-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval_poses.py
executable file
·365 lines (267 loc) · 13 KB
/
eval_poses.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
#!/usr/bin/env python3
# Copyright © Niantic, Inc. 2024.
import argparse
import logging
import math
import random
from collections import namedtuple
from distutils.util import strtobool
from pathlib import Path
import cv2
import numpy as np
from scipy.spatial.transform import Rotation
import eval_poses_util as tutil
from ace_pose import dataset_io
_logger = logging.getLogger(__name__)
def _strtobool(x):
return bool(strtobool(x))
TestEstimate = namedtuple("TestEstimate", [
"pose_est",
"pose_gt",
"focal_length",
"confidence",
"image_file"
])
def kabsch(pts1, pts2, estimate_scale=False):
c_pts1 = pts1 - pts1.mean(axis=0)
c_pts2 = pts2 - pts2.mean(axis=0)
covariance = np.matmul(c_pts1.T, c_pts2) / c_pts1.shape[0]
U, S, VT = np.linalg.svd(covariance)
d = np.sign(np.linalg.det(np.matmul(VT.T, U.T)))
correction = np.eye(3)
correction[2, 2] = d
if estimate_scale:
pts_var = np.mean(np.linalg.norm(c_pts2, axis=1) ** 2)
scale_factor = pts_var / np.trace(S * correction)
else:
scale_factor = 1.
R = scale_factor * np.matmul(np.matmul(VT.T, correction), U.T)
t = pts2.mean(axis=0) - np.matmul(R, pts1.mean(axis=0))
T = np.eye(4)
T[:3, :3] = R
T[:3, 3] = t
return T, scale_factor
def print_hyp(hypothesis, hyp_name):
h_translation = np.linalg.norm(hypothesis['transformation'][:3, 3])
h_angle = np.linalg.norm(Rotation.from_matrix(hypothesis['transformation'][:3, :3]).as_rotvec()) * 180 / math.pi
_logger.debug(f"{hyp_name}: score={hypothesis['score']}, translation={h_translation:.2f}m, "
f"rotation={h_angle:.1f}deg.")
def get_inliers(h_T, poses_gt, poses_est, inlier_threshold_t, inlier_threshold_r):
# h_T aligns ground truth poses with estimates poses
poses_gt_transformed = h_T @ poses_gt
# calculate differences in position and rotations
translations_delta = poses_gt_transformed[:, :3, 3] - poses_est[:, :3, 3]
rotations_delta = poses_gt_transformed[:, :3, :3] @ poses_est[:, :3, :3].transpose([0, 2, 1])
# translation inliers
inliers_t = np.linalg.norm(translations_delta, axis=1) < inlier_threshold_t
# rotation inliers
inliers_r = Rotation.from_matrix(rotations_delta).magnitude() < (inlier_threshold_r / 180 * math.pi)
# intersection of both
return np.logical_and(inliers_r, inliers_t)
def estimate_alignment(estimates,
confidence_threshold,
min_cofident_estimates=10,
inlier_threshold_t=0.05,
inlier_threshold_r=5,
ransac_iterations=10000,
refinement_max_hyp=12,
refinement_max_it=8,
estimate_scale=False
):
_logger.debug("Estimate transformation between pose estimates and ground truth.")
# Filter estimates using confidence threshold
valid_estimates = [estimate for estimate in estimates if ((not np.any(np.isinf(estimate.pose_gt))) and (not np.any(np.isnan(estimate.pose_gt))))]
confident_estimates = [estimate for estimate in valid_estimates if estimate.confidence > confidence_threshold]
num_confident_estimates = len(confident_estimates)
_logger.debug(f"{num_confident_estimates} estimates considered confident.")
if num_confident_estimates < min_cofident_estimates:
_logger.debug("Too few confident estimates. Aborting alignment.")
