split(';')
for items in line:
try:
masky = np.append(masky,y0 + int(items.split(',')[0]))
maskx = np.append(maskx,x0 + int(items.split(',')[1]))
except:
continue
status = kepio.closeascii(lines,logfile,verbose)
if len(maskx) == 0 or len(masky) == 0:
message = 'ERROR -- KEPPCA: ' + maskfile + ' contains no pixels.'
status = kepmsg.err(logfile,message,verbose)
xdim = max(maskx) - min(maskx) + 1 # Find largest x dimension of mask
ydim = max(masky) - min(masky) + 1 # Find largest y dimension of mask
# pad mask to ensure it is rectangular
workx = np.array([],'int')
worky = np.array([],'int')
for ip in np.arange(min(maskx),max(maskx) + 1):
for jp in np.arange(min(masky),max(masky) + 1):
workx = np.append(workx,ip)
worky = np.append(worky,jp)
maskx = workx
masky = worky
# define new subimage bitmap...
if status == 0 and maskfile.lower() != 'all':
aperx = np.array([],'int')
apery = np.array([],'int')
aperb = maskx - x0 + xdimorig * (masky - y0) # aperb is an array that contains the pixel numbers in the mask
npix = len(aperb)
# ...or use all pixels
if status == 0 and maskfile.lower() == 'all':
npix = xdimorig*ydimorig
aperb = np.array([],'int')
aperb = np.r_[0:npix]
# legal mask defined?
if status == 0:
if len(aperb) == 0:
message = 'ERROR -- KEPPCA: no legal pixels within the subimage are defined.'
status = kepmsg.err(logfile,message,verbose)
# Identify principal components desired
if status == 0:
pcaout = []
txt = components.strip().split(',')
for work1 in txt:
try:
pcaout.append(int(work1.strip()))
except:
work2 = work1.strip().split('-')
try:
for work3 in range(int(work2[0]),int(work2[1]) + 1):
pcaout.append(work3)
except:
message = 'ERROR -- KEPPCA: cannot understand principal component list requested'
status = kepmsg.err(logfile,message,verbose)
if status == 0:
pcaout = set(np.sort(pcaout))
pcarem = np.array(list(pcaout))-1 # The list of pca component numbers to be removed
# Initialize arrays and variables, and apply pixel mask to the data
if status == 0:
ntim = 0
time = np.array([],dtype='float64')
timecorr = np.array([],dtype='float32')
cadenceno = np.array([],dtype='int')
pixseries = np.array([],dtype='float32')
errseries = np.array([],dtype='float32')
bkgseries = np.array([],dtype='float32')
berseries = np.array([],dtype='float32')
quality = np.array([],dtype='float32')
pos_corr1 = np.array([],dtype='float32')
pos_corr2 = np.array([],dtype='float32')
nrows = np.size(fluxpixels,0)
# Apply the pixel mask so we are left with only the desired pixels
if status == 0:
pixseriesb = fluxpixels[:,aperb]
errseriesb = errpixels[:,aperb]
bkgseriesb = flux_bkg[:,aperb]
berseriesb = flux_bkg_err[:,aperb]
# Read in the data to various arrays
if status == 0:
for i in range(nrows):
if qual[i] < 10000 and \
np.isfinite(barytime[i]) and \
np.isfinite(fluxpixels[i,int(ydim*xdim/2+0.5)]) and \
np.isfinite(fluxpixels[i,1+int(ydim*xdim/2+0.5)]):
ntim += 1
time = np.append(time,barytime[i])
timecorr = np.append(timecorr,tcorr[i])
cadenceno = np.append(cadenceno,cadno[i])
pixseries = np.append(pixseries,pixseriesb[i])
errseries = np.append(errseries,errseriesb[i])
bkgseries = np.append(bkgseries,bkgseriesb[i])
