-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy path10x_HPC-n3_step04_comparison-publishedData_MNT.R
582 lines (478 loc) · 25 KB
/
10x_HPC-n3_step04_comparison-publishedData_MNT.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
### MNT 10x snRNA-seq workflow: step 04
### **Region-specific analyses**
### - (3x) HPC samples
### - Setup and comparison to Habib, et al (DroNc-seq paper)
### Updated for revision MNT 2021
#####################################################################
library(SingleCellExperiment)
library(EnsDb.Hsapiens.v86)
library(scater)
library(scran)
library(batchelor)
library(DropletUtils)
library(jaffelab)
library(readr)
library(readxl)
library(lattice)
library(RColorBrewer)
library(pheatmap)
### Palette taken from `scater`
tableau10medium = c("#729ECE", "#FF9E4A", "#67BF5C", "#ED665D",
"#AD8BC9", "#A8786E", "#ED97CA", "#A2A2A2",
"#CDCC5D", "#6DCCDA")
tableau20 = c("#1F77B4", "#AEC7E8", "#FF7F0E", "#FFBB78", "#2CA02C",
"#98DF8A", "#D62728", "#FF9896", "#9467BD", "#C5B0D5",
"#8C564B", "#C49C94", "#E377C2", "#F7B6D2", "#7F7F7F",
"#C7C7C7", "#BCBD22", "#DBDB8D", "#17BECF", "#9EDAE5")
# ===
## Taken from AnJa's 'process_habib_counts.R' in the 'path':
# First
path <- '/dcl01/ajaffe/data/lab/singleCell/habib/'
## read counts
geneCounts = read_delim(paste0(path,"GTEx_droncseq_hip_pcf/GTEx_droncseq_hip_pcf.umi_counts.txt.gz"),
delim = "\t")
geneCounts = as.data.frame(geneCounts)
rownames(geneCounts) = geneCounts$X1
geneCounts$X1= NULL
geneCounts = as.matrix(geneCounts)
## more info from supp table
cellPheno = read_excel(paste0(path,"nmeth.4407-S10.xlsx"), skip=20)
colnames(cellPheno) = c("CellID", "NumGenes","NumTx", "ClusterID", "ClusterName")
cellPheno = cellPheno[match(colnames(geneCounts), cellPheno$CellID),]
cellPheno = as.data.frame(cellPheno)
cellPheno$SampleID = ss(cellPheno$CellID, "_")
## tsneInfo
tsneInfo = read_delim(paste0(path,"GTEx_droncseq_hip_pcf/GTEx_droncseq_hip_pcf.tsne.txt.gz"),
delim = "\t")
colnames(tsneInfo)[1] = "CellID"
identical(tsneInfo$CellID, cellPheno$CellID) # TRUE
# cellPheno = cbind(cellPheno, tsneInfo[,2:3]) ## Will import into reducedDims
tsneInfo <- tsneInfo[ ,-1]
## read in sample info
subjPheno = read_excel(paste0(path,"Human_Samples_To_Tissue.xlsx"))
colnames(subjPheno) = c("SampleID", "TissueID")
subjPheno = as.data.frame(subjPheno)
subjPheno$SampleID = gsub("_", "-", subjPheno$SampleID)
subjPheno$SampleID[subjPheno$SampleID == "hHP3"] = "hHP3b"
subjPheno$TissueID[subjPheno$SampleID == "PFC-CD"] = "SM-4W9H6"
## check
all(subjPheno$SampleID %in% cellPheno$SampleID)
cellPheno$TissueID = subjPheno$TissueID[match(cellPheno$SampleID, subjPheno$SampleID)]
length(unique(subjPheno$TissueID)) # 7
