-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
48 lines (39 loc) · 1.28 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
"""
MIT License
Copyright (c) 2022 UCSC ERIC Lab
The utilities below used substantial portions of https://github.com/eric-ai-lab/VLMbench.git
"""
import torch
import datetime
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self, name, fmt=':f'):
self.name = name
self.fmt = fmt
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def __str__(self):
fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})'
return fmtstr.format(**self.__dict__)
def sec_to_str(delta):
t = datetime.timedelta(seconds=delta)
s = str(t)
return s.split(".")[0] + "s"
def convert_angle_to_channel(angle_deg, num_rotations):
i = int(angle_deg * num_rotations // 360)
return i
def get_affordance_map_from_formatted_input(x, y, rotation_deg, output_size):
num_rotations = output_size[0]
rotation_channel = convert_angle_to_channel(rotation_deg, num_rotations)
affordance_map = torch.zeros(output_size)
affordance_map[rotation_channel, x, y] = 1
return affordance_map