return None, 1
# gather estimated and ground truth poses
poses_est = np.ndarray((num_confident_estimates, 4, 4))
poses_gt = np.ndarray((num_confident_estimates, 4, 4))
for i, estimate in enumerate(confident_estimates):
poses_est[i] = estimate.pose_est
poses_gt[i] = estimate.pose_gt
# start robust RANSAC loop
ransac_hypotheses = []
for hyp_idx in range(ransac_iterations):
# sample hypothesis
min_sample_size = 3
samples = random.sample(range(num_confident_estimates), min_sample_size)
h_pts1 = poses_gt[samples, :3, 3]
h_pts2 = poses_est[samples, :3, 3]
h_T, h_scale = kabsch(h_pts1, h_pts2, estimate_scale)
# calculate inliers
inliers = get_inliers(h_T, poses_gt, poses_est, inlier_threshold_t, inlier_threshold_r)
if inliers[samples].sum() >= 3:
# only keep hypotheses if minimal sample is all inliers
ransac_hypotheses.append({
"transformation": h_T,
"inliers": inliers,
"score": inliers.sum(),
"scale": h_scale
})
if len(ransac_hypotheses) == 0:
_logger.debug("Did not fine a single valid RANSAC hypothesis, abort alignment estimation.")
return None, 1
# sort according to score
ransac_hypotheses = sorted(ransac_hypotheses, key=lambda x: x['score'], reverse=True)
for hyp_idx, hyp in enumerate(ransac_hypotheses):
print_hyp(hyp, f"Hypothesis {hyp_idx}")
# create shortlist of best hypotheses for refinement
_logger.debug(f"Starting refinement of {refinement_max_hyp} best hypotheses.")
ransac_hypotheses = ransac_hypotheses[:refinement_max_hyp]
# refine all hypotheses in the short list
for ref_hyp in ransac_hypotheses:
print_hyp(ref_hyp, "Pre-Refinement")
# refinement loop
for ref_it in range(refinement_max_it):
# re-solve alignment on all inliers
h_pts1 = poses_gt[ref_hyp['inliers'], :3, 3]
h_pts2 = poses_est[ref_hyp['inliers'], :3, 3]
h_T, h_scale = kabsch(h_pts1, h_pts2, estimate_scale)
# calculate new inliers
inliers = get_inliers(h_T, poses_gt, poses_est, inlier_threshold_t, inlier_threshold_r)
# check whether hypothesis score improved
refined_score = inliers.sum()
if refined_score > ref_hyp['score']:
ref_hyp['transformation'] = h_T
ref_hyp['inliers'] = inliers
ref_hyp['score'] = refined_score
ref_hyp['scale'] = h_scale
print_hyp(ref_hyp, f"Refinement interation {ref_it}")
else:
_logger.debug(f"Stopping refinement. Score did not improve: New score={refined_score}, "
f"Old score={ref_hyp['score']}")
break
# re-sort refined hyotheses
ransac_hypotheses = sorted(ransac_hypotheses, key=lambda x: x['score'], reverse=True)
for hyp_idx, hyp in enumerate(ransac_hypotheses):
print_hyp(hyp, f"Hypothesis {hyp_idx}")
return ransac_hypotheses[0]['transformation'], ransac_hypotheses[0]['scale']
if __name__ == '__main__':
# Setup logging.
logging.basicConfig(level=logging.INFO)
parser = argparse.ArgumentParser(
description='Compute pose error metrics for an ACE pose file using (pseudo) ground truth pose files.',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('ace_pose_file', type=Path, help='Path to an ACE pose file with one line per image.')
parser.add_argument('gt_pose_files', type=str,
help="Glob pattern for pose files, e.g. 'datasets/scene/*.txt', each file is assumed to "
"contain a 4x4 pose matrix, cam2world, correspondence with rgb files in the ACE pose "
"file is assumed by alphabetical order")
parser.add_argument('--estimate_alignment', type=_strtobool, default=True,
help='Estimate rigid body transformation between estimates and ground truth.')
parser.add_argument('--estimate_alignment_scale', type=_strtobool, default=True,
help='Estimate similarity transformation when estimating alignment')
parser.add_argument('--estimate_alignment_conf_threshold', type=float, default=500,
help='Only consider pose estimates with higher confidence when estimates the alignment.')
parser.add_argument('--pose_error_thresh_t', type=float, default=0.05,
help='Pose threshold (translation) for evaluation and alignment')
parser.add_argument('--pose_error_thresh_r', type=float, default=5,
help='Pose threshold (rotation) for evaluation and alignment')
opt = parser.parse_args()
_logger.info("Reading ACE pose file.")