## and donor data
donorPheno = read_excel(paste0(path,"nmeth.4407-S9.xlsx"),skip=2)
donorPheno = donorPheno[2:8, ]
colnames(donorPheno) = c("TissueID", "DonorID", "Material",
"RIN_Bulk", "Age", "Gender", "Race", "TissueSite", "PMI","Hardy")
donorPheno$Region = ifelse( donorPheno$TissueSite == "Brain - Hippocampus", "HIPPO", "DLPFC")
donorPheno = as.data.frame(donorPheno)
mm = match(cellPheno$TissueID, donorPheno$TissueID)
cellPheno$Region = donorPheno$Region[mm]
cellPheno$Age = donorPheno$Age[mm]
cellPheno$RIN_Bulk = donorPheno$RIN_Bulk[mm]
cellPheno$PMI = donorPheno$PMI[mm]
cellPheno$DonorID = donorPheno$DonorID[mm]
rownames(cellPheno) = cellPheno$CellID
## Now turn into SCE
sce.habib <- SingleCellExperiment(assays = list(counts=geneCounts),
colData = cellPheno)
reducedDim(sce.habib, "TSNE.given") <- as.matrix(tsneInfo)
LSFvec <- librarySizeFactors(sce.habib)
sce.habib <- logNormCounts(sce.habib, size_factors=LSFvec)
# Plot some fun genes
pdf("pdfs/exploration/Habib_DroNc-seq/HIPPO-broadMarkers-by-annotated-cellType_MNT.pdf", height=6, width=8)
plotExpression(sce.habib, exprs_values = "logcounts", features=c("SNAP25","SYT1","MBP","VCAN",
"CSF1R","AQP4","VTN","CLDN5"),
x="ClusterName", colour_by="ClusterName", point_alpha=0.5, point_size=.7, ncol=4,
add_legend=F, theme_size=8) + stat_summary(fun.y = median, fun.ymin = median, fun.ymax = median,
geom = "crossbar", width = 0.3,
colour=rep(tableau20[1:15], 8)) +
theme(axis.text.x = element_text(angle = 90, hjust = 1))
dev.off()
# Save this in project dir
save(sce.habib, file="rdas/zSCE_habib-dlpfc-hippo_MNT.rda")
# Plot the provided tSNE with these colors - have to trick
reducedDim(sce.habib, "TSNE") <- reducedDim(sce.habib, "TSNE.given")
pdf("pdfs/exploration/Habib_DroNc-seq/HIPPO-given-tSNE-by-annotated-cellType_MNT.pdf")
plotTSNE(sce.habib, colour_by="Region", point_alpha=0.5, point_size=2.5)
plotTSNE(sce.habib, colour_by="ClusterName", point_alpha=0.5, point_size=2.5)
dev.off()
# Distribution of annotated clusters across regions
table(sce.habib$ClusterName, sce.habib$Region)
# DLPFC HIPPO
# ASC1 534 670
# ASC2 523 182
# END 116 138
# exCA1 71 350
# exCA3 82 663
# exDG 1037 416 *interesting...
# exPFC1 2964 140
# exPFC2 258 39
# GABA1 704 188
# GABA2 620 203
# MG 118 271
# NSC 131 70
# ODC1 1268 1697
# OPC 380 304
# Unclassified 230 596
## Also btw:
table(sce.habib$SampleID, sce.habib$DonorID)
## 1 2 3 4 5
# hCc 780 0 0 0 0
# hCd 812 0 0 0 0
# hCe 733 0 0 0 0
# hCf 779 0 0 0 0
# hHP1 486 0 0 0 0
# hHP2 320 0 0 0 0
# hHP2a 0 144 0 0 0
# hHP2b 0 166 0 0 0
# hHP2c 0 115 0 0 0
# hHP3b 0 47 0 0 0
# HP2-A 0 0 717 0 0
# HP2-B 0 0 674 0 0
# HP3-A 0 0 1012 0 0
# HP3-B 0 0 0 1014 0
# HP3-B-united 0 0 0 1232 0
# humanPFCa 752 0 0 0 0
# humanPFCb 659 0 0 0 0
# PFC-CD 0 918 0 0 0
# PFC2-A1 0 0 0 0 1092
# PFC2-A2 0 0 0 0 953
# PFC2-A3 0 0 0 0 1085
# PFC2-A5 0 0 0 0 473
# Looks like 'DonorID' ~= 'TissueID'
table(sce.habib$TissueID, sce.habib$DonorID)
