-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathOT.v
633 lines (579 loc) · 25.4 KB
/
OT.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
(* -*- coq-prog-args: ("-emacs" "-indices-matter" "-type-in-type") -*- *)
Require Export Utf8_core.
Require Import HoTT HoTT.hit.Truncations Connectedness.
Require Import Limit.
Require Import PathGroupoid_ Forall_ Equivalences_ epi_mono reflective_subuniverse modalities OPaths.
Require Import sheaf_base_case.
Require Import sheaf_def_and_thm.
Set Universe Polymorphism.
Global Set Primitive Projections.
Local Open Scope path_scope.
Local Open Scope type_scope.
Context `{ua: Univalence}.
Context `{fs: Funext}.
Local Definition n0 := sheaf_def_and_thm.n0.
Local Definition n := sheaf_def_and_thm.n.
Local Definition mod_nj := sheaf_def_and_thm.mod_nj.
Local Definition nj := sheaf_def_and_thm.nj.
Local Definition j_is_nj := sheaf_def_and_thm.j_is_nj.
Local Definition j_is_nj_unit := sheaf_def_and_thm.j_is_nj_unit.
Local Definition islex_mod_nj := sheaf_def_and_thm.islex_mod_nj.
Local Definition islex_nj := sheaf_def_and_thm.islex_nj.
Local Definition lex_compat := sheaf_def_and_thm.lex_compat.
Local Open Scope Opath_scope.
Module Export OTid.
Private Inductive OTid (A:TruncType (n.+1)) : Type :=
| Ot : A -> (OTid A).
Arguments Ot {A} a.
Axiom Otp : forall {A:TruncType (n.+1)} (a b:A), O nj (BuildTruncType _ (a = b)) -> Ot a = Ot b.
Axiom Otp_1 : forall {A:TruncType (n.+1)} (a:A), Otp a a °1 = 1.
Definition OTid_ind (A:TruncType (n.+1)) (P : OTid A -> Type)
(Ot' : forall a, P (Ot a))
(Otp' : forall a b p, transport P (Otp a b p) (Ot' a) = Ot' b)
(Otp_1' : forall a, transport2 P (Otp_1 a) (Ot' a) = Otp' a a °1)
: forall w, P w
:= fun w => match w with
|Ot a => fun _ => Ot' a
end Otp_1'.
Axiom OTid_ind_beta_Otp : forall (A:TruncType (n.+1)) (P : OTid A -> Type)
(Ot' : forall a, P (Ot a))
(Otp' : forall a b p, transport P (Otp a b p) (Ot' a) = Ot' b)
(Otp_1' : forall a, transport2 P (Otp_1 a) (Ot' a) = Otp' a a °1)
a b p,
apD (OTid_ind A P Ot' Otp' Otp_1') (Otp a b p) = Otp' a b p.
Axiom OTid_ind_beta_Otp_1 : forall (A:TruncType (n.+1)) (P : OTid A -> Type)
(Ot' : forall a, P (Ot a))
(Otp' : forall a b p, transport P (Otp a b p) (Ot' a) = Ot' b)
(Otp_1' : forall a, transport2 P (Otp_1 a) (Ot' a) = Otp' a a °1)
a,
apD02 (OTid_ind A P Ot' Otp' Otp_1') (Otp_1 a) @ (concat_p1 _) @ (Otp_1' a) = OTid_ind_beta_Otp A P Ot' Otp' Otp_1' a a °1.
End OTid.
Definition OTid_rec (A:TruncType (n.+1)) (P:Type)
(Ot': A -> P)
(Otp' : forall (a b:A) (p:O nj (BuildTruncType _ (a=b))), Ot' a = Ot' b)
(Otp_1' : forall a, Otp' a a °1 = 1)
: OTid A -> P.
Proof.
simple refine (OTid_ind _ _ Ot' (fun a b p => transport_const _ _ @ Otp' a b p) _).
intro a.
pose (p:=whiskerR (transport2_const (A:=OTid A) (B:= P) (Otp_1 a) (Ot' a) @ concat_p1 _)^ (Otp' a a °1)). cbn in p.
pose (p1:=(whiskerL (transport2 (λ _ : OTid A, P) (Otp_1 a) (Ot' a)) (Otp_1' a) @ concat_p1 _)^).
exact (p1 @ p).
Defined.
