-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPediatric_Perimeter.m
237 lines (203 loc) · 8.42 KB
/
Pediatric_Perimeter.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
%% Pediatric Perimeter Pupil Segmentation Algorithm
% Author: Indranil Chandra
% The algorithm was developed during MIT-LVPEI "Engineering the Eye
% Workshop" - 2016 at Srujana Innovation Center, Hyderabad
%%
close all;
clear all;
clc;
elapsedTime = zeros(1,11);
IPD = zeros(1,11);
Skew = zeros(1,11);
Angle = zeros(1,11);
baseIPD = 52.2251;
baseAngle = radtodeg(atan( 39.5 - 23.30 / 32 - 81.65 ));
% Select the minimum size above which nose will be detected
noseThreshold = 1; % Default = 16
for frameNum = 1:1:11
imageName = strcat('testImage',num2str(frameNum),'.png');
frame = imread(imageName);
% figure, imshow(frame),
% title('Original Image');
% impixelinfo;
tic;
% Detect Face
faceDetect = vision.CascadeObjectDetector;
BB_face_all = step(faceDetect,frame);
BB_face = zeros(1,4);
[faceCount, cnt1] = size(BB_face_all);
caption = 'Detected Face Location';
if isempty(BB_face_all)
BB_face(1,1) = floor((10/100)*size(frame,1));
BB_face(1,2) = floor((10/100)*size(frame,2));
BB_face(1,3) = size(frame,1) - floor((10/100)*size(frame,1));
BB_face(1,4) = size(frame,2) - floor((10/100)*size(frame,2));
% figure, imshow(frame),
% title('No Face Detected');
% impixelinfo;
I = imcrop(frame,BB_face(1,:));
grayImage = rgb2gray(I);
caption = 'Face not Detected';
else
if faceCount > 1 %Discard faces detected in the background
% figure, imshow(frame),
% title('All Detected Faces');
% impixelinfo;
% for i=1:1:size(BB_face_all,1)
% rectangle('Position',BB_face_all(i,:),'LineWidth',4,'LineStyle','-','EdgeColor','r');
% end
caption = 'Multiple Faces Detected: Most Prominent selected';
Area = zeros(size(BB_face_all,1));
for i = 1:size(BB_face_all,1)
l = BB_face_all(i,3);
b = BB_face_all(i,4);
Area(i,1) = l*b;
end
maxArea = max(Area);
for i = 1:1:size(BB_face_all,1)
if (Area(i,1)==maxArea(1))
for k = 1:4
BB_face(1,k) = BB_face_all(i,k);
end
end
end
BB_face(1,1) = BB_face(1,1) + floor((15/100)*BB_face(1,3));
BB_face(1,2) = BB_face(1,2) + floor((15/100)*BB_face(1,4));
BB_face(1,3) = BB_face(1,3) - floor((15/100)*BB_face(1,3));
BB_face(1,4) = BB_face(1,4) - floor((15/100)*BB_face(1,4));
% figure, imshow(frame),
% title('Most Dominant Face');
% impixelinfo;
% rectangle('Position',BB_face(1,:),'LineWidth',4,'LineStyle','-','EdgeColor','b');
else
BB_face(1,1) = BB_face_all(1,1) + floor((15/100)*BB_face_all(1,3));
BB_face(1,2) = BB_face_all(1,2) + floor((15/100)*BB_face_all(1,4));
BB_face(1,3) = BB_face_all(1,3) - floor((15/100)*BB_face_all(1,3));
BB_face(1,4) = BB_face_all(1,4) - floor((15/100)*BB_face_all(1,4));
% figure, imshow(frame),
% title('Detected Face');
% impixelinfo;
% rectangle('Position',BB_face(1,:),'LineWidth',4,'LineStyle','-','EdgeColor','b');
end
I = imcrop(frame,BB_face(1,:));
grayImage = rgb2gray(I);
% -------------------------------------------------------------------------
%To detect Nose
noseDetect = vision.CascadeObjectDetector('Nose','MergeThreshold',noseThreshold);
BB_nose1=step(noseDetect,grayImage);
Area = zeros(size(BB_nose1,1));
for i = 1:size(BB_nose1,1)
l = BB_nose1(i,3);
b = BB_nose1(i,4);
Area(i,1) = l*b;
end
maxArea = max(Area);
length = size(BB_nose1,1);
j=1;
for i = 1:length
if (Area(i,1)==maxArea(1))
for k = 1:4
BB_nose(j,k) = BB_nose1(i,k);
end
end
end
end
% -------------------------------------------------------------------------
