-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmultiple_ant_colony_system.py
415 lines (332 loc) · 17.6 KB
/
multiple_ant_colony_system.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
import numpy as np
import random
from vprtw_aco_figure import VrptwAcoFigure
from vrptw_base import VrptwGraph, PathMessage
from ant import Ant
from threading import Thread, Event
from queue import Queue
from concurrent.futures import ThreadPoolExecutor
import copy
import time
from multiprocessing import Process
from multiprocessing import Queue as MPQueue
class MultipleAntColonySystem:
def __init__(self, graph: VrptwGraph, ants_num=10, beta=1, q0=0.1, mode=1, whether_or_not_to_show_figure=True):
super()
self.graph = graph
self.ants_num = ants_num
self.max_load = graph.vehicle_capacity
self.beta = beta
self.q0 = q0
self.best_path_distance = None
self.best_path = None
self.best_vehicle_num = None
self.mode = mode
self.whether_or_not_to_show_figure = whether_or_not_to_show_figure
@staticmethod
def stochastic_accept(index_to_visit, transition_prob):
"""
轮盘赌
:param index_to_visit: a list of N index (list or tuple)
:param transition_prob:
:return: selected index
"""
# calculate N and max fitness value
N = len(index_to_visit)
# normalize
sum_tran_prob = np.sum(transition_prob)
norm_transition_prob = transition_prob/sum_tran_prob
# select: O(1)
while True:
# randomly select an individual with uniform probability
ind = int(N * random.random())
if random.random() <= norm_transition_prob[ind]:
return index_to_visit[ind]
@staticmethod
def new_active_ant(ant: Ant, vehicle_num: int, local_search: bool, IN: np.numarray, q0: float, beta: int, stop_event: Event):
"""
:param ant:
:param vehicle_num:
:param local_search:
:param IN:
:param q0:
:param beta:
:param stop_event:
:return:
"""
# print('[new_active_ant]: start, start_index %d' % ant.travel_path[0])
unused_depot_count = vehicle_num
while not ant.index_to_visit_empty() and unused_depot_count > 0:
if stop_event.is_set():
# print('[new_active_ant]: receive stop event')
return
next_index_meet_constrains = ant.cal_next_index_meet_constrains()
if len(next_index_meet_constrains) == 0:
ant.move_to_next_index(0)
unused_depot_count -= 1
continue
length = len(next_index_meet_constrains)
ready_time = np.zeros(length)
due_time = np.zeros(length)
for i in range(length):
ready_time[i] = ant.graph.nodes[next_index_meet_constrains[i]].ready_time
due_time[i] = ant.graph.nodes[next_index_meet_constrains[i]].due_time
delivery_time = np.maximum(ant.vehicle_travel_time + ant.graph.node_dist_mat[ant.current_index][next_index_meet_constrains], ready_time)
delta_time = delivery_time - ant.vehicle_travel_time
distance = delta_time * (due_time - ant.vehicle_travel_time)
distance = np.maximum(1.0, distance-IN[next_index_meet_constrains])
closeness = 1/distance
transition_prob = ant.graph.pheromone_mat[ant.current_index][next_index_meet_constrains] * \
np.power(closeness, beta)
transition_prob = transition_prob / np.sum(transition_prob)
if np.random.rand() < q0:
max_prob_index = np.argmax(transition_prob)
next_index = next_index_meet_constrains[max_prob_index]
else:
next_index = MultipleAntColonySystem.stochastic_accept(next_index_meet_constrains, transition_prob)
ant.graph.local_update_pheromone(ant.current_index, next_index)
ant.move_to_next_index(next_index)
if ant.index_to_visit_empty():
ant.graph.local_update_pheromone(ant.current_index, 0)
ant.move_to_next_index(0)
ant.insertion_procedure(stop_event)
if local_search is True and ant.index_to_visit_empty():
ant.local_search_procedure(stop_event)
@staticmethod
def acs_time(new_graph: VrptwGraph, vehicle_num: int, ants_num: int, q0: float, beta: int,
global_path_queue: Queue, path_found_queue: Queue, stop_event: Event):
"""
:param new_graph:
:param vehicle_num:
:param ants_num:
:param q0:
:param beta:
:param global_path_queue:
:param path_found_queue:
:param stop_event:
:return:
"""
print('[acs_time]: start, vehicle_num %d' % vehicle_num)
global_best_path = None
global_best_distance = None
ants_pool = ThreadPoolExecutor(ants_num)
ants_thread = []
ants = []
while True:
print('[acs_time]: new iteration')
if stop_event.is_set():
print('[acs_time]: receive stop event')
return
for k in range(ants_num):
ant = Ant(new_graph, 0)
thread = ants_pool.submit(MultipleAntColonySystem.new_active_ant, ant, vehicle_num, True,
np.zeros(new_graph.node_num), q0, beta, stop_event)
ants_thread.append(thread)
ants.append(ant)
for thread in ants_thread:
thread.result()
ant_best_travel_distance = None
ant_best_path = None
for ant in ants:
if stop_event.is_set():