Definition OT_rec_beta_Otp (A:TruncType (n.+1)) (P:Type)
(Ot': A -> P)
(Otp' : forall (a b:A) (p:O nj (BuildTruncType _ (a=b))), Ot' a = Ot' b)
(Otp_1' : forall a, Otp' a a °1 = 1)
a b p
: ap (OTid_rec A P Ot' Otp' Otp_1') (Otp a b p) = Otp' a b p.
Proof.
simple refine (cancelL (transport_const (Otp a b p) (Ot' a)) _ _ _).
pose (e1:= OTid_ind_beta_Otp A (λ _ : OTid A, P) Ot'
(λ (a0 b0 : A) (p1 : O nj (BuildTruncType _ (a0 = b0))),
transport_const (Otp a0 b0 p1) (Ot' a0) @ Otp' a0 b0 p1)
(λ a0 : A,
(whiskerL (transport2 (λ _ : OTid A, P) (Otp_1 a0) (Ot' a0))
(Otp_1' a0) @
concat_p1 (transport2 (λ _ : OTid A, P) (Otp_1 a0) (Ot' a0)))^ @
whiskerR
(transport2_const (Otp_1 a0) (Ot' a0) @
concat_p1 (transport2 (λ _ : OTid A, P) (Otp_1 a0) (Ot' a0)))^
(Otp' a0 a0 °1)) a b p).
pose (e2:= apD_const (OTid_ind A (λ _ : OTid A, P) Ot'
(λ (a0 b0 : A) (p2 : O nj (BuildTruncType _ (a0 = b0))),
transport_const (Otp a0 b0 p2) (Ot' a0) @ Otp' a0 b0 p2)
(λ a0 : A,
(whiskerL (transport2 (λ _ : OTid A, P) (Otp_1 a0) (Ot' a0))
(Otp_1' a0) @
concat_p1 (transport2 (λ _ : OTid A, P) (Otp_1 a0) (Ot' a0)))^ @
whiskerR
(transport2_const (Otp_1 a0) (Ot' a0) @
concat_p1 (transport2 (λ _ : OTid A, P) (Otp_1 a0) (Ot' a0)))^
(Otp' a0 a0 °1))) (Otp a b p)).
exact (e2^@ e1).
Defined.
Definition OT_rec_beta_Otp_1 (A:TruncType (n.+1)) (P:Type)
(Ot': A -> P)
(Otp' : forall (a b:A) (p:O nj (BuildTruncType _ (a=b))), Ot' a = Ot' b)
(Otp_1' : forall a, Otp' a a °1 = 1)
a
: ap02 (OTid_rec A P Ot' Otp' Otp_1') (Otp_1 a) = OT_rec_beta_Otp A P Ot' Otp' Otp_1' a a °1 @ (Otp_1' a).
Proof.
apply (cancel2L (transport2_const (Otp_1 a) (Ot' a))).
apply (cancelL (apD_const (OTid_rec A P Ot' Otp' Otp_1') (Otp a a °1))).
apply (cancelR _ _ (concat_p_pp (q:=transport_const _ _))^).
apply (cancelR _ _ (whiskerL (transport2 _ (Otp_1 a) (Ot' a)) (apD_const (OTid_rec A P Ot' Otp' Otp_1') 1)^)).
simple refine ((apD02_const (OTid_rec A P Ot' Otp' Otp_1') (Otp_1 a) )^ @ _).
apply (cancelR _ _ (concat_p1 (transport2 (λ _ : OTid A, P) (Otp_1 a) (Ot' a)))).
apply (cancelR _ _ ((whiskerL (transport2 (λ _ : OTid A, P) (Otp_1 a) (Ot' a)) (Otp_1' a) @
concat_p1 (transport2 (λ _ : OTid A, P) (Otp_1 a) (Ot' a)))^ @
whiskerR
(transport2_const (Otp_1 a) (Ot' a) @
concat_p1 (transport2 (λ _ : OTid A, P) (Otp_1 a) (Ot' a)))^
(Otp' a a °1))).