with open(opt.ace_pose_file, 'r') as f:
ace_pose_data = f.readlines()
# Dict mapping file name to ACE estimate
ace_estimates = {}
# parse pose file data
for pose_line in ace_pose_data:
# image info as: file_name, q_w, q_x, q_y, q_z, t_x, t_y, t_z, focal_length, confidence
pose_tokens = pose_line.split()
# read file name and confidence
file_name = pose_tokens[0]
confidence = float(pose_tokens[-1])
# read pose
q_wxyz = [float(t) for t in pose_tokens[1:5]]
t_xyz = [float(t) for t in pose_tokens[5:8]]
# quaternion to rotation matrix
R = Rotation.from_quat(q_wxyz[1:] + [q_wxyz[0]]).as_matrix()
# construct full pose matrix
T_world2cam = np.eye(4)
T_world2cam[:3, :3] = R
T_world2cam[:3, 3] = t_xyz
# pose files contain world-to-cam but we need cam-to-world
T_cam2world = np.linalg.inv(T_world2cam)
# store ACE estimate
ace_estimates[file_name] = (T_cam2world, confidence)
_logger.info(f"Read {len(ace_estimates)} poses from: {opt.ace_pose_file}")
# sort ACE estimates by file names
sorted_ace_poses = [ace_estimates[key] for key in sorted(ace_estimates.keys())]
# load ground truth poses, sorted by file name
sorted_gt_poses = dataset_io.load_pose_files(opt.gt_pose_files)
# convert torch to numpy
sorted_gt_poses = [pose.numpy() for pose in sorted_gt_poses]
_logger.info(f"Loaded {len(sorted_gt_poses)} ground truth poses.")
# Keep track of rotation and translation errors for calculation of the median error.
rErrs = []
tErrs = []
# Percentage of frames predicted within certain threshold from their GT pose.
accuracy = 0
if opt.estimate_alignment:
# alignment needs a list of pose correspondences with confidences
pose_correspondences = []
# walk through ACE estimates and GT poses in parallel
for (ace_pose, ace_confidence), gt_pose in zip(sorted_ace_poses, sorted_gt_poses):
pose_correspondences.append((tutil.TestEstimate(
pose_est=ace_pose,
pose_gt=gt_pose,
confidence=ace_confidence,
image_file=None,
focal_length=None
)))
alignment_transformation, alignment_scale = tutil.estimate_alignment(
estimates=pose_correspondences,
confidence_threshold=opt.estimate_alignment_conf_threshold,
estimate_scale=opt.estimate_alignment_scale,
inlier_threshold_r=opt.pose_error_thresh_r,
inlier_threshold_t=opt.pose_error_thresh_t,
)
if alignment_transformation is None:
_logger.info(f"Alignment requested but failed. Setting all pose errors to {math.inf}.")
else:
alignment_transformation = np.eye(4)
alignment_scale = 1.
# Evaluation Loop
for (ace_pose, ace_confidence), gt_pose in zip(sorted_ace_poses, sorted_gt_poses):
if alignment_transformation is not None:
# Apply alignment transformation to GT pose
gt_pose = alignment_transformation @ gt_pose
# Calculate translation error.
t_err = float(np.linalg.norm(gt_pose[0:3, 3] - ace_pose[0:3, 3]))
# Correct translation scale with the inverse alignment scale (since we align GT with estimates)
t_err = t_err / alignment_scale
# Rotation error.
gt_R = gt_pose[0:3, 0:3]
out_R = ace_pose[0:3, 0:3]
r_err = np.matmul(out_R, np.transpose(gt_R))
# Compute angle-axis representation.
r_err = cv2.Rodrigues(r_err)[0]
# Extract the angle.
r_err = np.linalg.norm(r_err) * 180 / math.pi
else:
pose_gt = None
t_err, r_err = math.inf, math.inf
_logger.info(f"Rotation Error: {r_err:.2f}deg, Translation Error: {t_err * 100:.1f}cm")
# Save the errors.
rErrs.append(r_err)
tErrs.append(t_err * 100) # in cm
# Check various thresholds.
if r_err < opt.pose_error_thresh_r and t_err < opt.pose_error_thresh_t:
accuracy += 1
total_frames = len(rErrs)
assert total_frames == len(ace_estimates)
# Compute median errors.
tErrs.sort()
rErrs.sort()
median_idx = total_frames // 2
median_rErr = rErrs[median_idx]
median_tErr = tErrs[median_idx]
# Compute final precision.
accuracy = accuracy / total_frames * 100
_logger.info("===================================================")
_logger.info("Test complete.")
_logger.info(f'Accuracy: {accuracy:.1f}%')
_logger.info(f"Median Error: {median_rErr:.1f}deg, {median_tErr:.1f}cm")