-
Notifications
You must be signed in to change notification settings - Fork 71
/
Copy pathSynthesis.py
56 lines (43 loc) · 1.7 KB
/
Synthesis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
from utils import *
from Data import get_eval_data
from Hyperparameters import Hyperparameters as hp
import torch
from scipy.io.wavfile import write
from Network import *
import sys
import os
# import cv2
device = torch.device(hp.device)
def synthesis(log_number, epoch):
log_dir = hp.log_dir.format(log_number)
model = Tacotron().to(device)
model_path = log_dir + '/state/epoch{}.pt'.format(epoch)
# model_path = '../../log/train9/state/epoch1600.pt'
model.load_state_dict(torch.load(model_path))
model.eval()
ref_wavs = ['ref_wav/nannan.wav', 'ref_wav/xiaofeng.wav', 'ref_wav/donaldduck.wav']
speakers = ['nannan', 'xiaofeng', 'donaldduck']
for ref_wav, speaker in zip(ref_wavs, speakers):
text, GO, ref_mels = get_eval_data(hp.eval_text, ref_wav)
text = text.to(device)
GO = GO.to(device)
ref_mels = ref_mels.to(device)
mel_hat, mag_hat, attn = model(text, GO, ref_mels)
mag_hat = mag_hat.squeeze().detach().cpu().numpy()
attn = attn.squeeze().detach().cpu().numpy()
plt.imshow(attn.T, cmap='hot', interpolation='nearest')
plt.xlabel('Decoder Steps')
plt.ylabel('Encoder Steps')
fig_path = os.path.join(log_dir, 'test_wav/epoch{}-{}.png'.format(epoch, speaker))
plt.savefig(fig_path, format='png')
wav_hat = spectrogram2wav(mag_hat)
wav_path = os.path.join(log_dir, 'test_wav/epoch{}-{}.wav'.format(epoch, speaker))
write(wav_path, hp.sr, wav_hat)
print('synthesis ' + wav_path)
if __name__ == '__main__':
argv = sys.argv
log_number = int(argv[1])
epoch = int(argv[2])
print('start synthesis')
synthesis(log_number, epoch)
print('Done')