This repository has been archived by the owner on Jun 26, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathexport-json.py
252 lines (186 loc) · 6.67 KB
/
export-json.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
#!/usr/bin/env python3
import json
import os
import re
import sqlite3
import sys
import dateparser
def load_image_json():
with open("images.json", "r") as f:
data = json.load(f)
images = {}
for image in data:
item_url = image.get("itemURL")
thumbnail = image.get("imageThumb")
large = image.get("imageLarge")
if not item_url:
print("Malformed row:", image, file=sys.stderr)
continue
if thumbnail == "&max=100":
thumbnail = ""
if not thumbnail and not large:
print(f"No images for {item_url}!", image, file=sys.stderr)
continue
elif not thumbnail and large:
thumbnail = large
elif not large and thumbnail:
large = thumbnail
images[item_url] = {"imageThumbnail": thumbnail, "imageLarge": large}
return images
IMAGE_JSON = load_image_json()
def export_items_as_geojson(db_file, output_file):
db = sqlite3.connect("file:%s?mode=ro" % db_file, uri=True)
db.row_factory = sqlite3.Row
all_points = {}
all_items = {}
for item in db.execute(
"SELECT rowid, * FROM Items WHERE Items.'Object Type' != 'Web Page'"
).fetchall():
points, item = export_item(db, item)
item_id = item["id"]
all_items[item_id] = item
for point in points:
combined_point = all_points.setdefault(
point["latlng"], {"latlng": point["latlng"]}
)
combined_point.setdefault("items", set()).add(item_id)
if not combined_point.get("title"):
combined_point["title"] = point["title"]
for point in all_points.values():
# Sets are not serializable by the default JSON encoder so we'll
# convert them to a list and sort it to minimize diff noise:
points = list(point["items"])
points.sort(key=lambda i: int(i))
point["items"] = points
with open(output_file, "w") as output_f:
json.dump(
{"points": list(all_points.values()), "items": all_items},
output_f,
indent=4,
)
MULTI_VALUE_COLUMN_RE = re.compile(r"^(.+)[._]\d+$")
def export_item(db, item):
metadata = {}
for k in item.keys():
v = item[k]
is_multi = MULTI_VALUE_COLUMN_RE.match(k)
if not is_multi:
metadata[k] = v
else:
base_key = is_multi.group(1)
if base_key in metadata and not isinstance(metadata[base_key], list):
existing_value = metadata.pop(base_key)
metadata[base_key] = [existing_value]
metadata[base_key].append(v)
# Remove values which aren't worth having in the data:
for k, v in metadata.items():
if isinstance(v, list):
metadata[k] = [i for i in v if i]
all_coords = dict()
for lookup_name in (
"Other Title",
"Creator/Publisher",
"Subject",
"Era",
"Geography",
"Location",
"Collection",
):
db_ids = metadata[lookup_name]
if not db_ids:
continue
if not isinstance(db_ids, list):
db_ids = [db_ids]
db_ids = ",".join(map(str, db_ids))
if lookup_name == "Creator/Publisher":
lookup_table = "Creator"
elif lookup_name == "Other Title":
lookup_table = "Title"
else:
lookup_table = lookup_name
result = db.execute(f"SELECT * FROM {lookup_table} WHERE rowid IN ({db_ids})")
resolved_values = []
for row in result.fetchall():
resolved_values.append(row["value"])
try:
lat = row["latitude"]
lng = row["longitude"]
except IndexError:
continue
if lat and lng:
all_coords[(lat, lng)] = row["value"]
metadata[lookup_name] = resolved_values
# For our core fields we want to make sure we have a value even if they're
# not consistent across all of our items:
titles = [metadata.get("Object Name"), metadata.get("Title")]
titles.extend(filter(None, metadata["Other Title"] or []))
display_titles = list(filter(None, titles))
if not display_titles:
title = "Row #%d" % metadata["rowid"]
else:
title = display_titles[0]
item_properties = {
"title": title,
"metadata": metadata,
"id": str(metadata.pop("rowid")),
}
item_url = metadata["Digital ID URL"]
if item_url not in IMAGE_JSON:
print("No images for item", item_url, file=sys.stderr)
else:
item_properties.update(IMAGE_JSON[item_url])
extracted_dates = extract_dates(metadata.get("Date"))
if extracted_dates:
item_properties["startYear"] = int(extracted_dates[0])
item_properties["endYear"] = int(extracted_dates[1])
return ([{"title": v, "latlng": k} for k, v in all_coords.items()], item_properties)
def extract_dates(raw_input):
if not raw_input:
return
d = raw_input.strip()
d = re.sub(r"^(?:ca?.|early)\s*", "", d)
d = re.sub(r"(; (printed|used|scanned) .*$)", "", d)
if re.match(r'^"?\w+\s+(|\d+,\s+)\d{4}"?$', d):
date = dateparser.parse(d, languages=["en"])
if date:
return date.year, date.year
start_year = end_year = None
if "-" not in d:
guess = guess_years_from_date_string(d)
if guess:
start_year, end_year = guess
else:
chunks = re.split(r"\s*-\s*", d, maxsplit=1)
for guess in map(guess_years_from_date_string, chunks):
if not guess:
continue
if guess[0] and (not start_year or start_year > guess[0]):
start_year = guess[0]
if guess[1] and (not end_year or end_year < guess[1]):
end_year = guess[1]
if not start_year:
m = re.search(r"(\d{4})", d)
if m:
start_year = m.group(1)
if not start_year:
print(f"Unable to parse a date from {raw_input}", file=sys.stderr)
if not end_year:
end_year = start_year
return start_year, end_year
DATE_RE = re.compile(r"^(\d{4})$")
DATE_RANGE_RE = re.compile(r"^(\d{4})-(\d{4})$")
DECADE_RE = re.compile(r"^(\d{4})s$")
def guess_years_from_date_string(d):
m = DATE_RE.match(d)
if m:
return m.group(1), m.group(1)
m = DATE_RANGE_RE.match(d)
if m:
return m.group(1), m.group(2)
m = DECADE_RE.match(d)
if m:
return m.group(1), "%s9" % m.group(1)[0:3]
if __name__ == "__main__":
for f in sys.argv[1:]:
output_filename = "%s.json" % os.path.splitext(f)[0]
export_items_as_geojson(f, output_filename)