# 1 2 3 4 5
# SM-4RGJU 806 0 0 0 0
# SM-4RGKC 4515 0 0 0 0
# SM-4W9GN 0 472 0 0 0
# SM-4W9H6 0 918 0 0 0
# SM-DG7EP 0 0 2403 0 0
# SM-DG7EQ 0 0 0 2246 0
# SM-DIQCU 0 0 0 0 3603
### -> Split DLPFC & HPC nuclei and analyze, separately, as if LIBD dataset ============
load("rdas/zSCE_habib-dlpfc-hippo_MNT.rda", verbose=T)
# sce.habib
table(sce.habib$Region)
#DLPFC HIPPO
# 9036 5927
sce.habib.dlpfc <- sce.habib[ ,sce.habib$Region == "DLPFC"]
sce.habib.hpc <- sce.habib[ ,sce.habib$Region == "HIPPO"]
# Re-calculate logcounts
LSF.dlpfc <- librarySizeFactors(sce.habib.dlpfc)
assay(sce.habib.dlpfc, "logcounts") <- NULL
sce.habib.dlpfc <- logNormCounts(sce.habib.dlpfc, size_factors=LSF.dlpfc)
LSF.hpc <- librarySizeFactors(sce.habib.hpc)
assay(sce.habib.hpc, "logcounts") <- NULL
sce.habib.hpc <- logNormCounts(sce.habib.hpc, size_factors=LSF.hpc)
## Save these
save(sce.habib, sce.habib.dlpfc, sce.habib.hpc, file="rdas/zSCE_habib-dlpfc-hippo_MNT.rda")
rm(sce.habib)
## Define markers for these clusters and t's to compare LIBD HPC to ========================
## Btw for HPC, $DonorID == $TissueID
### Run ANOVA real quick, just on HVGs ===
library(edgeR)
library(doMC)
registerDoMC(cores=4)
mat = assays(sce.habib.hpc)$logcounts[chosen.hvgs.hpc, ]
## do regression
varCompAnalysis.splitDonor = foreach(i = 1:nrow(mat)) %dopar% {
if(i %% 100 == 0) cat(".")
#fit = lm(as.numeric(mat[i,]) ~ cellType.mnt + TissueID + PMI,
fit = lm(as.numeric(mat[i,]) ~ cellType.mnt + SampleID + PMI, # or with more split 'SampleID'
data=colData(sce.habib.hpc))
full = anova(fit)
fullSS = full$"Sum Sq"
signif(cbind(full, PctExp = fullSS/sum(fullSS)*100), 3)
}
## Looks like couldn't estimate effect of PMI, even with modeling on just 'TissueID'
names(varCompAnalysis) = rownames(mat)
names(varCompAnalysis.splitDonor) = rownames(mat)
## make boxplot
varExpl = t(sapply(varCompAnalysis, function(x) x[,"PctExp"]))
colnames(varExpl) = rownames(varCompAnalysis[[1]])
varExpl.splitDonor = t(sapply(varCompAnalysis.splitDonor, function(x) x[,"PctExp"]))
colnames(varExpl.splitDonor) = rownames(varCompAnalysis.splitDonor[[1]])
pdf("pdfs/exploration/HIPPO-anova_MNTclusters_Jul2020.pdf")
boxplot(varExpl, main="ANOVA on human HIPPO DroNc-seq \n (Habib, et al. Nat. Methods 2017)",
ylab="Percent Var explained (%))")
boxplot(varExpl.splitDonor, main="ANOVA on human HIPPO DroNc-seq \n (Habib, et al. Nat. Methods 2017)",
ylab="Percent Var explained (%))")
dev.off()