print('[acs_time]: receive stop event')
return
if not global_path_queue.empty():
info = global_path_queue.get()
while not global_path_queue.empty():
info = global_path_queue.get()
print('[acs_time]: receive global path info')
global_best_path, global_best_distance, global_used_vehicle_num = info.get_path_info()
if ant.index_to_visit_empty() and (ant_best_travel_distance is None or ant.total_travel_distance < ant_best_travel_distance):
ant_best_travel_distance = ant.total_travel_distance
ant_best_path = ant.travel_path
new_graph.global_update_pheromone(global_best_path, global_best_distance)
if ant_best_travel_distance is not None and ant_best_travel_distance < global_best_distance:
print('[acs_time]: ants\' local search found a improved feasible path, send path info to macs')
path_found_queue.put(PathMessage(ant_best_path, ant_best_travel_distance))
ants_thread.clear()
for ant in ants:
ant.clear()
del ant
ants.clear()
@staticmethod
def acs_vehicle(new_graph: VrptwGraph, vehicle_num: int, ants_num: int, q0: float, beta: int,
global_path_queue: Queue, path_found_queue: Queue, stop_event: Event):
"""
:param new_graph:
:param vehicle_num:
:param ants_num:
:param q0:
:param beta:
:param global_path_queue:
:param path_found_queue:
:param stop_event:
:return:
"""
print('[acs_vehicle]: start, vehicle_num %d' % vehicle_num)
global_best_path = None
global_best_distance = None
current_path, current_path_distance, _ = new_graph.nearest_neighbor_heuristic(max_vehicle_num=vehicle_num)
current_index_to_visit = list(range(new_graph.node_num))
for ind in set(current_path):
current_index_to_visit.remove(ind)
ants_pool = ThreadPoolExecutor(ants_num)
ants_thread = []
ants = []
IN = np.zeros(new_graph.node_num)
while True:
print('[acs_vehicle]: new iteration')
if stop_event.is_set():
print('[acs_vehicle]: receive stop event')
return
for k in range(ants_num):
ant = Ant(new_graph, 0)
thread = ants_pool.submit(MultipleAntColonySystem.new_active_ant, ant, vehicle_num, False, IN, q0,
beta, stop_event)
ants_thread.append(thread)
ants.append(ant)
for thread in ants_thread:
thread.result()
for ant in ants:
if stop_event.is_set():
print('[acs_vehicle]: receive stop event')
return
IN[ant.index_to_visit] = IN[ant.index_to_visit]+1
if len(ant.index_to_visit) < len(current_index_to_visit):
current_path = copy.deepcopy(ant.travel_path)
current_index_to_visit = copy.deepcopy(ant.index_to_visit)
current_path_distance = ant.total_travel_distance
IN = np.zeros(new_graph.node_num)
if ant.index_to_visit_empty():
print('[acs_vehicle]: found a feasible path, send path info to macs')
path_found_queue.put(PathMessage(ant.travel_path, ant.total_travel_distance))
new_graph.global_update_pheromone(current_path, current_path_distance)
if not global_path_queue.empty():
info = global_path_queue.get()
while not global_path_queue.empty():
info = global_path_queue.get()
print('[acs_vehicle]: receive global path info')
global_best_path, global_best_distance, global_used_vehicle_num = info.get_path_info()
new_graph.global_update_pheromone(global_best_path, global_best_distance)
ants_thread.clear()
for ant in ants:
ant.clear()
del ant
ants.clear()
def run_multiple_ant_colony_system(self, file_to_write_path=None):
"""
:return:
"""
path_queue_for_figure = MPQueue()
multiple_ant_colony_system_thread = Process(target=self._multiple_ant_colony_system, args=(path_queue_for_figure, file_to_write_path, ))
multiple_ant_colony_system_thread.start()
if self.whether_or_not_to_show_figure:
if self.mode == 3:
figure = VrptwAcoFigure(self.graph.nodes, path_queue_for_figure, astar_path=self.graph.node_path_mat, mode=self.mode)
figure.run()
elif self.mode == 4:
figure = VrptwAcoFigure(self.graph.nodes, path_queue_for_figure, astar_path=self.graph.node_path_mat, mode=self.mode)
figure.run()
else:
figure = VrptwAcoFigure(self.graph.nodes, path_queue_for_figure, mode=self.mode)
figure.run()
multiple_ant_colony_system_thread.join()
def _multiple_ant_colony_system(self, path_queue_for_figure: MPQueue, file_to_write_path=None):
"""
:param path_queue_for_figure:
:return:
"""
if file_to_write_path is not None:
file_to_write = open(file_to_write_path, 'w')
else:
file_to_write = None
start_time_total = time.time()
global_path_to_acs_time = Queue()
global_path_to_acs_vehicle = Queue()
path_found_queue = Queue()
self.best_path, self.best_path_distance, self.best_vehicle_num = self.graph.nearest_neighbor_heuristic()
path_queue_for_figure.put(PathMessage(self.best_path, self.best_path_distance))
while True:
print('[multiple_ant_colony_system]: new iteration')
start_time_found_improved_solution = time.time()
