This repository has been archived by the owner on Jan 2, 2025. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsortleaders.py
92 lines (72 loc) · 3.01 KB
/
sortleaders.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
import numpy as np
import pandas as pd
def create_leader_groups(path, num_groups,num_se_groups):
inputdf = pd.read_csv(path)
# replace "U" and "A" genders with a random choice of {"F", "M"}
genders = ["M", "F"]
inputdf['gender'] = inputdf['gender'].replace("U", np.random.choice(genders, 1)[0])
inputdf['gender'] = inputdf['gender'].replace("A", np.random.choice(genders, 1)[0])
# program bins
arch = ["AE", "ARCH"]
civ = ["CIVE", "GEO", "ENV"]
ece = ["COMP", "ECE"]
mech = ["MECH", "TRON"]
bins = [arch, civ, ece, mech]
# use anonymous function to rename program to their parent programs concatenated by "/"
for bin in bins:
inputdf['program'] = inputdf.apply(lambda x: "/".join(bin) if x['program'] in bin else x['program'], axis=1)
df = inputdf
# assign leaders to gorups
df = df.sort_values(by=['program', 'gender', 'returnBig', 'returnHuge'])
group = 0
se_group = 0
group_size = int(inputdf.shape[0]/num_groups)
group_count = [0] * num_groups
for i, row in df.iterrows():
if row['program'] == 'SE':
df.at[i, 'group'] = se_group + 1
if se_group == num_se_groups - 1:
se_group = 0
else:
se_group += 1
else:
if group_count[group] < group_size:
df.at[i, 'group'] = group + 1
group_count[group] += 1
else:
while group_count[group] > group_size:
group += 1
df.at[i, 'group'] = group + 1
group_count[group] += 1
if group == num_groups - 1:
group = 0
else:
group += 1
# anti requests
df['watIam'] = df['watIam']
antiDF = df[df['anti1'].notnull()]
antiDF['anti1group'] = ""
antiDF['anti2group'] = ""
# get the group that your anti request belongs
for i, row in antiDF.iterrows():
# searches df for name and fetches their respective group
antiDF['anti1group'][i] = df[df['watIam'] == row['anti1']]['group'].values
antiDF['anti2group'][i] = df[df['watIam'] == row['anti2']]['group'].values
# handle case when name not found
if antiDF['anti1group'][i].size == 0:
antiDF['anti1group'][i] = [0]
antiDF['anti1group'][i] = antiDF['anti1group'][i][0]
if antiDF['anti2group'][i].size == 0:
antiDF['anti2group'][i] = [0]
antiDF['anti2group'][i] = antiDF['anti2group'][i][0]
# move anti-requests in antiDF
groups = list(range(1, num_groups + 1))
antiDF['group'] = antiDF.apply(
lambda x: np.random.choice(list(set(groups) - set(antiDF['anti1group']) - set(antiDF['anti2group'])), 1)[0] if
x['group'] == x[
'anti1group'] else x['group'], axis=1)
# apply changes to entire dataframe
anti_free_df = df.copy()
for i, row in antiDF.iterrows():
anti_free_df['group'][i] = antiDF['group'][i]
return anti_free_df