-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_loader.py
90 lines (76 loc) · 3.02 KB
/
data_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
# import h5py
import matplotlib.pyplot as plt
import numpy as np
import scipy.io as spio
from sklearn.decomposition import PCA
from sklearn.model_selection import train_test_split
import torch
import torch.nn as nn
import torch.nn.functional as F
import os
import pandas as pd
from torch.utils.data import Dataset, DataLoader, ConcatDataset
from torchvision import transforms, utils
import scipy.io as spio
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
#-------------------------Using data loader------------------------------
# class NeutronData(Dataset):
# def __init__(self, matlab_matrix, J_matrix, root_dir, transform=None):
# self.mat=np.loadtxt(matlab_matrix)
# self.J=np.loadtxt(J_matrix)
# self.root_dir=root_dir
# self.transform=transform
# def __len__(self):
# return len(self.J)
# def __getitem__(self, idx):
# if torch.is_tensor(idx):
# idx = idx.tolist()
# image=self.mat[idx]
# J_par=self.J[idx]
# if self.transform:
# # image=np.array(image)
# # image= np.reshape(image,249500)
# # J_par=np.array(J_par)
# image=torch.from_numpy(image).to(torch.float32).to(device)
# J_par=torch.from_numpy(J_par).to(torch.float32).to(device)
# return image, J_par
class NeutronData(Dataset):
def __init__(self, matlab_matrix,Mkey, J_matrix, Jkey, root_dir, transform=None):
# self.mat=pd.read_csv(matlab_matrix)
self.mat=spio.loadmat(matlab_matrix)[Mkey]
# self.J=pd.read_csv(J_matrix)
self.J=spio.loadmat(J_matrix)[Jkey]
self.root_dir=root_dir
self.transform=transform
def __len__(self):
return len(self.J)
def __getitem__(self, idx):
if torch.is_tensor(idx):
idx = idx.tolist()
image=self.mat[:,:,idx]
J_par=self.J[idx]
if self.transform:
image=np.array(image)
image= np.reshape(image,62250)
J_par=np.array(J_par)
image=torch.from_numpy(image).to(torch.float32).to(device)
J_par=torch.from_numpy(J_par).to(torch.float32).to(device)
return image, J_par
Jpath=r'R:\SpinwAI\Training\reduced\Jscale'
Matpath=r'R:\SpinwAI\Training\reduced\Matscale'
Jdir = os.listdir(Jpath)
Matdir = os.listdir(Matpath)
all_data=[]
for i in range(len(Jdir)):
# for i in range(0,1):
neutron_dataset = NeutronData(matlab_matrix=os.path.join(Matpath, Matdir[i]),
Mkey='Matrix',
J_matrix=os.path.join(Jpath, Jdir[i]),
Jkey='J',
root_dir="SpinwAI/",transform=True)
all_data.append(neutron_dataset)
neutron_dataset_concat=ConcatDataset(all_data)
del all_data
batchsize=1000
dataloader=DataLoader(neutron_dataset_concat, batch_size=batchsize,shuffle=True, num_workers=0)
del neutron_dataset_concat