berseries = np.append(berseries,berseriesb[i])
quality = np.append(quality,qual[i])
pos_corr1 = np.append(pos_corr1,pcorr1[i])
pos_corr2 = np.append(pos_corr2,pcorr2[i])
pixseries = np.reshape(pixseries,(ntim,npix))
errseries = np.reshape(errseries,(ntim,npix))
bkgseries = np.reshape(bkgseries,(ntim,npix))
berseries = np.reshape(berseries,(ntim,npix))
tmp = np.ma.median(np.ma.masked_invalid(pixseries),axis=1)
for i in range(len(tmp)):
pixseries[i] = pixseries[i] - tmp[i]
pixseries = np.ma.masked_invalid(pixseries)
# Figure out which pixels are undefined/nan and remove them. Keep track for adding back in later
if status == 0:
nanpixels = np.array([],dtype='int')
i = 0
while (i < npix):
if np.isnan(pixseries[0,i]):
nanpixels = np.append(nanpixels,i)
npix = npix - 1
i = i + 1
pixseries = np.delete(pixseries,nanpixels,1)
errseries = np.delete(errseries,nanpixels,1)
pixseries[np.isnan(pixseries)] = random.gauss(100,10)
errseries[np.isnan(errseries)] = 10
# Compute statistical weights, means, standard deviations
if status == 0:
weightseries = (pixseries/errseries)**2
pixMean = np.average(pixseries,axis=0,weights=weightseries)
pixStd = np.std(pixseries,axis=0)
# Normalize the input by subtracting the mean and divising by the standard deviation.
# This makes it a correlation-based PCA, which is what we want.
if status == 0:
pixseriesnorm = (pixseries - pixMean) / pixStd
# Number of principal components to compute. Setting it equal to the number of pixels
if status == 0:
nvecin = npix
# Run PCA using the MDP Whitening PCA, which produces normalized PCA components (zero mean and unit variance)
if status == 0:
pcan = mdp.nodes.WhiteningNode(svd=True)
pcar = pcan.execute(pixseriesnorm)
eigvec = pcan.get_recmatrix()
model = pcar
# Re-insert nan columns as zeros
if status == 0:
for i in range(0,len(nanpixels)):
nanpixels[i] = nanpixels[i]-i
eigvec = np.insert(eigvec,nanpixels,0,1)
pixMean = np.insert(pixMean,nanpixels,0,0)
# Make output eigenvectors (correlation images) into xpix by ypix images
if status == 0:
eigvec = eigvec.reshape(nvecin,ydim,xdim)
# Calculate sum of all pixels to display as raw lightcurve and other quantities
if status == 0:
pixseriessum = np.sum(pixseries,axis=1)
nrem=len(pcarem) # Number of components to remove
nplot = npix # Number of pcas to plot - currently set to plot all components, but could set
# nplot = nrem to just plot as many components as is being removed
# Subtract components by fitting them to the summed light curve
if status == 0:
x0 = np.tile(-1.0,1)
for k in range(0,nrem):
def f(x):
fluxcor = pixseriessum
for k in range(0,len(x)):
fluxcor = fluxcor - x[k]*model[:,pcarem[k]]
return mad(fluxcor)
if k==0:
x0 = np.array([-1.0])
else:
x0 = np.append(x0,1.0)
myfit = opt.fmin(f,x0,maxiter=50000,maxfun=50000,disp=False)
x0 = myfit
# Now that coefficients for all components have been found, subtract them to produce a calibrated time-series,
# and then divide by the robust mean to produce a normalized time series as well
if status == 0:
c = myfit
fluxcor = pixseriessum
for k in range(0,nrem):
fluxcor = fluxcor - c[k]*model[:,pcarem[k]]
normfluxcor = fluxcor/np.mean(reject_outliers(fluxcor,2))