Opaque concat_p_pp.
simple refine (OTid_ind_beta_Otp_1 _ _ _ _ _ _ @ _); cbn.
apply (cancelL (apD_const
(OTid_ind A (λ _ : OTid A, P) Ot'
(λ (a0 b0 : A) (p2 : O nj (BuildTruncType _ (a0 = b0))),
transport_const (Otp a0 b0 p2) (Ot' a0) @ Otp' a0 b0 p2)
(λ a0 : A,
(whiskerL (transport2 (λ _ : OTid A, P) (Otp_1 a0) (Ot' a0))
(Otp_1' a0) @
concat_p1
(transport2 (λ _ : OTid A, P) (Otp_1 a0) (Ot' a0)))^ @
whiskerR
(transport2_const (Otp_1 a0) (Ot' a0) @
concat_p1
(transport2 (λ _ : OTid A, P) (Otp_1 a0) (Ot' a0)))^
(Otp' a0 a0 °1))) (Otp a a °1))^).
apply (@equiv_inj _ _ _ (isequiv_cancelL (transport_const (Otp a a °1) (Ot' a))
(ap (OTid_rec A P Ot' Otp' Otp_1') (Otp a a °1))
(Otp' a a °1))).
path_via (OT_rec_beta_Otp A P Ot' Otp' Otp_1' a a °1).
apply (@equiv_inj _ _ _ (isequiv_inverse _ (feq:= isequiv_cancelL (transport_const (Otp a a °1) (Ot' a))
(ap (OTid_rec A P Ot' Otp' Otp_1') (Otp a a °1))
(Otp' a a °1)))).
rewrite eissect. cbn. repeat rewrite concat_pp_p.
rewrite concat_V_pp.
rewrite !inv_pp. repeat rewrite concat_p_pp. rewrite concat_pp_V.
rewrite whiskerR_pp.
rewrite whiskerR_RV.
rewrite <- (apD (λ u, (whiskerR (concat_p1 (transport2 (λ _ : OTid A, P) (Otp_1 a) (Ot' a)))
u)) (Otp_1' a)^).
cbn. rewrite transport_paths_FlFr. cbn. rewrite !ap_V; rewrite !inv_V.
rewrite !concat_ap_pFq. rewrite ap_idmap. rewrite !inv_pp; rewrite !inv_V.
rewrite !concat_p_pp. rewrite concat_pV_p. rewrite (concat_p1 ((transport2_const (Otp_1 a) (Ot' a) @@
(OT_rec_beta_Otp A P Ot' Otp' Otp_1' a a °1 @ Otp_1' a)) @
(concat_p_pp )^)).
rewrite whiskerR_RV.
apply moveL_pV.
unfold whiskerR at 1, whiskerL at 1.
rewrite concat_concat2. cbn.
rewrite (concat_1p (transport2_const (Otp_1 a) (Ot' a))).
rewrite (concat_p1 (OT_rec_beta_Otp A P Ot' Otp' Otp_1' a a °1)).
simple refine ((concat_p1 _)^ @ _). rewrite !concat_pp_p.
match goal with
|[|- _ = (?P @@ ?Q) @ ?R] => path_via (((P @ 1) @@ Q) @ R)
end.
2: rewrite (concat_p1 (transport2_const (Otp_1 a) (Ot' a))); reflexivity.
rewrite <- concat_concat2.
rewrite !concat_pp_p. apply whiskerL.
rewrite !concat_p_pp. apply moveL_pV. rewrite concat_1p.
rewrite !concat_pp_p. simple refine ((concat_p1 _)^@ _).
apply whiskerL. cbn.
pose (rew:= @triangulator _ _ _ _ (transport2 (λ _ : OTid A, P) (Otp_1 a) (Ot' a)) 1).
apply moveL_Vp in rew. rewrite rew; clear rew. cbn.
rewrite inv_pp. cbn. rewrite concat_1p. symmetry; apply concat_pV.
Qed.
Lemma path_OT_lemma (A:(n.+1)-Type) (B:Type)
(α β :OTid A -> B)
(eq1: α o Ot == β o Ot)
(eq2: forall a b p, eq1 a @ ap β (Otp a b p) = ap α (Otp a b p) @ eq1 b)
(eq3: forall a, (eq2 a a °1)
= transport (λ U, eq1 a @ ap β U = ap α U @ eq1 a) (Otp_1 a)^ (concat_p1 (eq1 a) @ (concat_1p (eq1 a))^))
: ∀ a : A,
transport2 (λ w : OTid A, α w = β w) (Otp_1 a) (eq1 a) =
transport_paths_FlFr (Otp a a °1) (eq1 a) @
(concat_pp_p (p:=(ap α (Otp a a °1))^)
(q:=eq1 a)
(r:=ap β (Otp a a °1))
@ cancelL (ap α (Otp a a °1))
((ap α (Otp a a °1))^ @ (eq1 a @ ap β (Otp a a °1)))
(eq1 a)
(concat_p_Vp (ap α (Otp a a °1)) (eq1 a @ ap β (Otp a a °1)) @ eq2 a a °1)).
