-
Notifications
You must be signed in to change notification settings - Fork 35
/
Copy pathkeptrial.py
executable file
·278 lines (234 loc) · 9.66 KB
/
keptrial.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
import sys, time, math, re
from astropy.io import fits as pyfits
from matplotlib import pyplot as plt
import numpy as np
import kepio, kepmsg, kepkey, kepfit, kepfunc, kepstat, kepfourier
def keptrial(infile,outfile,datacol,errcol,fmin,fmax,nfreq,method,
ntrials,plot,clobber,verbose,logfile,status,cmdLine=False):
# startup parameters
status = 0
labelsize = 24
ticksize = 16
xsize = 18
ysize = 6
lcolor = '#0000ff'
lwidth = 1.0
fcolor = '#ffff00'
falpha = 0.2
# log the call
hashline = '----------------------------------------------------------------------------'
kepmsg.log(logfile,hashline,verbose)
call = 'KEPTRIAL -- '
call += 'infile='+infile+' '
call += 'outfile='+outfile+' '
call += 'datacol='+datacol+' '
call += 'errcol='+errcol+' '
call += 'fmin='+str(fmin)+' '
call += 'fmax='+str(fmax)+' '
call += 'nfreq='+str(nfreq)+' '
call += 'method='+method+' '
call += 'ntrials='+str(ntrials)+' '
plotit = 'n'
if (plot): plotit = 'y'
call += 'plot='+plotit+ ' '
overwrite = 'n'
if (clobber): overwrite = 'y'
call += 'clobber='+overwrite+ ' '
chatter = 'n'
if (verbose): chatter = 'y'
call += 'verbose='+chatter+' '
call += 'logfile='+logfile
kepmsg.log(logfile,call+'\n',verbose)
# start time
kepmsg.clock('KEPTRIAL started at',logfile,verbose)
# test log file
logfile = kepmsg.test(logfile)
# clobber output file
if clobber: status = kepio.clobber(outfile,logfile,verbose)
if kepio.fileexists(outfile):
message = 'ERROR -- KEPTRIAL: ' + outfile + ' exists. Use clobber=yes'
kepmsg.err(logfile,message,verbose)
status = 1
# open input file
if status == 0:
instr, status = kepio.openfits(infile,'readonly',logfile,verbose)
# fudge non-compliant FITS keywords with no values
if status == 0:
instr = kepkey.emptykeys(instr,file,logfile,verbose)
# input data
if status == 0:
try:
barytime = instr[1].data.field('barytime')
except:
barytime, status = kepio.readfitscol(infile,instr[1].data,'time',logfile,verbose)
if status == 0:
signal, status = kepio.readfitscol(infile,instr[1].data,datacol,logfile,verbose)
if status == 0:
err, status = kepio.readfitscol(infile,instr[1].data,errcol,logfile,verbose)
# remove infinite data from time series
if status == 0:
try:
nanclean = instr[1].header['NANCLEAN']
except:
incols = [barytime, signal, err]
[barytime, signal, err] = kepstat.removeinfinlc(signal, incols)
# frequency steps and Monte Carlo iterations
if status == 0:
deltaf = (fmax - fmin) / nfreq
freq = []; pmax = []; trial = []
for i in range(ntrials):
trial.append(i+1)
# adjust data within the error bars
work1 = kepstat.randarray(signal,err)
# determine FT power
fr, power = kepfourier.ft(barytime,work1,fmin,fmax,deltaf,False)
# determine peak in FT
pmax.append(-1.0e30)
for j in range(len(fr)):
if (power[j] > pmax[-1]):
pmax[-1] = power[j]
f1 = fr[j]
freq.append(f1)
# plot stop-motion histogram
plt.ion()
plt.figure(1,figsize=[7,10])
plt.clf()
plt.axes([0.08,0.08,0.88,0.89])
plt.gca().xaxis.set_major_formatter(plt.ScalarFormatter(useOffset=False))
plt.gca().yaxis.set_major_formatter(plt.ScalarFormatter(useOffset=False))
n,bins,patches = plt.hist(freq,bins=nfreq,range=[fmin,fmax],
align='mid',rwidth=1,ec='#0000ff',
fc='#ffff00',lw=2)
# fit normal distribution to histogram
x = np.zeros(len(bins))
for j in range(1,len(bins)):
x[j] = (bins[j] + bins[j-1]) / 2
pinit = np.array([float(i),freq[-1],deltaf])
if i > 3:
n = np.array(n,dtype='float32')
coeffs, errors, covar, sigma, chi2, dof, fit, plotx, ploty, status = \
kepfit.leastsquare('gauss',pinit,x[1:],n,None,logfile,verbose)
fitfunc = kepfunc.gauss()
f = np.arange(fmin,fmax,(fmax-fmin)/100)
fit = fitfunc(coeffs,f)
plt.plot(f,fit,'r-',linewidth=2)
plt.xlabel(r'Frequency (1/d)', {'color' : 'k'})
plt.ylabel('N', {'color' : 'k'})
plt.xlim(fmin,fmax)
plt.grid()
# render plot
if plot:
plt.ion()
plt.show()
# period results
if status == 0:
p = 1.0 / coeffs[1]
perr = p * coeffs[2] / coeffs[1]
f1 = fmin; f2 = fmax
gotbin = False
