-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
238 lines (188 loc) · 8.17 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
# -*- coding:utf-8 -*-
import cv2
import os
import pandas as pd
import time
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.models as models
import warnings
from sklearn.metrics import roc_auc_score, f1_score
from sklearn.preprocessing import MultiLabelBinarizer
from tensorflow.keras.preprocessing.image import img_to_array
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms
warnings.filterwarnings("ignore")
# gpu_id = 1
# torch.cuda.set_device(gpu_id)
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "1"
def default_loader(imagepath):
# return Image.open(path).convert('RGB')
image = cv2.imread(imagepath)
image = cv2.resize(image, (IMAGE_DIMS[0], IMAGE_DIMS[1]))
image = image.astype("float")
image = img_to_array(image)
return image
class MyDataset(Dataset):
def __init__(self, root, csv, transform=None, target_transform=None, loader=default_loader):
super(MyDataset, self).__init__()
df = pd.read_csv(csv)
labels = []
files = []
for row in df.iterrows():
filename = row[1]['filename']
files.append(os.path.join(root, filename))
labels.append(row[1]['label'].split(';'))
mlb = MultiLabelBinarizer()
labels = mlb.fit_transform(labels)
# loop over each of the possible class labels and show them
print('[INFO]: {} classes found'.format(len(mlb.classes_)))
# for (i, label) in enumerate():
# print("{}. {}".format(i + 1, label))
self.imgs = list(zip(files, labels))
print('[INFO]: {} images found'.format(len(self.imgs)))
self.transform = transform
self.target_transform = target_transform
self.loader = loader
def __getitem__(self, index):
fn, label = self.imgs[index]
img = self.loader(fn)
if self.transform is not None:
img = self.transform(img)
return img, label
def __len__(self):
return len(self.imgs)
def train_and_valid(model, loss_function, optimizer, epochs, datasize, name_infos):
model_save_path, history_save_path, model_name = name_infos
train_data_size, valid_data_size = datasize
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
history = []
best_auc = 0.0
best_epoch = 0
for epoch in range(epochs):
epoch_start = time.time()
print("Epoch: {}/{}".format(epoch + 1, epochs))
model.train()
train_loss = 0.0
train_auc = 0.0
train_macro_f1 = 0.0
train_micro_f1 = 0.0
valid_loss = 0.0
valid_auc = 0.0
valid_macro_f1 = 0.0
valid_micro_f1 = 0.0
for i, (inputs, labels) in enumerate(train_loader):
inputs = inputs.to(device)
labels = labels.to(device).float()
# 因为这里梯度是累加的,所以每次记得清零
optimizer.zero_grad()
outputs = model(inputs)
loss = loss_function(outputs, labels)
loss.backward()
optimizer.step()
train_loss += loss.item() * inputs.size(0)
pred = torch.round(outputs.data).cpu().numpy()
ground_truth = labels.cpu().numpy()
proba = outputs.data.cpu().numpy()
try:
auc = roc_auc_score(ground_truth, proba, average='macro')
train_auc += auc.item() * inputs.size(0)
except ValueError:
pass
macro_f1 = f1_score(ground_truth, pred, average='macro')
micro_f1 = f1_score(ground_truth, pred, average='micro')
train_macro_f1 += macro_f1.item() * inputs.size(0)
train_micro_f1 += micro_f1.item() * inputs.size(0)
with torch.no_grad():
model.eval()
for j, (inputs, labels) in enumerate(valid_loader):
inputs = inputs.to(device)
labels = labels.to(device).float()
outputs = model(inputs)