Proof.
intro a; cbn.
rewrite eq3; clear eq3. clear eq2. generalize (eq1 a). intro p. clear eq1.
unfold cancelL.
pose (rew :=@transport_paths_FlFr _ _ (λ U:Ot a = Ot a, p @ ap β U) (λ U:Ot a = Ot a, ap α U @ p)).
rewrite rew; clear rew.
cbn.
repeat rewrite concat_pp_p.
rewrite ap_V. rewrite inv_V.
repeat rewrite whiskerL_pp.
symmetry.
match goal with
|[|- ?PP1 @ (?PP2 @ ((?PP3 @ (?PP4 @ ((?PP5 @ (?PP6 @ ?PP7)) @ ?PP8)) @ ?PP9))) = ?PP10] =>
set (P1 := PP1);
set (P2 := PP2);
set (P3 := PP3);
set (P4 := PP4);
set (P5 := PP5);
set (P6 := PP6);
set (P7 := PP7);
set (P8 := PP8);
set (P9 := PP9);
set (P10 := PP10)
end.
rewrite (@concat_pp_p _ _ _ _ _ P3 (P4 @ ((P5 @ (P6 @ P7)) @ P8)) P9).
rewrite (@concat_pp_p _ _ _ _ _ P4 ((P5 @ (P6 @ P7)) @ P8) P9).
repeat rewrite (@concat_pp_p _ _ _ _ _ P5 _ _).
repeat rewrite (@concat_pp_p _ _ _ _ _ P6 _ _).
repeat rewrite (@concat_pp_p _ _ _ _ _ P7 _ _).
unfold P1; clear P1.
match goal with
|[|- ?ff _ p @ _ = _]
=> rewrite <- (apD (λ U, ff U p) (Otp_1 a)^)
end.
cbn.
rewrite (transport_paths_FlFr (f:= λ U, transport (λ x : OTid A, α x = β x) U p)
(g:= λ U, ((ap α U)^ @ p) @ ap β U)).
rewrite ap_V. rewrite inv_V.
unfold P10. rewrite transport2_is_ap.
repeat rewrite concat_pp_p.
match goal with
|[|- _ = ?XX] => path_via (XX @ 1)
end.
apply whiskerL.
rewrite ap_V.
do 3 apply moveR_Vp.
match goal with
|[|- _ = ?PP11 @ (?PP12 @ ?PP13)]
=> set (P11 := PP11); set (P12 := PP12); set (P13 := PP13); cbn in *
end.
unfold P3; clear P3.
rewrite <- (apD (λ U, (concat_V_pp (ap α U)
((ap α U)^ @ (p @ ap β U)))^) (Otp_1 a)^).
cbn.
rewrite (transport_paths_FlFr (f:=(λ U : Ot a = Ot a, (ap α U)^ @ (p @ ap β U)))
(g:=λ U : Ot a = Ot a, (ap α U)^ @ (ap α U @ ((ap α U)^ @ (p @ ap β U))))).
rewrite ap_V. rewrite inv_V.
match goal with
|[|- _ @ (((?PP31 @ ?PP32) @ ?PP33) @ _) = _] =>
set (P31 := PP31); set (P32 := PP32); set (P33 := PP33); cbn in *
end.
repeat rewrite (@concat_pp_p _ _ _ _ _ P31).
repeat rewrite (@concat_pp_p _ _ _ _ _ P32).
rewrite (@concat_p_pp _ _ _ _ _ P2 P31 _).
assert (rr: P11 @ (concat_pp_p) = (P2 @ P31)).
{ unfold P2, P31, P11.
rewrite concat_ap_FpFq_pp_p. rewrite concat_ap_FpFq_p_pp.
unfold whiskerR, whiskerL.
repeat rewrite concat_p_pp. apply whiskerR.
reflexivity. }
destruct rr.
rewrite (@concat_pp_p _ _ _ _ _ P11).
apply whiskerL.
match goal with |[|- ?PP1 @ _ = _] => set (P1 := PP1) end.
clear P10; clear P11.
do 2 apply moveR_Mp.
repeat rewrite (concat_p_pp (r:=P9)). apply moveR_pM.
unfold P9.