# input file data
if status == 0:
cards0 = instr[0].header.cards
cards1 = instr[1].header.cards
cards2 = instr[2].header.cards
table = instr[1].data[:]
maskmap = np.copy(instr[2].data)
# subimage physical WCS data
if status == 0:
crpix1p = cards2['CRPIX1P'].value
crpix2p = cards2['CRPIX2P'].value
crval1p = cards2['CRVAL1P'].value
crval2p = cards2['CRVAL2P'].value
cdelt1p = cards2['CDELT1P'].value
cdelt2p = cards2['CDELT2P'].value
# dummy columns for output file
if status == 0:
sap_flux_err = np.empty(len(time)); sap_flux_err[:] = np.nan
sap_bkg = np.empty(len(time)); sap_bkg[:] = np.nan
sap_bkg_err = np.empty(len(time)); sap_bkg_err[:] = np.nan
pdc_flux = np.empty(len(time)); pdc_flux[:] = np.nan
pdc_flux_err = np.empty(len(time)); pdc_flux_err[:] = np.nan
psf_centr1 = np.empty(len(time)); psf_centr1[:] = np.nan
psf_centr1_err = np.empty(len(time)); psf_centr1_err[:] = np.nan
psf_centr2 = np.empty(len(time)); psf_centr2[:] = np.nan
psf_centr2_err = np.empty(len(time)); psf_centr2_err[:] = np.nan
mom_centr1 = np.empty(len(time)); mom_centr1[:] = np.nan
mom_centr1_err = np.empty(len(time)); mom_centr1_err[:] = np.nan
mom_centr2 = np.empty(len(time)); mom_centr2[:] = np.nan
mom_centr2_err = np.empty(len(time)); mom_centr2_err[:] = np.nan
# mask bitmap
if status == 0 and 'aper' not in maskfile.lower() and maskfile.lower() != 'all':
for i in range(maskmap.shape[0]):
for j in range(maskmap.shape[1]):
aperx = append(aperx,crval1p + (j + 1 - crpix1p) * cdelt1p)
apery = append(apery,crval2p + (i + 1 - crpix2p) * cdelt2p)
if maskmap[i,j] == 0:
pass
else:
maskmap[i,j] = 1
for k in range(len(maskx)):
if aperx[-1] == maskx[k] and apery[-1] == masky[k]:
maskmap[i,j] = 3
# construct output primary extension
if status == 0:
hdu0 = pyfits.PrimaryHDU()
for i in range(len(cards0)):
if cards0[i].keyword not in hdu0.header.keys():
hdu0.header[cards0[i].keyword] = (cards0[i].value, cards0[i].comment)
else:
hdu0.header.cards[cards0[i].keyword].comment = cards0[i].comment
status = kepkey.history(call,hdu0,outfile,logfile,verbose)
outstr = pyfits.HDUList(hdu0)
# construct output light curve extension
if status == 0:
col1 = pyfits.Column(name='TIME',format='D',unit='BJD - 2454833',array=time)
col2 = pyfits.Column(name='TIMECORR',format='E',unit='d',array=timecorr)
col3 = pyfits.Column(name='CADENCENO',format='J',array=cadenceno)
col4 = pyfits.Column(name='SAP_FLUX',format='E',unit='e-/s',array=pixseriessum)
col5 = pyfits.Column(name='SAP_FLUX_ERR',format='E',unit='e-/s',array=sap_flux_err)
col6 = pyfits.Column(name='SAP_BKG',format='E',unit='e-/s',array=sap_bkg)
col7 = pyfits.Column(name='SAP_BKG_ERR',format='E',unit='e-/s',array=sap_bkg_err)
col8 = pyfits.Column(name='PDCSAP_FLUX',format='E',unit='e-/s',array=pdc_flux)
col9 = pyfits.Column(name='PDCSAP_FLUX_ERR',format='E',unit='e-/s',array=pdc_flux_err)
col10 = pyfits.Column(name='SAP_QUALITY',format='J',array=quality)
col11 = pyfits.Column(name='PSF_CENTR1',format='E',unit='pixel',array=psf_centr1)
col12 = pyfits.Column(name='PSF_CENTR1_ERR',format='E',unit='pixel',array=psf_centr1_err)
col13 = pyfits.Column(name='PSF_CENTR2',format='E',unit='pixel',array=psf_centr2)
