forked from gkamradt/QuickAgent
-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathflorence2-server.py
107 lines (74 loc) · 2.95 KB
/
florence2-server.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
from flask import Flask, request, jsonify
from flask import send_from_directory
import threading
import time
import json
import os # Import the os module
import time
import random
import yaml
from munch import Munch
import numpy as np
import requests
from PIL import Image
from transformers import AutoProcessor, AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained("microsoft/Florence-2-base-ft", trust_remote_code=True)
processor = AutoProcessor.from_pretrained("microsoft/Florence-2-base-ft", trust_remote_code=True)
prompt = "<MORE_DETAILED_CAPTION>" #<OCR>
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg?download=true"
image = Image.open(requests.get(url, stream=True).raw)
inputs = processor(text=prompt, images=image, return_tensors="pt")
generated_ids = model.generate(
input_ids=inputs["input_ids"],
pixel_values=inputs["pixel_values"],
max_new_tokens=512,
do_sample=True,
num_beams=3
)
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
parsed_answer = processor.post_process_generation(generated_text, task=prompt, image_size=(image.width, image.height))
print(parsed_answer)
app = Flask(__name__)
@app.route('/add', methods=['GET'])
def add_item():
"""Adds an item to the list received via a GET request."""
item = request.args.get('item')
if item:
items.append(item)
return jsonify(success=True, message="Item added successfully."), 200
else:
return jsonify(success=False, message="No item provided."), 400
@app.route('/synthesize', methods=['POST'])
def synthesize_speech():
text = request.json.get('text')
print("received request:", text)
if not text:
return jsonify(success=False, message="No text provided."), 400
try:
# Generate speech
noise = torch.randn(1,1,256).to(device)
s= time.time()
audio = inference(text, noise, diffusion_steps=3, embedding_scale=1.2)
print("Time for inference:",time.time()-s)
# Generate a random filename
random_number = random.randint(10000, 99999)
filename = f"speech_{random_number}.wav"
# Ensure the 'audio' directory exists
os.makedirs('audio', exist_ok=True)
# Save the audio file
sf.write(os.path.join('audio', filename), audio, 24000)
return jsonify(success=True, filename=filename), 200
except Exception as e:
return jsonify(success=False, message=f"An error occurred: {str(e)}"), 500
@app.route('/audio/<path:filename>')
def serve_audio(filename):
try:
return send_from_directory('audio', filename)
except FileNotFoundError:
return jsonify(success=False, message="Audio file not found"), 404
if __name__ == '__main__':
app.run(host='0.0.0.0', port=5001)
os.system("curl ifconfig.me")
if __name__ == '__main__':
# Starts the Flask web server
app.run(host='0.0.0.0', port=5002)