rewrite <- (apD (λ U, (concat_V_pp (ap α U) p)^) (Otp_1 a)^). simpl.
rewrite (transport_paths_Fr (g:= λ U, (ap α U)^ @ (ap α U @ p))).
clear P2.
repeat rewrite (concat_p_pp (r:=P8)).
apply moveR_pM.
set (P2 := ap (λ U : Ot a = Ot a, (ap α U)^ @ (ap α U @ p)) (Otp_1 a)^).
unfold P8.
rewrite <- (apD (λ U, whiskerL (z:=β (Ot a)) (q:= 1 @ p) (r := ap α (Otp a a °1) @ p) (ap α U)^) (Otp_1 a)^).
rewrite transport_arrow.
simpl.
rewrite transport_const.
rewrite transport_paths_FlFr.
do 2 rewrite inv_pp.
repeat rewrite ap_V. rewrite whiskerL_LV. repeat rewrite inv_V.
match goal with
|[|- _ = _ @ (?PP16 @ (?PP15 @ ?PP14)) ] =>
set (P14 := PP14); set (P15 := PP15); set (P16 := PP16); simpl in P14, P15, P16
end.
unfold P4.
rewrite <- (apD (λ U, (whiskerL (ap α U)^
(concat_p_Vp (ap α U) (p @ ap β U)))) (Otp_1 a)^).
simpl.
rewrite transport_paths_FlFr. simpl.
rewrite ap_V. rewrite inv_V.
match goal with
|[|- _ @ (((?PP17 @ ?PP18) @ ?PP19) @ _) = _]
=> set (P17:=PP17); set (P18 := PP18); set (P19 := PP19)
end.
clear P4. clear P8. clear P9. clear P31.
unfold P6, P7; clear P6; clear P7.
rewrite <- (apD (λ U, (whiskerL (ap α U)^ (concat_p1 p) @
whiskerL (ap α U)^ (concat_1p p)^)) (Otp_1 a)^).
simpl.
rewrite transport_paths_FlFr.
rewrite ap_V. rewrite inv_V.
match goal with
|[|- _ @ (_ @ (_ @ ((?PP6 @ ?PP7) @ ?PP8))) = _]
=> set (P6:=PP6); set (P7:=PP7); set (P8:=PP8)
end.
unfold P5; clear P5.
rewrite <- (apD (λ U, whiskerL (q:=p @ ap β (Otp a a °1)) (r:=p@1) (ap α U)^) (Otp_1 a)^).
rewrite transport_arrow.
rewrite transport_const. rewrite transport_paths_FlFr.
simpl.
rewrite ap_V. rewrite inv_V.
repeat rewrite (concat_p_pp (r:=P8)).
repeat rewrite (concat_p_pp (r:=P14)).
unfold P8, P14. repeat rewrite ap_V. apply whiskerR. clear P8; clear P14.
repeat rewrite (concat_pp_p (p:=P17)).
rewrite <- (concat_pp_p (p:=P33) (q:=P17)).
unfold P33, P17; clear P33; clear P17.
rewrite ap_V. rewrite concat_Vp.
match goal with |[|- 1 @ ?XX = _] => rewrite (concat_1p XX) end.
pose (p1 := whiskerL_1p (concat_p_Vp 1 (p @ 1))). simpl in p1.
apply moveL_pV in p1.
apply moveL_Mp in p1.
unfold P18; clear P18; rewrite p1; clear p1.
unfold P15; clear P15.
pose (p1 := whiskerL_1p (ap (λ U : Ot a = Ot a, ap α U @ p) (Otp_1 a))). simpl in p1.
apply moveL_pV in p1.
apply moveL_Mp in p1.
rewrite p1; clear p1.
unfold P7; clear P7.
pose (p1 := whiskerL_1p (concat_p1 p)). simpl in p1.
apply moveL_pV in p1.
apply moveL_Mp in p1.
rewrite p1; clear p1.
pose (p1 := whiskerL_1p (concat_1p p)^). simpl in p1.
apply moveL_pV in p1.
apply moveL_Mp in p1.
rewrite p1; clear p1.
pose (p1 := whiskerL_1p (ap (λ U : Ot a = Ot a, p @ ap β U) (Otp_1 a))). simpl in p1.
apply moveL_pV in p1.
apply moveL_Mp in p1.
rewrite p1; clear p1.
repeat rewrite concat_pp_p.
unfold P19, P6, P32, P1, P12, P13, P2, P16.
clear P19; clear P6; clear P32; clear P1; clear P12; clear P13; clear P2; clear P16.
