forked from dhchoi99/NANSY
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainer.py
259 lines (208 loc) · 10.3 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
import importlib
import matplotlib.pylab as plt
import numpy as np
from omegaconf import OmegaConf, DictConfig
import torch
import torch.nn.functional as F
from torch.utils.data import DataLoader
import torchaudio.functional as AF
import transformers
import pytorch_lightning as pl
from models.loss import GANLoss
from models.hifi_gan import Generator as hifigan_vocoder
MATPLOTLIB_FLAG = False
class Trainer(pl.LightningModule):
def __init__(self, conf):
super(Trainer, self).__init__()
self.conf = conf
self.networks = torch.nn.ModuleDict(self.build_models())
self.opt_tag = {key: None for key in self.networks.keys()}
self.losses = self.build_losses()
def train_dataloader(self):
conf_dataset = self.conf.datasets['train']
module, cls = conf_dataset['class'].rsplit('.', 1)
D = getattr(importlib.import_module(module, package=None), cls)
train_dataset = D(conf_dataset)
train_dataloader = DataLoader(train_dataset, shuffle=conf_dataset['shuffle'],
batch_size=conf_dataset['batch_size'],
num_workers=conf_dataset['num_workers'], drop_last=True, )
return train_dataloader
def val_dataloader(self):
conf_dataset = self.conf.datasets['eval']
module, cls = conf_dataset['class'].rsplit('.', 1)
D = getattr(importlib.import_module(module, package=None), cls)
eval_dataset = D(conf_dataset)
eval_dataloader = DataLoader(eval_dataset, shuffle=conf_dataset['shuffle'],
batch_size=conf_dataset['batch_size'],
num_workers=conf_dataset['num_workers'], drop_last=True, )
return eval_dataloader
def build_models(self):
networks = {}
for key, conf_model in self.conf.models.items():
module, cls = conf_model['class'].rsplit(".", 1)
M = getattr(importlib.import_module(module, package=None), cls)
m = M(conf_model)
networks[key] = m
return networks
def build_losses(self):
losses_dict = {}
losses_dict['L1'] = torch.nn.L1Loss()
losses_dict['BCE'] = torch.nn.BCEWithLogitsLoss()
conf_ganloss = DictConfig({
'gan_mode': 'lsgan',
'real': 1.0,
'fake': 0.0,
})
losses_dict['GANLoss'] = GANLoss(conf_ganloss)
return losses_dict
def configure_optimizers(self):
optims = {}
for key, conf_model in self.conf.models.items():
if conf_model['optim'] is not None:
conf_optim = conf_model['optim']
module, cls = conf_optim['class'].rsplit(".", 1)
O = getattr(importlib.import_module(module, package=None), cls)
o = O([p for p in self.networks[key].parameters() if p.requires_grad],
**conf_optim.kwargs)
optims[key] = o
optim_module_keys = optims.keys()
count = 0
optim_list = []
for _key in self.networks.keys():
if _key in optim_module_keys:
optim_list.append(optims[_key])
self.opt_tag[_key] = count
count += 1
return optim_list
@property
def automatic_optimization(self):
return False
def train(self, mode: bool = True):
if not isinstance(mode, bool):
raise ValueError("training mode is expected to be boolean")
self.training = mode
for name, module in self.named_children():
if name != 'wav2vec2' and name != 'vocoder':
module.train(mode)
return self
def common_step(self, batch, batch_idx):
loss = {}
logs = {}
logs.update(batch)
logs['lps'] = self.networks['Analysis'].linguistic(batch['gt_audio_16k_f'])
logs['s_pos'] = self.networks['Analysis'].speaker(batch['gt_audio_16k'])
logs['s_neg'] = self.networks['Analysis'].speaker(batch['gt_audio_16k_negative'])
# logs['s_pos'] = self.networks['Analysis'].speaker(s_pos_pre)
# logs['s_neg'] = self.networks['Analysis'].speaker(s_neg_pre)
# non-training calculations
with torch.no_grad():
logs['e'] = self.networks['Analysis'].energy(batch['gt_mel_22k'])
logs['ps'] = self.networks['Analysis'].pitch.yingram_batch(batch['gt_audio_22k_g'])
logs['ps'] = logs['ps'][:, 19:69]
result = self.networks['Synthesis'](logs['lps'], logs['s_pos'], logs['e'], logs['ps'])
logs.update(result)
loss['mel'] = F.l1_loss(logs['gen_mel'], logs['gt_mel_22k'])
loss['backward'] = loss['mel']
# for G
if 'Discriminator' in self.networks.keys():
pred_gen = self.networks['Discriminator'](logs['gen_mel'], logs['s_pos'], logs['s_neg'])
loss['D_gen_forG'] = self.losses['GANLoss'](pred_gen, True, False)