# SampleID only slightly better...
save(varCompAnalysis, varCompAnalysis.splitDonor, file="./zs-habib-HIPPO_anova_output_MNT.rda")
apply(varExpl, 2, quantile)
# cellType.mnt TissueID Residuals
# 0% 0.00922 9.68e-06 16.0
# 25% 0.10300 2.74e-02 99.2
# 50% 0.24800 5.21e-02 99.7
# 75% 0.75100 9.71e-02 99.8
# 100% 84.00000 8.84e+00 100.0
apply(varExpl.splitDonor, 2, quantile)
# cellType.mnt SampleID Residuals -> use this model for `findMarkers()` (no 'PMI')
# 0% 0.00922 0.00614 15.9
# 25% 0.10300 0.09620 99.0
# 50% 0.24800 0.14600 99.6
# 75% 0.75100 0.22200 99.8
# 100% 84.00000 9.47000 99.9
### Compare MNT annotations to Habib annotations ============
table(sce.habib.hpc$ClusterName, sce.habib.hpc$cellType.mnt)
# Astro.1 Astro.2 Endo.1 Endo.2 Endo.small Glia.mixed Neuron.mixed
# ASC1 501 0 0 0 0 142 16
# ASC2 91 0 0 0 0 73 10
# END 0 0 77 42 6 10 3
# exCA1 0 0 0 0 0 17 326
# exCA3 0 0 0 0 0 6 656
# exDG 0 0 0 0 0 7 409
# exPFC1 9 1 0 0 0 32 77
# exPFC2 1 0 0 0 0 14 5
# GABA1 0 0 0 0 0 6 181
# GABA2 0 0 0 0 0 2 201
# MG 2 0 0 0 0 203 50
# NSC 0 63 0 0 0 7 0
# ODC1 0 0 0 0 0 82 7
# OPC 1 0 0 0 0 189 90
# Unclassified 3 2 0 0 0 47 337
#
# Oligo Unknown Unknown.small
# ASC1 11 0 0
# ASC2 8 0 0
# END 0 0 0
# exCA1 7 0 0
# exCA3 1 0 0
# exDG 0 0 0
# exPFC1 21 0 0
# exPFC2 19 0 0
# GABA1 1 0 0
# GABA2 0 0 0
# MG 16 0 0
# NSC 0 0 0
# ODC1 1608 0 0
# OPC 24 0 0
# Unclassified 38 132 37 * good that my 'Unknown's -> 'Unclassified'
# From their supplementary text/Methods, it looks like they saw this in mouse (Fig. S3)
# at leaset and "thus removed from subsequent analyses." - probably same thing happened
# for human dataset too, as there are no 'Unclass.' or anything on human tSNEs
# --> Might be best to run through this again, AFTER dropping those 'Unclassified'
# cells...
### Revised cell type annotations for comparisons =======================================
# MNT 26Jul2020 -> Use the provided annotations and drop 'Unclassified'
# (just wanna see how this looks, even though 'exDG' had waaay more DLPFC...)
## As before:
# Drop genes with all 0's
sce.habib.hpc <- sce.habib.hpc[!rowSums(assay(sce.habib.hpc, "counts"))==0, ]
# Drop 'Unclassified'
sce.habib.hpc$ClusterName <- factor(sce.habib.hpc$ClusterName)
sce.habib.hpc <- sce.habib.hpc[ ,!sce.habib.hpc$ClusterName == "Unclassified"]
sce.habib.hpc$ClusterName <- droplevels(sce.habib.hpc$ClusterName)
# Model unwanted effects
mod <- with(colData(sce.habib.hpc), model.matrix(~ SampleID))
mod <- mod[ ,-1]
markers.habibHPC.t.1vAll.pub <- list()
for(i in levels(sce.habib.hpc$ClusterName)){
# Make temporary contrast
sce.habib.hpc$contrast <- ifelse(sce.habib.hpc$ClusterName==i, 1, 0)
# Test cluster vs. all
markers.habibHPC.t.1vAll.pub[[i]] <- findMarkers(sce.habib.hpc, groups=sce.habib.hpc$contrast,
assay.type="logcounts", design=mod, test="t",
direction="up", pval.type="all", full.stats=T)
}