(* rewrite inv_V. *)
rewrite (concat_p1 (concat_1p p)).
match goal with
|[|- ?PP1 @ (?PP2 @ (?PP3 @ (?PP4 @ (?PP5 @ (?PP6 @ (?PP7 @ (?PP8 @ (?PP9 @ (?PP10 @ (?PP11 @ (?PP12 @ (?PP13 @ (?PP14 @ (?PP15 @ (?PP16)))))))))))))))
=
?PP17 @ (?PP18 @ ((?PP19 @ ?PP20) @ ((?PP21 @ ?PP22) @ (?PP23 @ (?PP24 @ (?PP25 @ ?PP26))))))] =>
set (P1 := PP1);
set (P2 := PP2);
set (P3 := PP3);
set (P4 := PP4);
set (P5 := PP5);
set (P6 := PP6);
set (P7 := PP7);
set (P8 := PP8);
set (P9 := PP9);
set (P10 := PP10);
set (P11 := PP11);
set (P12 := PP12);
set (P13 := PP13);
set (P14 := PP14);
set (P15 := PP15);
set (P16 := PP16);
set (P17 := PP17);
set (P18 := PP18);
set (P19 := PP19);
set (P20 := PP20);
set (P21 := PP21);
set (P22 := PP22);
set (P23 := PP23);
set (P24 := PP24);
set (P25 := PP25);
set (P26 := PP26)
end.
repeat rewrite (concat_p_pp (r:=P16)).
apply whiskerR. clear P16.
assert (rr : 1 = P14 @ P13).
symmetry. unfold P13, P14. apply concat_pV.
destruct rr. rewrite (concat_p1 P13).
clear P15. clear P20. simpl in *.
assert (rr: P1 @ (P2 @ P3) = P17).
{ unfold P1, P2, P3, P17.
clear P1; clear P2; clear P17;
clear P3; clear P4; clear P5; clear P6; clear P7; clear P8; clear P9
; clear P10; clear P11; clear P12; clear P13; clear P14; clear P18; clear P19
; clear P21; clear P22; clear P23; clear P24; clear P25; clear P26.
destruct p. reflexivity. }
destruct rr.
repeat rewrite concat_pp_p.
do 3 apply whiskerL.
clear P1; clear P2; clear P26.
assert (rr: P18 @ (P19 @ P14) = P11 @ P12).
{ unfold P18, P19, P14, P11, P12. cbn.
clear P3; clear P4; clear P5; clear P6; clear P7; clear P8; clear P9
; clear P10; clear P11; clear P12; clear P13; clear P14; clear P18; clear P19
; clear P21; clear P22; clear P23; clear P24; clear P25.
destruct p; reflexivity. }
rewrite (concat_p_pp (q:= (P19 @ P14))).
rewrite rr; clear rr.
rewrite (concat_p_pp (p:=P9)).
unfold P9, P10. rewrite concat_Vp. rewrite (concat_1p (P11 @ (P12 @ P13))).
clear P9; clear P10.
rewrite (concat_p_pp (p:=P3)).
unfold P3 at 1, P11 at 1. rewrite concat_Vp.
rewrite (concat_1p (P12 @ P13)).
clear P3.
assert (rr: P4 @ (P5 @ (P6 @ P7)) = P11).
{ repeat rewrite (concat_p_pp (r:=P7)).
apply moveR_pM.
unfold P4, P5, P6, P7, P11.
clear P4; clear P5; clear P6; clear P7; clear P8
; clear P11; clear P12; clear P13; clear P14; clear P18; clear P19
; clear P21; clear P22; clear P23; clear P24; clear P25.
rewrite <- (ap_V (λ U : Ot a = Ot a, p @ ap β U) (Otp_1 a)).
rewrite ap_V. apply moveR_Vp.
rewrite <- (apD (λ U, concat_1p (p @ ap β U)) (Otp_1 a)^).
simpl.
rewrite transport_paths_FlFr. simpl.
rewrite ap_V. rewrite inv_V.
repeat rewrite concat_p_pp.
match goal with
|[|- ?P1 @ (?P2 @ ?P3) = _]
=> rewrite (concat_p_pp (p:=P1))
end. apply whiskerR.
match goal with
|[|- ?P1 @ (?P2 @ ?P3) = _]
=> rewrite (concat_p_pp (p:=P1))
end. apply whiskerR.