col14 = pyfits.Column(name='PSF_CENTR2_ERR',format='E',unit='pixel',array=psf_centr2_err)
col15 = pyfits.Column(name='MOM_CENTR1',format='E',unit='pixel',array=mom_centr1)
col16 = pyfits.Column(name='MOM_CENTR1_ERR',format='E',unit='pixel',array=mom_centr1_err)
col17 = pyfits.Column(name='MOM_CENTR2',format='E',unit='pixel',array=mom_centr2)
col18 = pyfits.Column(name='MOM_CENTR2_ERR',format='E',unit='pixel',array=mom_centr2_err)
col19 = pyfits.Column(name='POS_CORR1',format='E',unit='pixel',array=pos_corr1)
col20 = pyfits.Column(name='POS_CORR2',format='E',unit='pixel',array=pos_corr2)
col21 = pyfits.Column(name='PCA_FLUX',format='E',unit='e-/s',array=fluxcor)
col22 = pyfits.Column(name='PCA_FLUX_NRM',format='E',array=normfluxcor)
cols = pyfits.ColDefs([col1,col2,col3,col4,col5,col6,col7,col8,col9,col10,col11, \
col12,col13,col14,col15,col16,col17,col18,col19,col20,col21,col22])
hdu1 = pyfits.BinTableHDU.from_columns(cols)
hdu1.header['TTYPE1'] = ('TIME','column title: data time stamps')
hdu1.header['TFORM1'] = ('D','data type: float64')
hdu1.header['TUNIT1'] = ('BJD - 2454833','column units: barycenter corrected JD')
hdu1.header['TDISP1'] = ('D12.7','column display format')
hdu1.header['TTYPE2'] = ('TIMECORR','column title: barycentric-timeslice correction')
hdu1.header['TFORM2'] = ('E','data type: float32')
hdu1.header['TUNIT2'] = ('d','column units: days')
hdu1.header['TTYPE3'] = ('CADENCENO','column title: unique cadence number')
hdu1.header['TFORM3'] = ('J','column format: signed integer32')
hdu1.header['TTYPE4'] = ('SAP_FLUX','column title: aperture photometry flux')
hdu1.header['TFORM4'] = ('E','column format: float32')
hdu1.header['TUNIT4'] = ('e-/s','column units: electrons per second')
hdu1.header['TTYPE5'] = ('SAP_FLUX_ERR','column title: aperture phot. flux error')
hdu1.header['TFORM5'] = ('E','column format: float32')
hdu1.header['TUNIT5'] = ('e-/s','column units: electrons per second (1-sigma)')
hdu1.header['TTYPE6'] = ('SAP_BKG','column title: aperture phot. background flux')
hdu1.header['TFORM6'] = ('E','column format: float32')
hdu1.header['TUNIT6'] = ('e-/s','column units: electrons per second')
hdu1.header['TTYPE7'] = ('SAP_BKG_ERR','column title: ap. phot. background flux error')
hdu1.header['TFORM7'] = ('E','column format: float32')
hdu1.header['TUNIT7'] = ('e-/s','column units: electrons per second (1-sigma)')
hdu1.header['TTYPE8'] = ('PDCSAP_FLUX','column title: PDC photometry flux')
hdu1.header['TFORM8'] = ('E','column format: float32')
hdu1.header['TUNIT8'] = ('e-/s','column units: electrons per second')
hdu1.header['TTYPE9'] = ('PDCSAP_FLUX_ERR','column title: PDC flux error')
hdu1.header['TFORM9'] = ('E','column format: float32')
hdu1.header['TUNIT9'] = ('e-/s','column units: electrons per second (1-sigma)')
hdu1.header['TTYPE10'] = ('SAP_QUALITY','column title: aperture photometry quality flag')
hdu1.header['TFORM10'] = ('J','column format: signed integer32')
hdu1.header['TTYPE11'] = ('PSF_CENTR1','column title: PSF fitted column centroid')
hdu1.header['TFORM11'] = ('E','column format: float32')
hdu1.header['TUNIT11'] = ('pixel','column units: pixel')