## Then, temp set of stats to get the standardized logFC
temp.1vAll <- list()
for(i in levels(sce.habib.hpc$ClusterName)){
# Make temporary contrast
sce.habib.hpc$contrast <- ifelse(sce.habib.hpc$ClusterName==i, 1, 0)
# Test cluster vs. all
temp.1vAll[[i]] <- findMarkers(sce.habib.hpc, groups=sce.habib.hpc$contrast,
assay.type="logcounts", design=mod, test="t",
std.lfc=TRUE,
direction="up", pval.type="all", full.stats=T)
}
## For some reason all the results are in the second List entry (first is always empty)
# Replace that empty slot with the entry with the actul stats
markers.habibHPC.t.1vAll.pub <- lapply(markers.habibHPC.t.1vAll.pub, function(x){ x[[2]] })
# Same for that with std.lfc
temp.1vAll <- lapply(temp.1vAll, function(x){ x[[2]] })
# Now just pull from the 'stats.0' DataFrame column
markers.habibHPC.t.1vAll.pub <- lapply(markers.habibHPC.t.1vAll.pub, function(x){ x$stats.0 })
temp.1vAll <- lapply(temp.1vAll, function(x){ x$stats.0 })
# Re-name std.lfc column and add to the first result
for(i in names(temp.1vAll)){
colnames(temp.1vAll[[i]])[1] <- "std.logFC"
markers.habibHPC.t.1vAll.pub[[i]] <- cbind(markers.habibHPC.t.1vAll.pub[[i]], temp.1vAll[[i]]$std.logFC)
# Oh the colname is kept weird
colnames(markers.habibHPC.t.1vAll.pub[[i]])[4] <- "std.logFC"
# Then re-organize
markers.habibHPC.t.1vAll.pub[[i]] <- markers.habibHPC.t.1vAll.pub[[i]][ ,c("logFC","std.logFC","log.p.value","log.FDR")]
}
## Let's save this along with the previous pairwise results
save(markers.habibHPC.t.1vAll.pub, file="rdas/zs-habib_markers-stats_reportedClusters_findMarkers-SN-LEVEL_Jul2020.rda")
sapply(markers.habibHPC.t.1vAll.pub, function(x){table(x$log.FDR < log10(0.000001))})
# ASC1 ASC2 END exCA1 exCA3 exDG exPFC1 exPFC2 GABA1 GABA2 MG NSC
# FALSE 26948 27406 26224 25994 25923 26635 27820 27868 26926 26809 26575 26974
# TRUE 1201 743 1925 2155 2226 1514 329 281 1223 1340 1574 1175
# ODC1 OPC
# FALSE 27106 27083
# TRUE 1043 1066
## Print those top 40 into table so can compare to human markers
markerList.t.habibHPC.1vAll <- lapply(markers.habibHPC.t.1vAll.pub, function(x){
rownames(x)[x[ ,"log.FDR"] < log10(0.000001)]
}
)
top40genes <- sapply(markerList.t.habibHPC.1vAll, function(x) head(x, n=40))
write.csv(top40genes,"tables/forRef_top40genesLists_habib-HIPPO_reportedClusters_SN-LEVEL-tests_Jul2020.csv")
### Comparison to LIBD HPC ==============================
# Bring in human stats; create t's
load("rdas/revision/markers-stats_HPC-n3_findMarkers-SN-LEVEL_MNT2021.rda", verbose=T)
# markers.hpc.t.pw, markers.hpc.t.1vAll, medianNon0.hpc
rm(markers.hpc.t.pw, medianNon0.hpc)
# Need to add t's with N nuclei used in constrasts
load("rdas/revision/regionSpecific_HPC-n3_cleaned-combined_SCE_MNT2021.rda", verbose=T)
# sce.hpc, chosen.hvgs.hpc, pc.choice.hpc, ref.sampleInfo, clusterRefTab.hpc, annotationTab.hpc, cell_colors.hpc
rm(chosen.hvgs.hpc, pc.choice.hpc, clusterRefTab.hpc, ref.sampleInfo)