rewrite concat_ap_Fpq.
unfold whiskerR.
rewrite concat_ap_pFq. unfold whiskerL.
rewrite concat_concat2. rewrite (concat_p1 (ap (λ u : Ot a = Ot a, (ap α u)^) (Otp_1 a))).
rewrite (concat_1p (ap (λ u : Ot a = Ot a, p @ ap β u) (Otp_1 a))).
rewrite concat_ap_FpFq_p_pp.
unfold whiskerR, whiskerL.
rewrite concat_pp_p. apply moveL_Mp.
rewrite concat2_inv.
rewrite concat_concat2.
rewrite concat_Vp.
rewrite (concat_1p (ap (λ u : Ot a = Ot a, p @ ap β u) (Otp_1 a))).
rewrite concat_ap_pFq. unfold whiskerL.
rewrite (concat2_p_pp). reflexivity. }
rewrite (concat_pp_p (p:=P11)).
destruct rr.
rewrite (concat_pp_p (p:=P4)); apply whiskerL.
rewrite (concat_pp_p (p:=P5)); apply whiskerL.
rewrite (concat_pp_p (p:=P6)); apply whiskerL.
do 2 apply whiskerL.
clear P4; clear P5; clear P6; clear P7; clear P8; clear P12.
clear P14; clear P18; clear P19.
unfold P13, P21, P22, P23, P24, P25.
clear P13; clear P21; clear P22; clear P23; clear P24; clear P25.
rewrite <- (apD (λ U, concat_1p (ap α U @ p)) (Otp_1 a)^).
rewrite transport_paths_FlFr. simpl.
repeat rewrite ap_V. rewrite inv_V.
repeat rewrite concat_pp_p. rewrite concat_Vp.
rewrite (concat_p1).
apply moveL_Vp.
repeat rewrite (concat_p_pp (r:=(concat_1p (1 @ p)))). apply moveL_pM.
match goal with
|[|- ?XX = _] => assert (rr: 1 = XX)
end.
{ destruct p. reflexivity. }
destruct rr.
apply moveL_Vp. rewrite concat_p1.
rewrite concat_ap_Fpq.
rewrite concat_ap_pFq. unfold whiskerR, whiskerL.
rewrite concat_concat2.
rewrite concat_p1, (concat_1p (ap (λ u : Ot a = Ot a, ap α u @ p) (Otp_1 a))).
rewrite concat_ap_FFpq_p_pp. rewrite concat_ap_Fpq.
unfold whiskerR. simpl.
rewrite <- concat2_p_pp. reflexivity.
Qed.
Lemma path_OT (A:(n.+1)-Type) (B:Type)
(α β :OTid A -> B)
(eq1: α o Ot == β o Ot)
(eq2: forall a b p, eq1 a @ ap β (Otp a b p) = ap α (Otp a b p) @ eq1 b)
(eq3: forall a, (eq2 a a °1)
= transport (λ U, eq1 a @ ap β U = ap α U @ eq1 a) (Otp_1 a)^ (concat_p1 (eq1 a) @ (concat_1p (eq1 a))^))
: α == β.
Proof.
simple refine (OTid_ind _ _ _ _ _).
- exact eq1.
- intros a b p.
simple refine (transport_paths_FlFr _ _ @ _).
etransitivity; try apply concat_pp_p.
apply (cancelL (ap α (Otp a b p))).
etransitivity; try apply eq2.
apply concat_p_Vp.
- rapply path_OT_lemma. exact eq3.
Defined.
Lemma path_OT_compute (A:(n.+1)-Type) (B:Type)
(α β :OTid A -> B)
(eq1: α o Ot == β o Ot)
(eq2: forall a b p, eq1 a @ ap β (Otp a b p) = ap α (Otp a b p) @ eq1 b)
(eq3: forall a, (eq2 a a °1)
= transport (λ U, eq1 a @ ap β U = ap α U @ eq1 a) (Otp_1 a)^ (concat_p1 (eq1 a) @ (concat_1p (eq1 a))^)) x
: path_OT A B α β eq1 eq2 eq3 (Ot x) = eq1 x.
Proof.
reflexivity.
Defined.
Lemma equiv_ap_OTid_fun {X Y:TruncType (n.+1)} (e: X -> Y)
: OTid X -> OTid Y.
