forked from robwschlegel/AHW
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path3.Figures.R
399 lines (350 loc) · 18 KB
/
3.Figures.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
###########################################################################
### "3.Figures.R"
## This script creates the figures for the paper and supplemental
# 1. Load all libraries and functions used in this script
# 2. Create synoptic figure for each event
# 3. Create synoptic figure showing SOM nodes
# 4. Create lolliplots for the SOM nodes
# 5. Create dendrogram for HCA results
# 6. Create ordiplot for MDS results
# 7. Create map of study area
#############################################################################
# 1. Load all libraries and functions used in this script -----------------
source("func/synoptic.func.R")
source("func/som.func.R")
source("func/scale.bar.func.R")
library(vegan)
library(ggdendro)
library(broom)
# 2. Create synoptic figure for each event -------------------------------
# Load SACTN data
load("~/data/SACTN/AHW/SACTN_clims.Rdata")
load("data/SACTN/SACTN_events.Rdata")
load("setupParams/SACTN_site_list.Rdata")
# The files for loading
event_idx <- data.frame(event = dir("data/SOM", full.names = TRUE),
x = length(dir("data/SOM")))
# Create a synoptic atlas figure for each MHW
system.time(plyr::ddply(event_idx, c("event"), synoptic.fig, .progress = "text")) # 539 seconds
# 3. Create synoptic figure showing SOM nodes -----------------------------
load("data/node_means.Rdata")
load("data/node_all_anom.Rdata")
all.panels(node_means, node_all_anom)
# 4. Create lolliplots for the SOM nodes ----------------------------------
# Load data for figure
load("data/SACTN/SACTN_events.Rdata")
load("data/node_all_anom.Rdata")
# Merge into one dataframe
node_all <- merge(node_all_anom, SACTN_events, by = c("event", "site", "season", "event_no"))
# Calculate mean and median per node for plotting
node_h_lines <- node_all %>%
group_by(node) %>%
summarise(mean_int_cum = mean(int_cum, na.rm = T),
median_int_cum = median(int_cum, na.rm = T))
# Create the figure
ggplot(data = node_all, aes(x = date_start, y = int_cum)) +
geom_lolli() +
geom_point(aes(colour = season)) +
geom_label(aes(x = as.Date("2005-01-01"), y = 580, label = paste0("n = ", count,"/",length(node))),
size = 3, label.padding = unit(0.5, "lines")) +
geom_hline(data = node_h_lines, aes(yintercept = mean_int_cum), linetype = "dashed") +
geom_hline(data = node_h_lines, aes(yintercept = median_int_cum), linetype = "dotted") +
facet_wrap(~node) +
labs(x = "", y = "Cummulative intensity (°C·days)", colour = "Season") +
theme_grey() +
# scale_y_continuous(expand = c(0, 100)) +
theme(strip.background = element_rect(fill = NA),
panel.border = element_rect(fill = NA, colour = "black", size = 1),
axis.text = element_text(size = 12, colour = "black"),
axis.ticks = element_line(colour = "black"))
ggsave("graph/SOM_lolli.pdf", height = 9, width = 10)
# 5. Create dendrogram for HCA results ------------------------------------
# Load data
load("data/all_anom_hclust.Rdata")
load("data/all_anom_env.Rdata")
# Prep dendrogram
dhc <- as.dendrogram(all_anom_hclust)
ddata <- dendro_data(dhc, type = "rectangle")
label_data <- label(ddata)
label_data$season <- all_anom_env$season[as.numeric(as.character(label_data$label))]
label_data$type <- all_anom_env$type[as.numeric(as.character(label_data$label))]
# Plot the dendrogram
ggplot(segment(ddata)) +
geom_segment(aes(x = x, y = y, xend = xend, yend = yend)) +