sce.hpc
# class: SingleCellExperiment
# dim: 33538 10268
# metadata(2): merge.info pca.info
# assays(2): counts logcounts
# rownames(33538): MIR1302-2HG FAM138A ... AC213203.1 FAM231C
# rowData names(6): gene_id gene_version ... gene_biotype Symbol.uniq
# colnames(10268): AAACCCATCTGTCAGA-1 AAACCCATCTGTCGCT-1 ...
# TTTGGTTGTGGTCCGT-1 TTTGTTGCAGAAACCG-1
# colData names(20): Sample Barcode ... collapsedCluster cellType
# reducedDimNames(4): PCA_corrected PCA_opt TSNE UMAP
# altExpNames(0):
table(sce.hpc$cellType)
# Astro_A Astro_B drop.doublet drop.lowNTx_A drop.lowNTx_B
# 936 234 5 105 19
# Excit_A Excit_B Excit_C Excit_D Excit_E
# 87 421 6 35 6
# Excit_F Excit_G Excit_H Inhib_A Inhib_B
# 29 6 33 300 30
# Inhib_C Inhib_D Micro Mural Oligo
# 5 31 1161 43 5912
# OPC OPC_COP Tcell
# 823 15 26
# First drop flagged "drop." clusters
sce.hpc <- sce.hpc[ ,-grep("drop.", sce.hpc$cellType)]
sce.hpc$cellType <- droplevels(sce.hpc$cellType)
## As above, calculate and add t-statistic (= std.logFC * sqrt(N)) from contrasts
# and fix row order to the first entry "Astro"
markers.hpc.enriched <- lapply(markers.hpc.t.1vAll, function(x){x[[2]]})
fixTo <- rownames(markers.hpc.enriched[["Astro_A"]])
for(s in names(markers.hpc.enriched)){
markers.hpc.enriched[[s]]$t.stat <- markers.hpc.enriched[[s]]$std.logFC * sqrt(ncol(sce.hpc))
markers.hpc.enriched[[s]] <- markers.hpc.enriched[[s]][fixTo, ]
}
# Pull out the t's
ts.hpc <- sapply(markers.hpc.enriched, function(x){x$t.stat})
rownames(ts.hpc) <- fixTo
## Then for Habib et al. - fix row order to the first entry "Astro.1" ======
load("rdas/zs-habib_markers-stats_reportedClusters_findMarkers-SN-LEVEL_Jul2020.rda", verbose=T)
# markers.habibHPC.t.1vAll.pub
names(markers.habibHPC.t.1vAll.pub)
load("rdas/zSCE_habib-dlpfc-hippo_MNT.rda", verbose=T)
# sce.habib, sce.habib.hpc, sce.habib.dlpfc
rm(sce.habib, sce.habib.dlpfc)
sce.habib.hpc
# class: SingleCellExperiment
# dim: 32111 5927
# metadata(0):
# assays(2): counts logcounts
# rownames(32111): A1BG A1BG-AS1 ... ZZEF1 ZZZ3
# rowData names(0):
# colnames(5927): hHP1_AACACTATCTAC hHP1_CTACGCATCCAT ...
# HP3-B-united_GGTAATAAGTTG HP3-B-united_GCCCCAAAGGAT
# colData names(13): CellID NumGenes ... DonorID sizeFactor
# reducedDimNames(1): TSNE.given
# altExpNames(0):
# Drop 'Unclassified', as above
sce.habib.hpc$ClusterName <- factor(sce.habib.hpc$ClusterName)
sce.habib.hpc <- sce.habib.hpc[ ,!sce.habib.hpc$ClusterName == "Unclassified"]
sce.habib.hpc$ClusterName <- droplevels(sce.habib.hpc$ClusterName)
fixTo <- rownames(markers.habibHPC.t.1vAll.pub[["ASC1"]])
for(s in names(markers.habibHPC.t.1vAll.pub)){
markers.habibHPC.t.1vAll.pub[[s]]$t.stat <- markers.habibHPC.t.1vAll.pub[[s]]$std.logFC * sqrt(ncol(sce.habib.hpc))
markers.habibHPC.t.1vAll.pub[[s]] <- markers.habibHPC.t.1vAll.pub[[s]][fixTo, ]
}
# Pull out the t's
ts.habib.hpc <- sapply(markers.habibHPC.t.1vAll.pub, function(x){x$t.stat})
rownames(ts.habib.hpc) <- fixTo
## Take intersecting between two and subset/reorder
sharedGenes <- intersect(rownames(ts.habib.hpc), rownames(ts.hpc))
length(sharedGenes) #16,854
ts.habib.hpc <- ts.habib.hpc[sharedGenes, ]
ts.hpc <- ts.hpc[sharedGenes, ]
cor_t_hpc <- cor(ts.hpc, ts.habib.hpc)
rownames(cor_t_hpc) = paste0(rownames(cor_t_hpc),"_","libd")