for i in range(len(n)):
if n[i] > 0 and not gotbin:
f1 = bins[i]
gotbin = True
gotbin = False
for i in range(len(n)-1,0,-1):
if n[i] > 0 and not gotbin:
f2 = bins[i+1]
gotbin = True
powave, powstdev = kepstat.stdev(pmax)
# print result
if status == 0:
print ' best period: %.10f days (%.7f min)' % (p, p * 1440.0)
print ' 1-sigma period error: %.10f days (%.7f min)' % (perr, perr * 1440.0)
print ' search range: %.10f - %.10f days ' % (1.0 / fmax, 1.0 / fmin)
print ' 100%% confidence range: %.10f - %.10f days ' % (1.0 / f2, 1.0 / f1)
# print ' detection confidence: %.2f sigma' % (powave / powstdev)
print ' number of trials: %d' % ntrials
print ' number of frequency bins: %d' % nfreq
# history keyword in output file
if status == 0:
status = kepkey.history(call,instr[0],outfile,logfile,verbose)
## write output file
if status == 0:
col1 = pyfits.Column(name='TRIAL',format='J',array=trial)
col2 = pyfits.Column(name='FREQUENCY',format='E',unit='1/day',array=freq)
col3 = pyfits.Column(name='POWER',format='E',array=pmax)
cols = pyfits.ColDefs([col1,col2,col3])
instr.append(pyfits.BinTableHDU.from_columns(cols))
try:
instr[-1].header['EXTNAME' ] = ('TRIALS','Extension name')
except:
status = 1
try:
instr[-1].header['SEARCHR1'] = (1.0 / fmax,'Search range lower bound (days)')
except:
status = 1
try:
instr[-1].header['SEARCHR2'] = (1.0 / fmin,'Search range upper bound (days)')
except:
status = 1
try:
instr[-1].header['NFREQ' ] = (nfreq,'Number of frequency bins')
except:
status = 1
try:
instr[-1].header['PERIOD' ] = (p,'Best period (days)')
except:
status = 1
try:
instr[-1].header['PERIODE' ] = (perr,'1-sigma period error (days)')
except:
status = 1
try:
instr[-1].header['CONFIDR1'] = (1.0 / f2,'Trial confidence lower bound (days)')
except:
status = 1
try:
instr[-1].header['CONFIDR2'] = (1.0 / f1,'Trial confidence upper bound (days)')
except:
status = 1
try:
instr[-1].header['NTRIALS' ] = (ntrials,'Number of trials')
except:
status = 1
instr.writeto(outfile)
# close input file
if status == 0:
status = kepio.closefits(instr,logfile,verbose)
## end time
if status == 0:
message = 'KEPTRAIL completed at'
else:
message = '\nKEPTRIAL aborted at'
kepmsg.clock(message,logfile,verbose)
# main
if '--shell' in sys.argv:
import argparse
parser = argparse.ArgumentParser(description='Calculate best period and error estimate from Fourier transform')
parser.add_argument('--shell', action='store_true', help='Are we running from the shell?')
parser.add_argument('infile', help='Name of input file', type=str)
parser.add_argument('outfile', help='Name of FITS file to output', type=str)
parser.add_argument('--datacol', default='SAP_FLUX', help='Name of data column', type=str)
parser.add_argument('--errcol', default='SAP_FLUX_ERR', help='Name of data error column', type=str)
parser.add_argument('--fmin', default=0.1, help='Minimum search frequency [1/day]', type=float)
parser.add_argument('--fmax', default=50., help='Minimum search frequency [1/day]', type=float)
parser.add_argument('--nfreq', default=100, help='Number of frequency intervals', type=int)
parser.add_argument('--method', default='ft',
help='Frequency search method', type=int, choices=['ft'])
parser.add_argument('--ntrials', default=1000, help='Number of search trials', type=int)
parser.add_argument('--plot', action='store_true', help='Plot result?')
parser.add_argument('--clobber', action='store_true', help='Overwrite output file?')
parser.add_argument('--verbose', action='store_true', help='Write to a log file?')
parser.add_argument('--logfile', '-l', help='Name of ascii log file',
default='keptrial.log', dest='logfile', type=str)
parser.add_argument('--status', '-e', help='Exit status (0=good)',
default=0, dest='status', type=int)
args = parser.parse_args()
cmdLine=True
keptrial(args.infile, args.outfile, args.datacol, args.errcol, args.fmin,
args.fmax, args.nfreq, args.method, args.ntrials, args.plot,
args.clobber, args.verbose, args.logfile, args.status, cmdLine)
else:
from pyraf import iraf
parfile = iraf.osfn("kepler$keptrial.par")
t = iraf.IrafTaskFactory(taskname="keptrial", value=parfile, function=keptrial)