-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
54 lines (34 loc) · 1.23 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
# import numpy as np
# from rolling_ta.logging import log
# from rolling_ta.data import CSVLoader, XLSXLoader, XLSXWriter
# from rolling_ta.trend import LinearRegressionR2, lr
# from tests.fixtures.data_sheets import lr_df
# # from ta.volume import VolumeWeightedAveragePrice
# def write_xlsx_file():
# loader = CSVLoader()
# btc = loader.read_resource()
# btc_sliced = btc.iloc[:4000].reset_index(drop=True)
# writer = XLSXWriter("btc-bop.xlsx")
# for i, series in enumerate(btc_sliced):
# writer.write(btc_sliced[series].to_numpy(dtype=np.float64), col=i + 1)
# writer.save()
# if __name__ == "__main__":
# lr_vwap_df = lr_df(XLSXLoader())
# lr2 = LinearRegressionR2(lr_vwap_df)
# # write_xlsx_file()
# ...
from rolling_ta.momentum import BOP
from rolling_ta.data import CSVLoader
test_list = ["a", "b", "c"]
test_dict = {"a": 0}
if __name__ == "__main__":
loader = CSVLoader()
df = loader.read_resource()
bop = BOP(data=df, init=True)
df = bop.to_dataframe()
df.info()
# test_dict = {"a": 0, "b": 1, "c": 2}
# # bop = BOP(data=df, init=True)
# # print(bop._period_config)
# # print(bop.to_series().name)
# print(test_dict.fromkeys(["a", "b"]))