colnames(cor_t_hpc) = paste0(colnames(cor_t_hpc),"_","habib")
range(cor_t_hpc)
# [1] -0.5096868 0.7770631
## Heatmap
theSeq.all = seq(-.80, .80, by = 0.01)
my.col.all <- colorRampPalette(brewer.pal(7, "BrBG"))(length(theSeq.all)-1)
pdf("pdfs/revision/pubFigures/overlap_reportedClusters-to-LIBD-HPC_allExpressedGenes_MNT2021.pdf")
pheatmap(cor_t_hpc,
color=my.col.all,
cluster_cols=F, cluster_rows=F,
breaks=theSeq.all,
fontsize=11, fontsize_row=14, fontsize_col=14,
display_numbers=T, number_format="%.2f", fontsize_number=6.5,
legend_breaks=c(seq(-0.8,0.8,by=0.4)),
main="Correlation of cluster-specific t's to reported clusters \n in (Habib et al. Nat. Methods 2017)")
dev.off()
### Session info for 23Jul2021 =======================================
sessionInfo()
# R version 4.0.4 RC (2021-02-08 r79975)
# Platform: x86_64-pc-linux-gnu (64-bit)
# Running under: CentOS Linux 7 (Core)
#
# Matrix products: default
# BLAS: /jhpce/shared/jhpce/core/conda/miniconda3-4.6.14/envs/svnR-4.0.x/R/4.0.x/lib64/R/lib/libRblas.so
# LAPACK: /jhpce/shared/jhpce/core/conda/miniconda3-4.6.14/envs/svnR-4.0.x/R/4.0.x/lib64/R/lib/libRlapack.so
#
# locale:
# [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C LC_TIME=en_US.UTF-8
# [4] LC_COLLATE=en_US.UTF-8 LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
# [7] LC_PAPER=en_US.UTF-8 LC_NAME=C LC_ADDRESS=C
# [10] LC_TELEPHONE=C LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
#
# attached base packages:
# [1] parallel stats4 stats graphics grDevices datasets utils methods
# [9] base
#
# other attached packages:
# [1] pheatmap_1.0.12 RColorBrewer_1.1-2 lattice_0.20-41
# [4] readxl_1.3.1 readr_1.4.0 jaffelab_0.99.30
# [7] rafalib_1.0.0 DropletUtils_1.10.3 batchelor_1.6.3
# [10] scran_1.18.7 scater_1.18.6 ggplot2_3.3.3
# [13] SingleCellExperiment_1.12.0 SummarizedExperiment_1.20.0 Biobase_2.50.0
# [16] GenomicRanges_1.42.0 GenomeInfoDb_1.26.7 IRanges_2.24.1
# [19] S4Vectors_0.28.1 BiocGenerics_0.36.1 MatrixGenerics_1.2.1
# [22] matrixStats_0.58.0
#
# loaded via a namespace (and not attached):
# [1] viridis_0.6.0 edgeR_3.32.1 BiocSingular_1.6.0
# [4] splines_4.0.4 viridisLite_0.4.0 DelayedMatrixStats_1.12.3
# [7] scuttle_1.0.4 R.utils_2.10.1 assertthat_0.2.1
# [10] statmod_1.4.35 dqrng_0.3.0 cellranger_1.1.0
# [13] GenomeInfoDbData_1.2.4 vipor_0.4.5 pillar_1.6.0
# [16] glue_1.4.2 limma_3.46.0 beachmat_2.6.4
# [19] XVector_0.30.0 colorspace_2.0-0 Matrix_1.3-4
# [22] R.oo_1.24.0 pkgconfig_2.0.3 zlibbioc_1.36.0
# [25] purrr_0.3.4 scales_1.1.1 HDF5Array_1.18.1
# [28] ResidualMatrix_1.0.0 BiocParallel_1.24.1 googledrive_1.0.1
# [31] tibble_3.1.1 generics_0.1.0 ellipsis_0.3.2
# [34] withr_2.4.2 magrittr_2.0.1 crayon_1.4.1
# [37] R.methodsS3_1.8.1 fansi_0.4.2 segmented_1.3-4
# [40] bluster_1.0.0 beeswarm_0.4.0 tools_4.0.4
# [43] hms_1.0.0 lifecycle_1.0.0 Rhdf5lib_1.12.1
# [46] munsell_0.5.0 locfit_1.5-9.4 DelayedArray_0.16.3
# [49] irlba_2.3.3 compiler_4.0.4 rsvd_1.0.5
# [52] rlang_0.4.11 rhdf5_2.34.0 grid_4.0.4
# [55] RCurl_1.98-1.3 rhdf5filters_1.2.0 BiocNeighbors_1.8.2
# [58] igraph_1.2.6 bitops_1.0-7 gtable_0.3.0
# [61] DBI_1.1.1 R6_2.5.0 gridExtra_2.3
# [64] dplyr_1.0.5 utf8_1.2.1 ggbeeswarm_0.6.0
# [67] Rcpp_1.0.6 vctrs_0.3.8 tidyselect_1.1.1
# [70] sparseMatrixStats_1.2.1