-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path5-26-2.py
45 lines (34 loc) · 1.23 KB
/
5-26-2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
from math import *
import numpy as np
import matplotlib.pyplot as plt
import my_module as mm
A = np.array([[2,1,4,1],[3,4,-1,-1],[1,-4,1,5],[2,-2,1,3]],float)
v = np.array([-4,3,9,7],float)
M = len(v)
## Gauss-Jordan elimination 만약에 A[i,j] 가 0이면 나눌 수 없으므로 이런 pivotting 과정을 거쳐서 해결해줌
for i in range(M):
# partial Pivotting
max_el = abs(A[i,i])
loc_max_el = i
for j in range(i+1, M): # j in also an index for rows
if abs(A[j,i]) > max_el:
max_el = abs(A[j,i])
loc_max_el = j
if loc_max_el != i:
for k in range(M):
A[i,k], A[loc_max_el,k] = A[loc_max_el,k], A[i,k]
v[i], v[loc_max_el] = v[loc_max_el], v[i]
div = A[i,i] ## 맨 앞 숫자 1로 만들어주기
A[i,:]/= div
v[i] /= div
for j in range(i+1, M): # j in also an index for rows
mul = A[j,i]
A[j,:] -= mul * A[i,:] ### A[i,:] == Ath row []
v[j] -= mul * v[i]
# back substitution
x = np.zeros_like(v, float)
for i in range(M-1, -1, -1):
x[i] = v[i]
for j in range(i+1, M):
x[i] -= A[i,j] * x[j] ## x_i = v[i] - sigma(a[i,j] *x[j])
print("x = ", x)