# print("outputs:", outputs)
loss = loss_function(outputs, labels)
valid_loss += loss.item() * inputs.size(0)
pred = torch.round(outputs.data).cpu().numpy()
ground_truth = labels.cpu().numpy()
proba = outputs.data.cpu().numpy()
try:
auc = roc_auc_score(ground_truth, proba, average='macro')
valid_auc += auc.item() * inputs.size(0)
except ValueError:
pass
macro_f1 = f1_score(ground_truth, pred, average='macro')
micro_f1 = f1_score(ground_truth, pred, average='micro')
valid_macro_f1 += macro_f1.item() * inputs.size(0)
valid_micro_f1 += micro_f1.item() * inputs.size(0)
avg_train_loss = train_loss / train_data_size
avg_train_auc = train_auc / train_data_size
avg_train_macro_f1 = train_macro_f1 / train_data_size
avg_train_micro_f1 = train_micro_f1 / train_data_size
avg_valid_loss = valid_loss / valid_data_size
avg_valid_auc = valid_auc / valid_data_size
avg_valid_macro_f1 = valid_macro_f1 / valid_data_size
avg_valid_micro_f1 = valid_micro_f1 / valid_data_size
history.append([avg_train_loss, avg_valid_loss,
avg_train_auc, avg_valid_auc,
avg_train_macro_f1, avg_valid_macro_f1,
avg_train_micro_f1, avg_valid_micro_f1])
if best_auc < avg_valid_auc:
best_auc = avg_valid_auc
best_epoch = epoch + 1
epoch_end = time.time()
print("Epoch: {:02d}, Training: loss: {:.2f}, auc: {:.2f}%, macro_f1: {:.2f}%, micro_f1: {:.2f}%".format(
epoch + 1,
avg_train_loss,
avg_train_auc * 100,
avg_train_macro_f1 * 100,
avg_train_micro_f1 * 100))
print("\t\tValidation: loss: {:.2f}, auc: {:.2f}%, macro_f1: {:.2f}%, micro_f1: {:.2f}%, Time: {:.2f}s".format(
avg_valid_loss,
avg_valid_auc * 100,
avg_valid_macro_f1 * 100,
avg_valid_micro_f1 * 100,
epoch_end - epoch_start))
print("Best auc for validation : {:.2f}% at epoch {:02d}".format(best_auc * 100, best_epoch))
print('[INFO]: serializing model...')
torch.save(model,
model_save_path + model_name + '_model_' + str(epoch + 1) + '.pt')
print('-' * 70)
print('[INFO]: saving history...')
torch.save(history, history_save_path + model_name + '_history.pt')
if __name__ == '__main__':
dataset = '/home/jinHM/liziyi/Protein/dataset/splited/'
BATCHSIZE = 112
IMAGE_DIMS = (224, 224, 3)
LEARNING_RATE = 0.001
EPOCHS = 30
MODEL_SAVE_PATH = '/home/jinHM/liziyi/Protein/Torch_Train/models/'
HISTORY_SAVE_PATH = '/home/jinHM/liziyi/Protein/Torch_Train/history/'
MODEL_NAME = 'resnet50_0624_2'
train_data = MyDataset(root=dataset + 'train', csv=dataset + 'train.csv',
transform=transforms.ToTensor())
valid_data = MyDataset(root=dataset + 'valid', csv=dataset + 'valid.csv',
transform=transforms.ToTensor())
train_data_size = len(train_data)
valid_data_size = len(valid_data)
train_loader = DataLoader(dataset=train_data, batch_size=BATCHSIZE, shuffle=True, num_workers=6)
valid_loader = DataLoader(dataset=valid_data, batch_size=BATCHSIZE, shuffle=False, num_workers=6)
resnet50 = models.resnet50(pretrained=False)
# for param in resnet50.parameters():
# param.requires_grad = False
fc_inputs = resnet50.fc.in_features
resnet50.fc = nn.Sequential(
nn.Linear(fc_inputs, 256),
nn.ReLU(),
nn.Dropout(0.4),
nn.Linear(256, 10),
# nn.LogSoftmax(dim=1)
nn.Sigmoid()
)
resnet50 = resnet50.to('cuda:0')
loss_func = nn.BCELoss()
optimizer = optim.Adam(resnet50.parameters())
train_and_valid(resnet50, loss_func, optimizer, epochs=EPOCHS,
datasize=(train_data_size, valid_data_size),
name_infos=(MODEL_SAVE_PATH, HISTORY_SAVE_PATH, MODEL_NAME))