# loss['D_gen_forG'] = self.losses['BCE'](pred_gen, torch.ones_like(pred_gen))
# loss['D_gen_forG'] = torch.mean(torch.sigmoid(pred_gen)) # 0=gt, 1=gen
loss['backward'] = loss['backward'] + 1 * loss['D_gen_forG']
# for D
if 'Discriminator' in self.networks.keys():
logs['gen_mel'] = logs['gen_mel'].detach()
logs['s_pos'] = logs['s_pos'].detach()
logs['s_neg'] = logs['s_neg'].detach()
pred_gen = self.networks['Discriminator'](logs['gen_mel'], logs['s_pos'], logs['s_neg'])
pred_gt = self.networks['Discriminator'](logs['gt_mel_22k'], logs['s_pos'], logs['s_neg'])
loss['D_gen_forD'] = self.losses['GANLoss'](pred_gen, False, True)
loss['D_gt_forD'] = self.losses['GANLoss'](pred_gt, True, True)
loss['D_backward'] = loss['D_gen_forD'] + loss['D_gt_forD']
# loss['D_gen_forD'] = self.losses['BCE'](pred_gen, torch.zeros_like(pred_gen))
# loss['D_gt_forD'] = self.losses['BCE'](pred_gt, torch.ones_like(pred_gt))
# loss['D_backward'] = 1 * loss['D_gt_forD'] + loss['D_gen_forD']
# loss['D_gen_forD'] = torch.mean(torch.sigmoid(pred_gen))
# loss['D_gt_forD'] = torch.mean(torch.sigmoid(pred_gt))
# loss['D_backward'] = 1 * (loss['D_gt_forD'] - loss['D_gen_forD'])
# reconstruction loss
# gen_audio_22k = result['audio_gen']
# gen_audio_16k = AF.resample(gen_audio_22k, 22050, 16000)
#
# logs['recon_lps'] = self.networks['Analysis'].linguistic(gen_audio_16k)
# logs['recon_s'] = self.networks['Analysis'].speaker(gen_audio_16k)
#
# loss['recon_lps'] = self.losses['L1'](logs['recon_lps'], logs['lps'])
# loss['recon_s'] = self.losses['L1'](logs['recon_s'], logs['s_pos'])
# loss['recon'] = loss['recon_lps'] + loss['recon_s']
# loss['backward'] = loss['backward'] + loss['recon']
return loss, logs
def training_step(self, batch, batch_idx):
loss, logs = self.common_step(batch, batch_idx)
opts = self.optimizers()
opts[self.opt_tag['Analysis']].zero_grad()
opts[self.opt_tag['Synthesis']].zero_grad()
# loss['backward'].backward()
self.manual_backward(loss['backward'])
if 'Discriminator' in self.networks.keys():
opts[self.opt_tag['Discriminator']].zero_grad()
# loss['D_backward'].backward()
self.manual_backward(loss['D_backward'])
# for model in self.networks.values():
# torch.nn.utils.clip_grad_norm_(model.parameters(), 1)
opts[self.opt_tag['Analysis']].step()
opts[self.opt_tag['Synthesis']].step()
if 'Discriminator' in self.networks.keys():
opts[self.opt_tag['Discriminator']].step()
if self.global_step % self.conf.logging.freq == 0:
self.awesome_logging(loss, mode='train')
self.awesome_logging(logs, mode='train')
def validation_step(self, batch, batch_idx):
loss, logs = self.common_step(batch, batch_idx)
if batch_idx == 0:
self.awesome_logging(loss, mode='eval')
self.awesome_logging(logs, mode='eval')
def awesome_logging(self, data, mode):
tensorboard = self.logger.experiment
for key, value in data.items():
if isinstance(value, torch.Tensor):
value = value.squeeze()
if value.ndim == 0:
# tensorboard.add_scalar(f'{mode}/{key}', value, self.global_step)
self.log(f'{mode}/{key}', value, batch_size=self.conf.datasets.train.batch_size)
elif value.ndim == 3:
if value.shape[0] == 3: # if 3-dim image
tensorboard.add_image(f'{mode}/{key}', value, self.global_step, dataformats='CHW')
else: # B x H x W shaped images
value_numpy = value[0].detach().cpu().numpy() # select one in batch
plt_image = self.plot_spectrogram_to_numpy(value_numpy)
tensorboard.add_image(f'{mode}/{key}', plt_image, self.global_step, dataformats='HWC')
if 'audio' in key:
sample_rate = 22050
if '16k' in key:
sample_rate = 16000
tensorboard.add_audio(f'{mode}/{key}', value[0].unsqueeze(0), self.global_step,
sample_rate=sample_rate)
if isinstance(value, np.ndarray):
if value.ndim == 3:
tensorboard.add_image(f'{mode}/{key}', value, self.global_step, dataformats='HWC')
@staticmethod
def plot_spectrogram_to_numpy(spectrogram):
global MATPLOTLIB_FLAG
if not MATPLOTLIB_FLAG:
import matplotlib
matplotlib.use("Agg")
MATPLOTLIB_FLAG = True
fig, ax = plt.subplots(figsize=(10, 2))
im = ax.imshow(spectrogram, aspect="auto", origin="lower",
interpolation='none')
plt.colorbar(im, ax=ax)
plt.xlabel("Frames")
plt.ylabel("Channels")
plt.tight_layout()
fig.canvas.draw()
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
plt.close()
return data