-
Notifications
You must be signed in to change notification settings - Fork 31
/
Copy pathget_barcode_lists.R
82 lines (70 loc) · 3.15 KB
/
get_barcode_lists.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
####
###
library('SingleCellExperiment')
library('here')
library('jaffelab')
library('scater')
library('scran')
library('pheatmap')
library('readxl')
library('Polychrome')
library('cluster')
library('limma')
library('sessioninfo')
library('reshape2')
library('lmerTest')
## Load data
load(here(
'Analysis',
'Human_DLPFC_Visium_processedData_sce_scran.Rdata'
))
## For plotting
source(here('Analysis', 'spatialLIBD_global_plot_code.R'))
genes <- paste0(rowData(sce)$gene_name, '; ', rowData(sce)$gene_id)
## Functions derived from this script, to make it easier to resume the work
sce_layer_file <-
here('Analysis', 'Layer_Guesses', 'rda', 'sce_layer.Rdata')
if (file.exists(sce_layer_file))
load(sce_layer_file, verbose = TRUE)
source(here('Analysis', 'Layer_Guesses', 'layer_specificity_functions.R'))
## Load layer guesses
load(here('Analysis', 'Layer_Guesses', 'rda',
'layer_guess_tab.Rdata'))
## Add layer guesses to the sce object
sce$layer_guess <- NA
m <- match(sce$key, layer_guess_tab$key)
table(is.na(m))
# FALSE TRUE
# 47329 352
sce$layer_guess[!is.na(m)] <- layer_guess_tab$layer[m[!is.na(m)]]
## Check layer guesses across images
options(width = 120)
with(colData(sce), addmargins(table(layer_guess, sample_name, useNA = 'ifany')))
# sample_name
# layer_guess 151507 151508 151509 151510 151669 151670 151671 151672 151673 151674 151675 151676 Sum
# Layer 1 817 866 1189 1180 0 0 0 0 273 380 328 289 5322
# Layer 2 305 295 602 650 0 0 0 0 253 224 275 254 2858
# Layer 2/3 0 0 0 0 2141 2175 1918 1575 0 0 0 0 7809
# Layer 3 1215 1385 1884 1774 0 0 0 0 989 924 771 836 9778
# Layer 4 369 373 369 318 364 211 245 304 218 247 275 254 3547
# Layer 5 675 737 363 310 510 581 721 728 673 621 732 649 7300
# Layer 6 486 525 215 179 391 308 760 882 692 614 533 616 6201
# WM 354 200 166 184 230 209 449 399 513 625 652 533 4514
# <NA> 5 3 1 39 25 14 17 127 28 38 26 29 352
# Sum 4226 4384 4789 4634 3661 3498 4110 4015 3639 3673 3592 3460 47681
## Drop the layer guess NAs for now
sce_original <- sce
sce <- sce[, !is.na(sce$layer_guess)]
dim(sce)
sce$layer_guess[sce$layer_guess == 'Layer 2/3'] <- 'Layer 3'
## make big table
pd = colData(sce)[,c("barcode", "sample_name", "layer_guess")]
pd$layer_guess = gsub("ayer ", "", pd$layer_guess)
pd$barcode = as.character(pd$barcode)
sample_tab = pd[!duplicated(pd[,-1]),-1]
sample_tab$BAM = paste0("/dcs04/lieber/lcolladotor/with10x_LIBD001/HumanPilot/10X/",
sample_tab$sample_name, "/", sample_tab$sample_name, "_mRNA.bam")
write.table(as.data.frame(pd), "10X/barcode_level_layer_map.tsv",
row.names=FALSE, col.names=FALSE, quote=FALSE, sep="\t")
write.table(as.data.frame(sample_tab), "10X/sample_level_layer_map.tsv",
row.names=FALSE, col.names=FALSE, quote=FALSE, sep="\t")