hdu1.header['TTYPE12'] = ('PSF_CENTR1_ERR','column title: PSF fitted column error')
hdu1.header['TFORM12'] = ('E','column format: float32')
hdu1.header['TUNIT12'] = ('pixel','column units: pixel')
hdu1.header['TTYPE13'] = ('PSF_CENTR2','column title: PSF fitted row centroid')
hdu1.header['TFORM13'] = ('E','column format: float32')
hdu1.header['TUNIT13'] = ('pixel','column units: pixel')
hdu1.header['TTYPE14'] = ('PSF_CENTR2_ERR','column title: PSF fitted row error')
hdu1.header['TFORM14'] = ('E','column format: float32')
hdu1.header['TUNIT14'] = ('pixel','column units: pixel')
hdu1.header['TTYPE15'] = ('MOM_CENTR1','column title: moment-derived column centroid')
hdu1.header['TFORM15'] = ('E','column format: float32')
hdu1.header['TUNIT15'] = ('pixel','column units: pixel')
hdu1.header['TTYPE16'] = ('MOM_CENTR1_ERR','column title: moment-derived column error')
hdu1.header['TFORM16'] = ('E','column format: float32')
hdu1.header['TUNIT16'] = ('pixel','column units: pixel')
hdu1.header['TTYPE17'] = ('MOM_CENTR2','column title: moment-derived row centroid')
hdu1.header['TFORM17'] = ('E','column format: float32')
hdu1.header['TUNIT17'] = ('pixel','column units: pixel')
hdu1.header['TTYPE18'] = ('MOM_CENTR2_ERR','column title: moment-derived row error')
hdu1.header['TFORM18'] = ('E','column format: float32')
hdu1.header['TUNIT18'] = ('pixel','column units: pixel')
hdu1.header['TTYPE19'] = ('POS_CORR1','column title: col correction for vel. abbern')
hdu1.header['TFORM19'] = ('E','column format: float32')
hdu1.header['TUNIT19'] = ('pixel','column units: pixel')
hdu1.header['TTYPE20'] = ('POS_CORR2','column title: row correction for vel. abbern')
hdu1.header['TFORM20'] = ('E','column format: float32')
hdu1.header['TUNIT20'] = ('pixel','column units: pixel')
hdu1.header['TTYPE21'] = ('PCA_FLUX','column title: PCA-corrected flux')
hdu1.header['TFORM21'] = ('E','column format: float32')
hdu1.header['TUNIT21'] = ('pixel','column units: e-/s')
hdu1.header['TTYPE22'] = ('PCA_FLUX_NRM','column title: normalized PCA-corrected flux')
hdu1.header['TFORM22'] = ('E','column format: float32')
hdu1.header['EXTNAME'] = ('LIGHTCURVE','name of extension')
for i in range(len(cards1)):
if (cards1[i].keyword not in hdu1.header.keys() and
cards1[i].keyword[:4] not in ['TTYP','TFOR','TUNI','TDIS','TDIM','WCAX','1CTY',
'2CTY','1CRP','2CRP','1CRV','2CRV','1CUN','2CUN',
'1CDE','2CDE','1CTY','2CTY','1CDL','2CDL','11PC',
'12PC','21PC','22PC']):
hdu1.header[cards1[i].keyword] = (cards1[i].value, cards1[i].comment)
outstr.append(hdu1)
# construct output mask bitmap extension
if status == 0:
hdu2 = pyfits.ImageHDU(maskmap)
for i in range(len(cards2)):
if cards2[i].keyword not in hdu2.header.keys():
hdu2.header[cards2[i].keyword] = (cards2[i].value, cards2[i].comment)
else:
hdu2.header.cards[cards2[i].keyword].comment = cards2[i].comment
outstr.append(hdu2)
# construct principal component table
if status == 0:
cols = [pyfits.Column(name='TIME',format='E',unit='BJD - 2454833',array=time)]
for i in range(len(pcar[0,:])):
colname = 'PC' + str(i + 1)
col = pyfits.Column(name=colname,format='E', array=pcar[:,i])
cols.append(col)
hdu3 = pyfits.BinTableHDU.from_columns(pyfits.ColDefs(cols))