geom_point(data = label_data, aes(x = x, y = y, shape = type, colour = season)) +
scale_shape_manual(values = c(1, 16)) +
theme_grey() +
theme(panel.border = element_rect(fill = NA, colour = "black", size = 1),
axis.text = element_text(size = 12, colour = "black"),
axis.ticks = element_line(colour = "black"))
ggsave("graph/HCA.pdf", height = 9, width = 9)
# 6. Create ordiplot for MDS results --------------------------------------
# Load data
load("data/all_anom_MDS.Rdata")
load("data/all_anom_env.Rdata")
load("data/SACTN/SACTN_events.Rdata")
SACTN_events$type <- NULL
# load("data/node_means.Rdata")
# load("data/node_all_anom.Rdata")
## Fit environmental variables
ord_fit <- envfit(all_anom_MDS ~ season + type, data = all_anom_env)
# ord_fit
ord_fit_df <- as.data.frame(ord_fit$factors$centroids)
ord_fit_df$factors <- c("autumn", "spring", "summer", "winter", "clim", "MHW")
# Merge event values
# SACTN_events_sub <- SACTN_events[,c(1,2)]
all_anom_env <- left_join(all_anom_env, SACTN_events, by = c("event", "season"))
# Create MDS dataframe
# mds_df <- data.frame(all_anom_MDS$points, type = all_anom_env$type,
# event = all_anom_env$event, season = all_anom_env$season)
mds_df <- data.frame(all_anom_MDS$points, all_anom_env)
mds_df$duration[is.na(mds_df$duration)] <- mean(mds_df$duration, na.rm = T)
# Plot the fits
ggplot(data = mds_df, aes(x = MDS1, y = MDS2)) +
geom_point(aes(colour = season, shape = type, size = duration)) +
geom_segment(data = ord_fit_df, aes(x = 0, y = 0, xend = NMDS1, yend = NMDS2),
arrow = arrow(angle = 40, length = unit(0.2, "cm"), type = "open"),
alpha = 1, colour = "black", size = 0.5) +
geom_text(data = ord_fit_df, aes(label = factors, x = NMDS1, y = NMDS2), size = 8) +
scale_shape_manual(name = "State", values = c(19, 15), labels = c("clim", "MHW")) +
scale_colour_discrete(name = "Season") +
scale_size_continuous(name = "Duration\n(days)", breaks = c(20, 70, 120, 170, 220)) +
guides(colour = guide_legend(order = 1),
shape = guide_legend(order = 2),
size = guide_legend(override.aes = list(shape = 15), order = 3)) +
# labs(size = "Duration") +
theme_grey() +
theme(strip.background = element_rect(fill = NA),
panel.border = element_rect(fill = NA, colour = "black", size = 1),
axis.text = element_text(size = 12, colour = "black"),
axis.ticks = element_line(colour = "black"))
ggsave("graph/MDS.pdf", height = 9, width = 12)
# Linear model: duration vs. ordination from centre point
lm_all_results <- mds_df %>%
na.omit() %>%
mutate(MDS2 = abs(MDS2)) %>%
select(-MDS1, -event, -season, -type, -coast, -site) %>%
gather(key = group,
value = measurement,
-MDS2) %>%
group_by(group) %>%
nest() %>%
mutate(model = purrr::map(data, ~lm(measurement ~ MDS2, data = .))) %>%
unnest(model %>% purrr::map(glance)) %>%
select(-data, -model)
lm_all_results[lm_all_results$adj.r.squared == max(lm_all_results$adj.r.squared, na.rm = T),]
# Visualization of the best linear model
ggplot(data = mds_df) +
geom_smooth(aes(x = duration, y = abs(MDS2)), method = "lm", se = F) +
theme_grey()
# 7. Create map of study area ---------------------------------------------
## Load data
# International borders
load("graph/africa_borders.Rdata")
# Hi-res bathy
load("graph/bathy.Rdata")
# Reanalysis data
load("data/ERA/ERA_temp_clim.Rdata")
load("data/ERA/ERA_u_clim.Rdata")
colnames(ERA_u_clim)[4] <- "val"
ERA_u_clim$variable <- "u"
load("data/ERA/ERA_v_clim.Rdata")
colnames(ERA_v_clim)[4] <- "val"
ERA_v_clim$variable <- "v"
