-
Notifications
You must be signed in to change notification settings - Fork 132
/
Copy pathmodules.py
165 lines (148 loc) · 7.03 KB
/
modules.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
# -*- coding: utf-8 -*-
#/usr/bin/python2
'''
By kyubyong park. [email protected].
https://www.github.com/kyubyong/sudoku
'''
from __future__ import print_function
import tensorflow as tf
from hyperparams import Hyperparams as hp
def normalize(inputs,
type="bn",
decay=.99,
is_training=True,
activation_fn=None,
scope="normalize"):
'''Applies {batch|layer} normalization.
Args:
inputs: A tensor with 2 or more dimensions, where the first dimension has
`batch_size`. If type is `bn`, the normalization is over all but
the last dimension. Or if type is `ln`, the normalization is over
the last dimension. Note that this is different from the native
`tf.contrib.layers.batch_norm`. For this I recommend you change
a line in ``tensorflow/contrib/layers/python/layers/layer.py`
as follows.
Before: mean, variance = nn.moments(inputs, axis, keep_dims=True)
After: mean, variance = nn.moments(inputs, [-1], keep_dims=True)
type: A string. Either "bn" or "ln".
decay: Decay for the moving average. Reasonable values for `decay` are close
to 1.0, typically in the multiple-nines range: 0.999, 0.99, 0.9, etc.
Lower `decay` value (recommend trying `decay`=0.9) if model experiences
reasonably good training performance but poor validation and/or test
performance.
is_training: Whether or not the layer is in training mode. W
activation_fn: Activation function.
scope: Optional scope for `variable_scope`.
Returns:
A tensor with the same shape and data dtype as `inputs`.
'''
if type=="bn":
inputs_shape = inputs.get_shape()
inputs_rank = inputs_shape.ndims
# use fused batch norm if inputs_rank in [2, 3, 4] as it is much faster.
# pay attention to the fact that fused_batch_norm requires shape to be rank 4 of NHWC.
if inputs_rank in [2, 3, 4]:
if inputs_rank==2:
inputs = tf.expand_dims(inputs, axis=1)
inputs = tf.expand_dims(inputs, axis=2)
elif inputs_rank==3:
inputs = tf.expand_dims(inputs, axis=1)
outputs = tf.contrib.layers.batch_norm(inputs=inputs,
decay=decay,
center=True,
scale=True,
activation_fn=None,
updates_collections=None,
is_training=is_training,
scope=scope,
zero_debias_moving_mean=True,
fused=True)
# restore original shape
if inputs_rank==2:
outputs = tf.squeeze(outputs, axis=[1, 2])
elif inputs_rank==3:
outputs = tf.squeeze(outputs, axis=1)
else: # fallback to naive batch norm
outputs = tf.contrib.layers.batch_norm(inputs=inputs,
decay=decay,
center=True,
scale=True,
activation_fn=activation_fn,
updates_collections=None,
is_training=is_training,
scope=scope,
fused=False)
elif type=="ln":
outputs = tf.contrib.layers.layer_norm(inputs=inputs,
center=True,
scale=True,
activation_fn=None,
scope=scope)
elif type=="in": # instance normalization
with tf.variable_scope(scope):
inputs_shape = inputs.get_shape()
params_shape = inputs_shape[-1:]
mean, variance = tf.nn.moments(inputs, [1], keep_dims=True)
gamma = tf.get_variable("gamma",
shape=params_shape,
dtype=tf.float32,
initializer=tf.ones_initializer)
beta = tf.get_variable("beta",
shape=params_shape,
dtype=tf.float32,
initializer=tf.zeros_initializer)
normalized = (inputs - mean) / tf.sqrt(variance+1e-8)
outputs = normalized * gamma + beta
else: # None
outputs = inputs
if activation_fn is not None:
outputs = activation_fn(outputs)
return outputs
def conv(inputs,
filters=None,
size=1,
rate=1,
padding="SAME",
use_bias=False,
is_training=True,
activation_fn=None,
decay=0.99,
norm_type=None,
scope="conv",
reuse=None):
'''Applies convolution to `inputs`.
Args:
inputs: A 3D or 4D tensor with shape of [batch, (height), width, depth].
filters: An int. Number of outputs (=activation maps)
size: An int. Filter size.
rate: An int. Dilation rate.
padding: Either `same` or `valid` or `causal` (case-insensitive).
use_bias: A boolean.
is_training: A boolean.
decay: A float of (0, 1).
activation_fn: A string.
norm_type: Either `bn`, `ln`, or `in`.
scope: Optional scope for `variable_scope`.
reuse: Boolean, whether to reuse the weights of a previous layer
by the same name.
Returns:
A tensor of the same shape and dtypes as `inputs`.
'''
ndims = inputs.get_shape().ndims
conv_fn = tf.layers.conv1d if ndims==3 else tf.layers.conv2d
with tf.variable_scope(scope):
if padding.lower()=="causal":
assert ndims==3, "if causal is true, the rank must be 3."
# pre-padding for causality
pad_len = (size - 1) * rate # padding size
inputs = tf.pad(inputs, [[0, 0], [pad_len, 0], [0, 0]])
padding = "valid"
if filters is None:
filters = inputs.get_shape().as_list[-1]
params = {"inputs":inputs, "filters":filters, "kernel_size":size,
"dilation_rate":rate, "padding":padding,
"use_bias":use_bias, "reuse":reuse}
outputs = conv_fn(**params)
outputs = normalize(outputs, type=norm_type, decay=decay,
is_training=is_training, activation_fn=activation_fn)
return outputs