hdu3.header['EXTNAME'] = ('PRINCIPAL_COMPONENTS','name of extension')
hdu3.header['TTYPE1'] = ('TIME','column title: data time stamps')
hdu3.header['TFORM1'] = ('D','data type: float64')
hdu3.header['TUNIT1'] = ('BJD - 2454833','column units: barycenter corrected JD')
hdu3.header['TDISP1'] = ('D12.7','column display format')
for i in range(len(pcar[0,:])):
hdu3.header['TTYPE' + str(i + 2)] = ("PC" + str(i + 1),
"column title: principal "
"component number " + str(i + 1))
hdu3.header['TFORM' + str(i + 2)] = ('E','column format: float32')
outstr.append(hdu3)
# write output file
if status == 0:
outstr.writeto(outfile)
# close input structure
if status == 0:
status = kepio.closefits(instr,logfile,verbose)
# Create PCA report
if status == 0 and plotpca:
npp = 7 # Number of plots per page
l = 1
repcnt = 1
for k in range(nreps):
# First plot of every pagewith flux image, flux and calibrated time series
if (k % (npp - 1) == 0):
plt.figure(figsize=[10,16])
plt.subplot2grid((npp,6),(0,0), colspan=2)
plt.imshow(np.log10(np.flipud(pixMean.reshape(ydim,xdim))-min(pixMean)+1),
interpolation="nearest",cmap='RdYlBu')
plt.xticks([])
plt.yticks([])
ax1 = plt.subplot2grid((npp,6),(0,2), colspan=4)
px = np.copy(time) + bjdref
py = np.copy(pixseriessum)
px, xlab, status = kepplot.cleanx(px,logfile,verbose)
py, ylab, status = kepplot.cleany(py,1.0,logfile,verbose)
kepplot.RangeOfPlot(px,py,0.01,False)
kepplot.plot1d(px,py,cadence,lcolor,lwidth,fcolor,falpha,True)
py = np.copy(fluxcor)
py, ylab, status = kepplot.cleany(py,1.0,logfile,verbose)
plt.plot(px,py,marker='.',color='r',linestyle='',markersize=1.0)
kepplot.labels('',re.sub('\)','',re.sub('Flux \(','',ylab)),'k',18)
plt.grid()
plt.setp(ax1.get_xticklabels(), visible=False)
# plot principal components
plt.subplot2grid((npp,6),(l,0), colspan=2)
plt.imshow(eigvec[k],interpolation="nearest",cmap='RdYlBu')
plt.xlim(-0.5,xdim-0.5)
plt.ylim(-0.5,ydim-0.5)
plt.xticks([])
plt.yticks([])
# The last plot on the page that should have the xlabel
if ( k% (npp - 1) == npp - 2 or k == nvecin - 1):
plt.subplot2grid((npp,6),(l,2), colspan=4)
py = np.copy(model[:,k])
kepplot.RangeOfPlot(px,py,0.01,False)
kepplot.plot1d(px,py,cadence,'r',lwidth,'g',falpha,True)
kepplot.labels(xlab,'PC ' + str(k+1),'k',18)
plt.grid()
plt.tight_layout()
l = 1
plt.savefig(re.sub('.png','_%d.png' % repcnt,repname))
repcnt += 1
# The other plots on the page that should have no xlabel
else:
ax2 = plt.subplot2grid((npp,6),(l,2), colspan=4)
py = np.copy(model[:,k])
kepplot.RangeOfPlot(px,py,0.01,False)
kepplot.plot1d(px,py,cadence,'r',lwidth,'g',falpha,True)
kepplot.labels('','PC ' + str(k+1),'k',18)
plt.grid()
plt.setp(ax2.get_xticklabels(), visible=False)
plt.tight_layout()
l=l+1
plt.savefig(re.sub('.png','_%d.png' % repcnt,repname))
# plot style and size
if status == 0 and plotpca:
plt.figure(figsize=[xsize,ysize])
plt.clf()
# plot aperture photometry and PCA corrected data
if status == 0 and plotpca:
ax = kepplot.location([0.06,0.54,0.93,0.43])
px = np.copy(time) + bjdref
py = np.copy(pixseriessum)
px, xlab, status = kepplot.cleanx(px,logfile,verbose)
py, ylab, status = kepplot.cleany(py,1.0,logfile,verbose)
