首先要介绍的就是使用 defer 最常见的场景,也就是在 defer 关键字中完成一些收尾的工作,例如在 defer 中回滚一个数据库的事务:
func createPost(db *gorm.DB) error {
tx := db.Begin()
defer tx.Rollback()
if err := tx.Create(&Post{Author: "Draveness"}).Error; err != nil {
return err
}
return tx.Commit().Error
}
在使用数据库事务时,我们其实可以使用如上所示的代码在创建事务之后就立刻调用 Rollback 保证事务一定会回滚,哪怕事务真的执行成功了,那么在调用 tx.Commit() 之后再执行 tx.Rollback() 其实也不会影响已经提交的事务。
当我们在一个 for 循环中使用 defer 时也会在退出函数之前执行其中的代码,下面的代码总共调用了五次 defer 关键字:
func main() {
for i := 0; i < 5; i++ {
defer fmt.Println(i)
}
}
$ go run main.go
4
3
2
1
0
Go 语言中所有的函数调用其实都是值传递的,defer 虽然是一个关键字,但是也继承了这个特性,假设我们有以下的代码,在运行这段代码时会打印出 0:
type Test struct {
value int
}
func (t Test) print() {
println(t.value)
}
func main() {
test := Test{}
defer test.print()
test.value += 1
}
$ go run main.go
0
这其实表明当 defer 调用时其实会对函数中引用的外部参数进行拷贝,所以 test.value += 1 操作并没有修改被 defer 捕获的 test 结构体,不过如果我们修改 print 函数签名的话,其实结果就会稍有不同:
type Test struct {
value int
}
func (t *Test) print() {
println(t.value)
}
func main() {
test := Test{}
defer test.print()
test.value += 1
}
$ go run main.go
1
func f() (result int) {
defer func() {
result++
}()
return 0
}
func f() (r int) {
t := 5
defer func() {
t=t+5
}()
return t
}
func f() (r int) {
defer func(r int) {
r=r+5
}(r)
return 1
}
使用defer时,用一个简单的转换规则改写一下,就不会迷糊了。改写规则是将return语句拆成两句写,return xxx会被改 写成:
返回值 = xxx
调用defer函数
空的return
先看例1,它可以改写成这样:
func f() (result int) {
result = 0 //return语句不是一条原子调用,return xxx其实是赋值+ret指令
func() { //defer被插入到return之前执行,也就是赋返回值和ret指令之间
result++
}()
return
}
所以这个返回值是1。
再看例2,它可以改写成这样:
func f() (r int) {
t := 5
r = t
func() {
t=t+5
}()
return
}
所以这个的结果是5。
最后看例3,它改写后变成:
func f() (r int) {
r = 1
func(r int) {
r=r+5
}(r)
return 1
}
所以这个例子的结果是1。
type _defer struct {
siz int32
started bool
sp uintptr
pc uintptr
fn *funcval
_panic *_panic
link *_defer
}
在 _defer 结构中的 sp 和 pc 分别指向了栈指针和调用方的程序计数器,fn 存储的就是向 defer 关键字中传入的函数了。
在 Go 语言的编译期间,编译器不仅将 defer 转换成了 deferproc 的函数调用,还在所有调用 defer 的函数结尾(返回之前)插入了 deferreturn。
每一个 defer 关键字都会被转换成 deferproc,在这个函数中我们会为 defer 创建一个新的 _defer 结构体并设置它的 fn、pc 和 sp 参数,除此之外我们会将 defer 相关的函数都拷贝到紧挨着结构体的内存空间中:
func deferproc(siz int32, fn *funcval) {
sp := getcallersp()
argp := uintptr(unsafe.Pointer(&fn)) + unsafe.Sizeof(fn)
callerpc := getcallerpc()
d := newdefer(siz)
if d._panic != nil {
throw("deferproc: d.panic != nil after newdefer")
}
d.fn = fn
d.pc = callerpc
d.sp = sp
switch siz {
case 0:
case sys.PtrSize:
*(*uintptr)(deferArgs(d)) = *(*uintptr)(unsafe.Pointer(argp))
default:
memmove(deferArgs(d), unsafe.Pointer(argp), uintptr(siz))
}
return0()
}
上述函数最终会使用 return0 返回,这个函数的主要作用就是避免在 deferproc 函数中使用 return 返回时又会导致 deferreturn 函数的执行,这也是唯一一个不会触发 defer 的函数了。
deferproc 中调用的 newdefer 主要作用就是初始化或者取出一个新的 _defer 结构体:
func newdefer(siz int32) *_defer {
var d *_defer
sc := deferclass(uintptr(siz))
gp := getg()
if sc < uintptr(len(p{}.deferpool)) {
pp := gp.m.p.ptr()
if len(pp.deferpool[sc]) == 0 && sched.deferpool[sc] != nil {
lock(&sched.deferlock)
for len(pp.deferpool[sc]) < cap(pp.deferpool[sc])/2 && sched.deferpool[sc] != nil {
d := sched.deferpool[sc]
sched.deferpool[sc] = d.link
d.link = nil
pp.deferpool[sc] = append(pp.deferpool[sc], d)
}
unlock(&sched.deferlock)
}
if n := len(pp.deferpool[sc]); n > 0 {
d = pp.deferpool[sc][n-1]
pp.deferpool[sc][n-1] = nil
pp.deferpool[sc] = pp.deferpool[sc][:n-1]
}
}
if d == nil {
total := roundupsize(totaldefersize(uintptr(siz)))
d = (*_defer)(mallocgc(total, deferType, true))
}
d.siz = siz
d.link = gp._defer
gp._defer = d
return d
}
从最后的一小段代码我们可以看出,所有的 _defer
结构体都会关联到所在的 Goroutine 上并且每创建一个新的 _defer
都会追加到协程持有的 _defer
链表的最前面。
deferreturn 其实会从 Goroutine 的链表中取出链表最前面的 _defer 结构体并调用 jmpdefer 函数并传入需要执行的函数和参数:
func deferreturn(arg0 uintptr) {
gp := getg()
d := gp._defer
if d == nil {
return
}
sp := getcallersp()
switch d.siz {
case 0:
case sys.PtrSize:
*(*uintptr)(unsafe.Pointer(&arg0)) = *(*uintptr)(deferArgs(d))
default:
memmove(unsafe.Pointer(&arg0), deferArgs(d), uintptr(d.siz))
}
fn := d.fn
d.fn = nil
gp._defer = d.link
freedefer(d)
jmpdefer(fn, uintptr(unsafe.Pointer(&arg0)))
}
jmpdefer 其实是一个用汇编语言实现的函数,在不同的处理器架构上的实现稍有不同,但是具体的执行逻辑都差不太多,它们的工作其实就是跳转到并执行 defer 所在的代码段并在执行结束之后跳转回 defereturn 函数。
TEXT runtime·jmpdefer(SB), NOSPLIT, $0-8
MOVL fv+0(FP), DX // fn
MOVL argp+4(FP), BX // caller sp
LEAL -4(BX), SP // caller sp after CALL
#ifdef GOBUILDMODE_shared
SUBL $16, (SP) // return to CALL again
#else
SUBL $5, (SP) // return to CALL again
#endif
MOVL 0(DX), BX
JMP BX // but first run the deferred function