# Remote data
load("data/OISST/OISST_temp_clim.Rdata")
load("data/AVISO/AVISO_u_clim.Rdata")
colnames(AVISO_u_clim)[4] <- "val"
AVISO_u_clim$variable <- "u"
load("data/AVISO/AVISO_v_clim.Rdata")
colnames(AVISO_v_clim)[4] <- "val"
AVISO_v_clim$variable <- "v"
# In situ time series locations
load("setupParams/SACTN_site_list.Rdata")
SACTN_site_list$order <- 1:nrow(SACTN_site_list)
# Create annual mean air-sea state
# sea_temp <- filter(OISST_temp_clim, date == "01-15") %>%
sea_temp <- data.table::data.table(OISST_temp_clim)
sea_temp <- sea_temp[, .(temp = mean(temp, na.rm = TRUE)),
by = .(x, y)] %>%
rename(lon = x, lat = y)
currents <- data.table::data.table(rbind(AVISO_u_clim, AVISO_v_clim))
currents <- currents[, .(val = mean(val, na.rm = TRUE)),
by = .(x, y, variable)] %>%
spread(key = variable, value = val) %>%
rename(lon = x, lat = y) %>%
mutate(arrow_size = ((abs(u*v)/ max(abs(u*v)))+0.2)/6)
air_temp <- data.table::data.table(ERA_temp_clim)
air_temp <- air_temp[, .(temp = mean(temp, na.rm = TRUE)),
by = .(x, y)] %>%
rename(lon = x, lat = y)
winds <- data.table::data.table(rbind(ERA_u_clim, ERA_v_clim))
winds <- winds[, .(val = mean(val, na.rm = TRUE)),
by = .(x, y, variable)] %>%
spread(key = variable, value = val) %>%
rename(lon = x, lat = y) %>%
mutate(arrow_size = ((abs(u*v)/ max(abs(u*v)))+0.3)/6)
# Reduce wind/ current vectors
lon_sub <- seq(10, 40, by = 1)
lat_sub <- seq(-40, -15, by = 1)
# currents <- currents[(currents$lon %in% lon_sub & currents$lat %in% lat_sub),]
winds <- winds[(winds$lon %in% lon_sub & winds$lat %in% lat_sub),]
# Establish the vector scalar for the currents
current_uv_scalar <- 2
# Establish the vector scalar for the wind
wind_uv_scalar <- 0.5
# Wind feature vector coordinates
cyc_atlantic <- data.frame(x = c(14.0, 16.1, 16.0), y = c(-36.0, -34.4, -32.1), xend = c(16.0, 16.1, 14.0), yend = c(-34.5, -32.2, -30.6))
cyc_indian <- data.frame(x = c(36.0, 33.9, 34.0), y = c(-31.5, -33.1, -35.4), xend = c(34.0, 33.9, 36.0), yend = c(-33.0, -35.3, -36.9))
westerlies <- data.frame(x = c(18.0, 21.1, 24.2), y = c(-38.0, -37.8, -37.8), xend = c(21.0, 24.1, 27.2), yend = c(-37.8, -37.8, -38.0))
# The top figure (sea)
fig_1_top <- ggplot(data = southern_africa_coast, aes(x = lon, y = lat)) +
# The ocean temperature
geom_raster(data = sea_temp, aes(fill = temp)) +
# The bathymetry
stat_contour(data = bathy[bathy$depth < -100 & bathy$depth > -300,],
aes(x = lon, y = lat, z = depth), alpha = 0.5,
colour = "ivory", size = 0.5, binwidth = 200, na.rm = TRUE, show.legend = FALSE) +
# The current vectors
geom_segment(data = currents, aes(xend = lon + u * current_uv_scalar, yend = lat + v * current_uv_scalar),
arrow = arrow(angle = 40, length = unit(currents$arrow_size, "cm"), type = "open"),
linejoin = "mitre", size = 0.4) +
# The land mass
geom_polygon(aes(group = group), fill = "grey70", colour = "black", size = 0.5, show.legend = FALSE) +
geom_path(data = africa_borders, aes(group = group)) +
# The legend for the vector length
geom_label(aes(x = 37.0, y = -38.0, label = "1.0 m/s\n"), size = 3, label.padding = unit(0.5, "lines")) +
geom_segment(aes(x = 36.0, y = -38.3, xend = 38.0, yend = -38.3), linejoin = "mitre",
arrow = arrow(angle = 40, length = unit(0.2, "cm"), type = "open")) +
# The in situ sites
geom_point(data = SACTN_site_list, shape = 19, size = 2.8, colour = "ivory") +
geom_text(data = SACTN_site_list[-c(3,4,7:9,18,21,23:24),], aes(label = order), size = 1.9, colour = "red") +