f = fastRadialSymmetryTransform(grayImage, 7, 2, 0.01);
% figure, subplot(2,1,1);
% imshow(grayImage, []);
% subplot(2,1,2);
% imshow(f,[]),
% impixelinfo;
level = graythresh(f);
binaryMask= im2bw(f,level);
% figure, imshow(binaryMask), title('Binary Mask');
binaryMaskNew = binaryMask;
CC = bwconncomp(binaryMaskNew);
numPixels = cellfun(@numel,CC.PixelIdxList);
[connComps,idx] = sort(numPixels,'descend');
binaryMask(CC.PixelIdxList{idx(1)}) = 0;
binaryMask(CC.PixelIdxList{idx(2)}) = 0;
filteredImage = imsubtract(binaryMaskNew,binaryMask);
[labels, num] = bwlabel(filteredImage);
% figure, imshow(grayImage), title('Probable Pupil Locations'), hold on,
for cnt = 1:1:num
s = regionprops(labels, 'BoundingBox', 'Area', 'Centroid','MajorAxisLength','MinorAxisLength');
% rectangle('position', s(cnt).BoundingBox,'EdgeColor','b','linewidth',2);
end
% impixelinfo;
edgeImage = edge(grayImage, 'Canny');
% figure, imshow(edgeImage), title('Canny Edge Image'), hold on;
% impixelinfo;
pupilCenters(1,1) = s(1).Centroid(1);
pupilCenters(1,2) = s(1).Centroid(2);
pupilCenters(2,1) = s(2).Centroid(1);
pupilCenters(2,2) = s(2).Centroid(2);
leftBound1 = floor(s(1).BoundingBox(1) - 10);
rightBound1 = floor(s(1).BoundingBox(1) + s(1).BoundingBox(3) + 10);
upBound1 = floor(s(1).BoundingBox(2) - 10);
downBound1 = floor(s(1).BoundingBox(2) + s(1).BoundingBox(4) + 10);
leftBound2 = floor(s(2).BoundingBox(1) - 10);
rightBound2 = floor(s(2).BoundingBox(1) + s(2).BoundingBox(3) + 10);
upBound2 = floor(s(2).BoundingBox(2) - 10);
downBound2 = floor(s(2).BoundingBox(2) + s(2).BoundingBox(4) + 10);
edgeMask = zeros(size(edgeImage));
for i = leftBound1:1:rightBound1
for j = upBound1:1:downBound1
edgeMask(j,i) = 1;
end
end
for i = leftBound2:1:rightBound2
for j = upBound2:1:downBound2
edgeMask(j,i) = 1;
end
end
% figure, imshow(edgeMask), title('Edge Mask'), hold on;
% impixelinfo;
edgeImageMask = zeros(size(edgeImage));
for i = 1:1:size(edgeImage,1)
for j = 1:1:size(edgeImage,2)
edgeImageMask(i,j) = edgeMask(i,j) .* edgeImage(i,j);
end
end
% figure, imshow(edgeImageMask), title('Edge Image Mask'), hold on;
% impixelinfo;
mask = zeros(size(edgeImageMask));
finalImage = zeros(size(edgeImage));
for i = 1:1:size(edgeImageMask,1)
for j = 1:1:size(edgeImageMask,2)
if edgeImageMask(i,j) == 1
mask(i,j) = 255;
finalImage(i,j) = grayImage(i,j) + mask(i,j);
if finalImage(i,j) > 255
finalImage(i,j) = 255;
end
end
end
end
figure, subplot(1,2,1), imshow(grayImage), title(caption);
if (~isempty(BB_face_all) && ~isempty(BB_nose))
for i=1:1:size(BB_nose,1)
rectangle('Position',BB_nose(i,:),'LineWidth',4,'LineStyle','-','EdgeColor','r');
end
end
subplot(1,2,2), imshow(finalImage), title('Pupil Locations'), hold on,
for cnt = 1:1:num
s = regionprops(labels, 'BoundingBox', 'Area', 'Centroid','MajorAxisLength','MinorAxisLength');
rectangle('position', s(cnt).BoundingBox,'EdgeColor','b','linewidth',2);
end
impixelinfo;
% saveas(gcf,'PediPeri_result','png')
currentIPD = sqrt((pupilCenters(1,1) - pupilCenters(2,1))^2 + (pupilCenters(1,2) - pupilCenters(2,2))^2);
IPD(1,frameNum) = currentIPD;
currentSkew = radtodeg(acos(baseIPD/currentIPD));
Skew(1,frameNum) = round(currentSkew);
currentAngle = radtodeg(atan( pupilCenters(1,2) - pupilCenters(2,2) / pupilCenters(1,1) - pupilCenters(2,1) ));
Angle(1,frameNum) = round(currentAngle - baseAngle);
toc;
elapsedTime(1,frameNum) = toc;
pause(3);
end
Avearage_Time = mean(elapsedTime(2:1:11));
display('Average Time Taken to Segment each image (in seconds): ');
display(Avearage_Time);