Proof.
simple refine (OTid_rec _ _ _ _ _).
intro x; apply Ot; exact (e x).
intros a b p; cbn. apply Otp.
exact (Oap e p).
intro a; cbn. etransitivity; [apply (ap (Otp (e a) (e a)) (Oap_1 e))| apply Otp_1].
Defined.
Lemma isequiv_ap_OTid_path {X Y:TruncType (n.+1)} (e: X = Y :> Type)
: IsEquiv (equiv_ap_OTid_fun (equiv_path _ _ e)).
Proof.
destruct X as [X tX], Y as [Y tY]; cbn in *.
destruct e; cbn in *.
assert (r: tX = tY) by apply path_ishprop. destruct r.
simple refine (isequiv_homotopic idmap _).
simple refine (path_OT _ _ _ _ _ _ _).
- intro x; reflexivity.
- intros a b p; cbn.
simple refine (concat_1p _ @ _ @ (concat_p1 _)^).
unfold equiv_ap_OTid_fun. cbn.
simple refine (OT_rec_beta_Otp _ _ _ _ _ _ _ _ @ _ @ (ap_idmap _)^).
cbn.
apply ap.
apply Oap_idmap.
- intro a; cbn. rewrite transport_paths_FlFr.
rewrite concat_ap_Fpq; rewrite concat_ap_pFq.
apply moveR_pV. do 3 rewrite concat_pp_p.
pose (rew:= whiskerR_p1 (ap (ap idmap) (Otp_1 a)^)).
rewrite concat_pp_p in rew; apply moveL_Vp in rew; rewrite rew; clear rew.
cbn. apply moveL_Vp. do 4 rewrite concat_p_pp.
pose (rew:= whiskerL_1p (ap (ap (equiv_ap_OTid_fun idmap)) (Otp_1 a)^)).
rewrite concat_pp_p in rew; apply moveL_Vp in rew; rewrite rew; clear rew.
cbn. rewrite !concat_1p. rewrite !ap_V.
rewrite <- (ap02_is_ap _ _ (equiv_ap_OTid_fun idmap) _ _ _ _ (Otp_1 a)).
unfold equiv_ap_OTid_fun. cbn.
rewrite OT_rec_beta_Otp_1. rewrite inv_pp. rewrite concat_pV_p.
rewrite <- (apD (λ U, ap_idmap U) (Otp_1 a)^).
rewrite transport_paths_FlFr. cbn. rewrite !ap_V.
rewrite (ap_idmap (Otp_1 a)). rewrite concat_p1. rewrite !inv_pp.
rewrite !inv_V. rewrite concat_p_pp. simple refine (_ @ concat_1p _). apply whiskerR.
apply moveR_pM. rewrite concat_1p. simple refine (_ @ concat_p1 _).
rewrite !concat_pp_p. apply whiskerL.
rewrite <- ap_V. rewrite <- ap_pp.
path_via ((ap (Otp a a) (idpath °1))).
apply ap. apply moveR_Vp. simple refine (_ @ (concat_p1 _)^).
apply (Oap_idmap_Oap_1 a).
Qed.
Lemma isequiv_ap_OTid `{ua: Univalence} {X Y:TruncType (n.+1)} (e: X <~> Y)
: IsEquiv (equiv_ap_OTid_fun e).
Proof.
simple refine (isequiv_homotopic (equiv_ap_OTid_fun (equiv_path _ _ (path_universe_uncurried e))) _).
exact ua.
apply (isequiv_ap_OTid_path (path_universe_uncurried e)).
rewrite equiv_path_path_universe_uncurried. intro; reflexivity.
Qed.
Lemma equiv_ap_OTid {X Y:TruncType (n.+1)} (e: X <~> Y)
: OTid X <~> OTid Y.
Proof.
exists (equiv_ap_OTid_fun e).
apply isequiv_ap_OTid.
Defined.
Section OT_telescope.
Context `{ua: Univalence}.
Context `{fs: Funext}.
Definition OTtelescope_aux (X:TruncType (n.+1)) (m: nat)
: TruncType (n.+1).
induction m as [|m U].
- exact X.
- exact (BuildTruncType _ (Trunc (n.+1) (OTid U))).
Defined.
Definition OTtelescope (X:TruncType (n.+1))
: diagram mappingtelescope_graph.
simple refine (Build_diagram _ _ _).
- intros m. exact (OTtelescope_aux X m).
- intros n m q; destruct q; simpl.
intro x. apply tr. apply Ot. exact x.
Defined.
End OT_telescope.