# Oceans
annotate("text", label = "INDIAN\nOCEAN", x = 37.00, y = -34.0, size = 4.0, angle = 0, colour = "ivory") +
annotate("text", label = "ATLANTIC\nOCEAN", x = 13.10, y = -34.0, size = 4.0, angle = 0, colour = "ivory") +
# Benguela
geom_segment(aes(x = 17.2, y = -32.6, xend = 15.2, yend = -29.5),
arrow = arrow(length = unit(0.3, "cm")), size = 0.5, colour = "ivory") +
annotate("text", label = "Benguela", x = 16.0, y = -31.8, size = 3.5, angle = 298, colour = "ivory") +
# Agulhas
geom_segment(aes(x = 33, y = -29.5, xend = 29.8, yend = -33.0),
arrow = arrow(length = unit(0.3, "cm")), size = 0.5, colour = "ivory") +
annotate("text", label = "Agulhas", x = 31.7, y = -31.7, size = 3.5, angle = 53, colour = "ivory") +
# Agulhas Bank
annotate("text", label = "Agulhas\nBank", x = 22.5, y = -35.5, size = 3.0, angle = 0, colour = "ivory") +
# Cape Peninsula
annotate("text", label = "Cape\nPeninsula", x = 17.2, y = -35, size = 3.0, angle = 0, colour = "ivory") +
# Improve on the x and y axis labels
scale_x_continuous(breaks = seq(15, 35, 5),
labels = scales::unit_format("°E", sep = ""),
position = "top") +
scale_y_continuous(breaks = seq(-35, -30, 5),
labels = c("35°S", "30°S")) +
labs(x = NULL, y = NULL) +
# Slightly shrink the plotting area
coord_cartesian(xlim = c(10.5, 39.5), ylim = c(-39.5, -25.5), expand = F) +
# Use viridis colour scheme
scale_fill_viridis(name = "Temp.\n(°C)", option = "D", breaks = c(24, 20, 16)) +
# Adjust the theme
theme_bw() +
theme(panel.border = element_rect(fill = NA, colour = "black", size = 1),
axis.text = element_text(size = 12, colour = "black"),
axis.ticks = element_line(colour = "black"))
# fig_1_top
# False Bay inset
fb_inset <- ggplot(data = sa_shore, aes(x = lon, y = lat)) +
# The land mass
geom_polygon(aes(group = PID),
fill = "grey70", colour = NA, size = 0.5, show.legend = FALSE) +
# The in situ sites
geom_point(data = SACTN_site_list, shape = 1, size = 3, colour = "black") +
geom_text(data = SACTN_site_list[-6,], aes(label = order), size = 2.0, colour = "red") +
# Text label
geom_text(aes(x = 18.65, y = -34.25, label = "False\nBay"), size = 2.7) +
# Control the x and y axes
coord_cartesian(xlim = c(18.2, 19), ylim = c(-34.5, -33.8), expand = F) +
scale_x_continuous(breaks = c(18.5), label = "18.5°E") +
scale_y_continuous(breaks = c(-34.1), label = "34.1°S") +
labs(x = NULL, y = NULL) +
# Change the theme for cleaner over-plotting
theme_bw() +
theme(plot.background = element_blank(),
axis.text = element_text(colour = "ivory"),
axis.text.y = element_text(angle = 90, hjust = 0.5),
axis.ticks = element_line(colour = "ivory"),
panel.border = element_rect(colour = "ivory"),
panel.grid = element_blank())
# fb_inset
# The bottom figure (air)
fig_1_bottom <- ggplot(data = southern_africa_coast, aes(x = lon, y = lat)) +
# The ocean temperature
geom_raster(data = air_temp, aes(fill = temp)) +
# The land mass
geom_polygon(aes(group = group), fill = NA, colour = "black", size = 0.5, show.legend = FALSE) +
geom_path(data = africa_borders, aes(group = group)) +
# The current vectors
geom_segment(data = winds, aes(xend = lon + u * wind_uv_scalar, yend = lat + v * wind_uv_scalar),
arrow = arrow(angle = 40, length = unit(winds$arrow_size, "cm"), type = "open"),
linejoin = "mitre", size = 0.4) +
# The legend for the vector length
geom_label(aes(x = 37.0, y = -38.0, label = "4.0 m/s\n"), size = 3, label.padding = unit(0.5, "lines")) +
geom_segment(aes(x = 36.0, y = -38.3, xend = 38.0, yend = -38.3), linejoin = "mitre",