global_path_to_acs_vehicle.put(PathMessage(self.best_path, self.best_path_distance))
global_path_to_acs_time.put(PathMessage(self.best_path, self.best_path_distance))
stop_event = Event()
graph_for_acs_vehicle = self.graph.copy(self.graph.init_pheromone_val)
acs_vehicle_thread = Thread(target=MultipleAntColonySystem.acs_vehicle,
args=(graph_for_acs_vehicle, self.best_vehicle_num-1, self.ants_num, self.q0,
self.beta, global_path_to_acs_vehicle, path_found_queue, stop_event))
graph_for_acs_time = self.graph.copy(self.graph.init_pheromone_val)
acs_time_thread = Thread(target=MultipleAntColonySystem.acs_time,
args=(graph_for_acs_time, self.best_vehicle_num, self.ants_num, self.q0, self.beta,
global_path_to_acs_time, path_found_queue, stop_event))
print('[macs]: start acs_vehicle and acs_time')
acs_vehicle_thread.start()
acs_time_thread.start()
best_vehicle_num = self.best_vehicle_num
while acs_vehicle_thread.is_alive() and acs_time_thread.is_alive():
given_time = 10
if time.time() - start_time_found_improved_solution > 60 * given_time:
stop_event.set()
self.print_and_write_in_file(file_to_write, '*' * 50)
self.print_and_write_in_file(file_to_write, 'time is up: cannot find a better solution in given time(%d minutes)' % given_time)
self.print_and_write_in_file(file_to_write, 'it takes %0.3f second from multiple_ant_colony_system running' % (time.time()-start_time_total))
self.print_and_write_in_file(file_to_write, 'the best path have found is:')
self.print_and_write_in_file(file_to_write, self.best_path)
self.print_and_write_in_file(file_to_write, 'best path distance is %f, best vehicle_num is %d' % (self.best_path_distance, self.best_vehicle_num))
self.print_and_write_in_file(file_to_write, '*' * 50)
if self.whether_or_not_to_show_figure:
path_queue_for_figure.put(PathMessage(None, None))
if file_to_write is not None:
file_to_write.flush()
file_to_write.close()
return
if path_found_queue.empty():
continue
path_info = path_found_queue.get()
print('[macs]: receive found path info')
found_path, found_path_distance, found_path_used_vehicle_num = path_info.get_path_info()
while not path_found_queue.empty():
path, distance, vehicle_num = path_found_queue.get().get_path_info()
if distance < found_path_distance:
found_path, found_path_distance, found_path_used_vehicle_num = path, distance, vehicle_num
if vehicle_num < found_path_used_vehicle_num:
found_path, found_path_distance, found_path_used_vehicle_num = path, distance, vehicle_num
if found_path_distance < self.best_path_distance:
start_time_found_improved_solution = time.time()
self.print_and_write_in_file(file_to_write, '*' * 50)
self.print_and_write_in_file(file_to_write, '[macs]: distance of found path (%f) better than best path\'s (%f)' % (found_path_distance, self.best_path_distance))
self.print_and_write_in_file(file_to_write, 'it takes %0.3f second from multiple_ant_colony_system running' % (time.time()-start_time_total))
self.print_and_write_in_file(file_to_write, '*' * 50)
if file_to_write is not None:
file_to_write.flush()
self.best_path = found_path
self.best_vehicle_num = found_path_used_vehicle_num
self.best_path_distance = found_path_distance
if self.whether_or_not_to_show_figure:
path_queue_for_figure.put(PathMessage(self.best_path, self.best_path_distance))
global_path_to_acs_vehicle.put(PathMessage(self.best_path, self.best_path_distance))
global_path_to_acs_time.put(PathMessage(self.best_path, self.best_path_distance))
if found_path_used_vehicle_num < best_vehicle_num:
start_time_found_improved_solution = time.time()
self.print_and_write_in_file(file_to_write, '*' * 50)
self.print_and_write_in_file(file_to_write, '[macs]: vehicle num of found path (%d) better than best path\'s (%d), found path distance is %f'
% (found_path_used_vehicle_num, best_vehicle_num, found_path_distance))
self.print_and_write_in_file(file_to_write, 'it takes %0.3f second multiple_ant_colony_system running' % (time.time() - start_time_total))
self.print_and_write_in_file(file_to_write, '*' * 50)
if file_to_write is not None:
file_to_write.flush()
self.best_path = found_path
self.best_vehicle_num = found_path_used_vehicle_num
self.best_path_distance = found_path_distance
if self.whether_or_not_to_show_figure:
path_queue_for_figure.put(PathMessage(self.best_path, self.best_path_distance))
print('[macs]: send stop info to acs_time and acs_vehicle')
stop_event.set()
@staticmethod
def print_and_write_in_file(file_to_write=None, message='default message'):
if file_to_write is None:
print(message)
else:
print(message)
file_to_write.write(str(message)+'\n')