-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcnn_train.py
210 lines (158 loc) · 7.62 KB
/
cnn_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
import torch.backends.cudnn as cudnn
import torchvision
from torchvision import datasets, models, transforms
import os
import copy
import torch.onnx as torch_onnx
from torch.autograd import Variable
from config import cfg
import wandb
from tqdm import tqdm
from time import sleep
from log_data import model_configs, wandb_logs, get_accuracy
from model_training.early_stop import EarlyStopping
from model_training.model_architecture import ModelArchitecture
cudnn.benchmark = True
wandb.login() #login to wandb account
class CNN_Trainer():
def __init__(self,image_dir,
data_transforms) -> None:
'''
load the images from the folder and use data transforms
image_dir : path of the image folder
data_transforms : data transforms
'''
self.image_dir = image_dir
self.data_transforms = data_transforms
self.image_datasets = {x: datasets.ImageFolder(os.path.join(self.image_dir, x),
self.data_transforms[x])
for x in ['train', 'val']}
self.dataset_sizes = {x: len(self.image_datasets[x]) for x in ['train', 'val']}
self.class_names = self.image_datasets['train'].classes
self.checkpoints_dir = os.path.join("models", os.path.basename(self.image_dir))
try:
os.makedirs(self.checkpoints_dir, exist_ok=True)
except OSError:
pass
with open(os.path.join(self.checkpoints_dir,'classes.txt'), 'w') as f:
for i,data in enumerate(self.class_names):
f.write("%s\n" % data)
def train_model(self,model, criterion,
optimizer, scheduler, num_epochs=25,
batch_size=4,
shuffle=True,num_workers=4,patience=10,min_delta=0,use_early_stopping=True):
dataloaders = {x: torch.utils.data.DataLoader(self.image_datasets[x], batch_size=batch_size,
shuffle=shuffle, num_workers=num_workers)
for x in ['train', 'val']}
device = torch.device(f"cuda:{cfg.device}" if torch.cuda.is_available() else "cpu")
inputs, classes = next(iter(dataloaders['train']))
out = torchvision.utils.make_grid(inputs)
# Loard pre-trained model
model_ = ModelArchitecture(model=cfg.model)
model = model_.getModel(model,len(self.class_names))
model = model.to(device)
# wandb initialization
wandb.init(project=f"simple_cnn-{os.path.basename(self.image_dir)}".replace("/", "-"), config=cfg)
images = wandb.Image(out, caption=f"Sample_Batch-{os.path.basename(self.image_dir)}")
wandb.watch(model, criterion, log="all", log_freq=10)
wandb.log({"images": images
})
model_configs(cfg=cfg,classes=self.class_names)
early_stopping = EarlyStopping(patience=cfg.patience, min_delta=cfg.min_delta)
best_model_wts = copy.deepcopy(model.state_dict())
best_acc = 0.0
for epoch in range(num_epochs):
print(f'Epoch {epoch+1}')
for phase in ['train', 'val']:
if phase == 'train':
model.train() # training mode
else:
model.eval() # evaluate mode
running_loss = 0.0
running_corrects = 0
# Iterate over data.
for inputs, labels in tqdm(dataloaders[phase]):
sleep(0.01)
inputs = inputs.to(device)
labels = labels.to(device)
optimizer.zero_grad()
with torch.set_grad_enabled(phase == 'train'):
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
loss = criterion(outputs, labels)
if phase == 'train':
loss.backward()
optimizer.step()
# statistics and wandb logs
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
if phase == 'train':
scheduler.step()
epoch_loss = running_loss / self.dataset_sizes[phase]
epoch_acc = running_corrects.double() / self.dataset_sizes[phase]
get_accuracy(phase,epoch_loss,epoch_acc)
wandb_logs(phase,epoch_loss,epoch_acc) # wandb log loss and accuracy
# deep copy the model
if phase == 'val':
if cfg.use_early_stopping:
early_stopping(epoch_acc,epoch)
if epoch_acc > best_acc:
best_acc = epoch_acc
best_model_wts = copy.deepcopy(model.state_dict())
if cfg.use_early_stopping and early_stopping.early_stop:
break
print()
# load best model weights and return for export
model.load_state_dict(best_model_wts)
return model
def onnx_export(self,model,img_size=224,c_in=3,):
'''
Export the onnx model from the best weight file,
model : trained model
img_size : train image size
c_in : colour channels (r,g,b)
'''
input_shape = (c_in, img_size, img_size)
model_prefix = os.path.basename(self.image_dir) + "_" + cfg.model
counter = 1
while os.path.exists(os.path.join(self.checkpoints_dir, f'{model_prefix + "_exp_" + str(counter)}.onnx')):
counter += 1
#
# if you are using cpu for training use dummy input as
# dummy_input = Variable(torch.randn(1, *input_shape))
#
dummy_input = Variable(torch.randn(1, *input_shape,device="cuda"))
torch_onnx.export(model,
dummy_input,
os.path.join(self.checkpoints_dir,f'{model_prefix + "_exp_" + str(counter)}.onnx'),
verbose=False)
print(f"{model_prefix}_exp_" + str(counter)+ ".onnx model successfully exported !")
if __name__ == '__main__':
data_transforms = {
'train': transforms.Compose([
transforms.Resize((cfg.image_size,cfg.image_size)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
'val': transforms.Compose([
transforms.Resize((cfg.image_size,cfg.image_size)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
}
train_CNN = CNN_Trainer(cfg.data_dir,data_transforms)
# model initilization
model = getattr(models, cfg.model)(pretrained=cfg.pretrained)
loss_criterion = getattr(nn, cfg.loss_criterion)()
optimizer = getattr(optim, cfg.optimizer)(model.parameters(),
lr=cfg.learning_rate, momentum=cfg.momentum,
weight_decay=cfg.weight_decay)
# Decay Learning Rate
exp_lr_scheduler = getattr(lr_scheduler, cfg.lr_scheduler)(optimizer, step_size=cfg.steps, gamma=cfg.gamma)
cnn_model = train_CNN.train_model(model,loss_criterion,optimizer,exp_lr_scheduler,num_epochs=cfg.epochs,batch_size=cfg.batch_size)
# export the ONNX model
train_CNN.onnx_export(cnn_model,img_size=cfg.image_size)