arrow = arrow(angle = 40, length = unit(0.2, "cm"), type = "open")) +
# The coastal sections
geom_spoke(aes(x = 18.46520, y = -34.31050, angle = 180, radius = -2), linetype = "dotted", colour = "ivory") +
geom_spoke(aes(x = 18.46520, y = -34.31050, angle = 180, radius = 2), linetype = "dotted", colour = "ivory") +
geom_spoke(aes(x = 27.48889, y = -33.28611, angle = 40, radius = -2), linetype = "dotted", colour = "ivory") +
geom_spoke(aes(x = 27.48889, y = -33.28611, angle = 40, radius = 2), linetype = "dotted", colour = "ivory") +
annotate("text", label = "West\nCoast", x = 19.5, y = -31.2, size = 3.0, angle = 0, colour = "ivory") +
annotate("text", label = "South\nCoast", x = 23, y = -33.0, size = 3.0, angle = 0, colour = "ivory") +
annotate("text", label = "East\nCoast", x = 28, y = -31, size = 3.0, angle = 0, colour = "ivory") +
# South Atlantic Anticyclone
annotate("text", label = "SOUTH\nATLANTIC\nANTICYCLONE", x = 13.5, y = -33.5, size = 3.0, angle = 0, colour = "ivory") +
geom_curve(data = cyc_atlantic, aes(x = x, y = y, xend = xend, yend = yend), curvature = 0.2, colour = "ivory",
arrow = arrow(angle = 40, type = "open", length = unit(0.25,"cm"))) +
# South Indian Anticyclone
annotate("text", label = "SOUTH\nINDIAN\nANTICYCLONE", x = 36.5, y = -34.0, size = 3.0, angle = 0, colour = "ivory") +
geom_curve(data = cyc_indian, aes(x = x, y = y, xend = xend, yend = yend), curvature = 0.2, colour = "ivory",
arrow = arrow(angle = 40, type = "open", length = unit(0.25,"cm"))) +
# Westerlies
annotate("text", label = "WESTERLIES", x = 22.5, y = -37.0, size = 3.0, angle = 0, colour = "ivory") +
geom_curve(data = westerlies, aes(x = x, y = y, xend = xend, yend = yend), colour = "ivory",
arrow = arrow(angle = 40, type = "open", length = unit(0.25,"cm")), curvature = -0.01) +
# Improve on the x and y axis labels
scale_x_continuous(breaks = seq(15, 35, 5),
labels = scales::unit_format("°E", sep = "")) +
scale_y_continuous(breaks = seq(-35, -30, 5),
labels = c("35°S", "30°S")) +
labs(x = NULL, y = NULL) +
# Scale bar
scaleBar(lon = 22.0, lat = -29.5, distanceLon = 200, distanceLat = 50, distanceLegend = 90, dist.unit = "km",
arrow.length = 100, arrow.distance = 130, arrow.North.size = 3,
legend.colour = "ivory", arrow.colour = "ivory", N.colour = "ivory") +
# Slightly shrink the plotting area
coord_cartesian(xlim = c(10.5, 39.5), ylim = c(-39.5, -25.5), expand = F) +
# Use viridis colour scheme
scale_fill_viridis(name = "Temp.\n(°C)", option = "A", breaks = c(24, 20, 16)) +
# Adjust the theme
theme_bw() +
theme(panel.border = element_rect(fill = NA, colour = "black", size = 1),
axis.text = element_text(size = 12, colour = "black"),
axis.ticks = element_line(colour = "black"))
# fig_1_bottom
# Convert the figures to grobs
fig_1_top_grob <- ggplotGrob(fig_1_top)
fb_inset_grob <- ggplotGrob(fb_inset)
fig_1_bottom_grob <- ggplotGrob(fig_1_bottom)
# Stick them together
fig_1 <- ggplot() +
# First set the x and y axis values so we know what the ranges are
# in order to make it easier to place our facets
coord_equal(xlim = c(1, 10), ylim = c(1, 10), expand = F) +
# Then we place our facetsover one another using the coordinates we created
annotation_custom(fig_1_top_grob,
xmin = 1, xmax = 10, ymin = 5.5, ymax = 10) +
annotation_custom(fb_inset_grob,
xmin = 3.5, xmax = 5.5, ymin = 7.2, ymax = 8.8) +
annotation_custom(fig_1_bottom_grob,
xmin = 1, xmax = 10, ymin = 1, ymax = 5.5)
# save
ggsave(plot = fig_1, filename = "graph/fig_1.pdf", height = 8, width = 8)