kepplot.RangeOfPlot(px,py,0.01,False)
kepplot.plot1d(px,py,cadence,lcolor,lwidth,fcolor,falpha,True)
py = np.copy(fluxcor)
py, ylab, status = kepplot.cleany(py,1.0,logfile,verbose)
kepplot.plot1d(px,py,cadence,'r',2,fcolor,0.0,True)
plt.setp(plt.gca(),xticklabels=[])
kepplot.labels('',ylab,'k',24)
plt.grid()
# plot aperture photometry and PCA corrected data
if status == 0 and plotpca:
ax = kepplot.location([0.06,0.09,0.93,0.43])
yr = np.array([],'float32')
npc = min([6,nrem])
for i in range(npc-1,-1,-1):
py = pcar[:,i] * c[i]
py, ylab, status = kepplot.cleany(py,1.0,logfile,verbose)
cl = float(i) / (float(npc))
kepplot.plot1d(px,py,cadence,[1.0-cl,0.0,cl],2,fcolor,0.0,True)
yr = np.append(yr,py)
y1 = max(yr)
y2 = -min(yr)
kepplot.RangeOfPlot(px,np.array([-y1,y1,-y2,y2]),0.01,False)
kepplot.labels(xlab,'Principal Components','k',24)
plt.grid()
# save plot to file
if status == 0 and plotpca:
plt.savefig(repname)
# render plot
if status == 0 and plotpca:
plt.ion()
plt.show()
# stop time
if status == 0:
kepmsg.clock('KEPPCA ended at',logfile,verbose)
return
# -----------------------------------------------------------
# Outlier rejection for computing robust mean later
def reject_outliers(data, m):
return data[np.abs(data - np.mean(data)) < m * np.std(data)]
# -----------------------------------------------------------
# Mean absolute deviation function used for fitting the PCA components to the data and subtracting them out
# Could replace with whateve minimization function you want
def mad(data):
return np.mean(np.absolute(data - np.mean(data)))
# -----------------------------------------------------------
# main
if '--shell' in sys.argv:
import argparse
parser = argparse.ArgumentParser(description=('Correct aperture photmetry '
'using target motion'))
parser.add_argument('--shell', action='store_true',
help='Are we running from the shell?')
parser.add_argument('infile', help='Name of input target pixel FITS file',
type=str)
parser.add_argument('maskfile', help='Name of mask defintion ASCII file',
type=str)
parser.add_argument('outfile', help='Name of output FITS file', type=str)
parser.add_argument('--components', default='1-3',
help='Principal components to be removed', type=str)
parser.add_argument('--plotpca', action='store_true',
help='Create PCA plots?')
parser.add_argument('--nmaps', default=10,
help='Number of principal components to include in report',
type=int)
parser.add_argument('--clobber', action='store_true',
help='Overwrite output file?')
parser.add_argument('--verbose', action='store_true',
help='Write to a log file?')
parser.add_argument('--logfile', '-l', help='Name of ascii log file',
default='keppca.log', dest='logfile', type=str)
parser.add_argument('--status', '-e', help='Exit status (0=good)',
default=0, dest='status', type=int)
args = parser.parse_args()
cmdLine = True
keppca(args.infile,args.maskfile,args.outfile,args.components,args.plotpca,
args.nmaps,args.clobber,args.verbose,args.logfile,args.status,cmdLine)
else:
from pyraf import iraf
parfile = iraf.osfn("kepler$keppca.par")
t = iraf.IrafTaskFactory(taskname="keppca", value=parfile, function=keppca)