Skip to content

Latest commit

 

History

History
221 lines (176 loc) · 7.87 KB

README.md

File metadata and controls

221 lines (176 loc) · 7.87 KB

histLM

Neural Language Models for Historical Research

Continuous integration badge

Table of contents

Language models

Download from zenodo

We have pre-trained four types of neural language models trained on a large historical dataset of books in English, published between 1760-1900 and comprised of ~5.1 billion tokens. The language model architectures include word type embeddings (word2vec and fastText) and contextualized models (BERT and Flair). For each architecture, we trained a model instance using the whole dataset. Additionally, we trained separate instances on text published before 1850 for the type embeddings (i.e., word2vec and fastText), and four instances considering different time slices for BERT.

⚠️ The language models can be downloaded from zenodo. (see License)

Each .zip file on zenodo contains model instances for one neural network architecture (i.e., bert, flair, fasttext and word2vec). After unzipping the four .zip files, the directory structure is as follows:

histLM_dataset
├── README.md
├── bert
│   ├── bert_1760_1850
│   │   ├── config.json
│   │   ├── pytorch_model.bin
│   │   ├── special_tokens_map.json
│   │   ├── tokenizer_config.json
│   │   ├── training_args.bin
│   │   └── vocab.txt
│   ├── bert_1760_1900
│   |   └── ...
│   ├── bert_1850_1875
│   |   └── ...
│   ├── bert_1875_1890
│   |   └── ...
│   └── bert_1890_1900
│       └── ...
|
├── flair
│   └── flair_1760_1900
│       ├── best-lm.pt
│       ├── loss.txt
│       └── training.log
|
├── fasttext
│   ├── ft_1760_1850
│   │   ├── fasttext_words.model
│   │   ├── fasttext_words.model.trainables.syn1neg.npy
│   │   ├── fasttext_words.model.trainables.vectors_ngrams_lockf.npy
│   │   ├── fasttext_words.model.trainables.vectors_vocab_lockf.npy
│   │   ├── fasttext_words.model.wv.vectors.npy
│   │   ├── fasttext_words.model.wv.vectors_ngrams.npy
│   │   └── fasttext_words.model.wv.vectors_vocab.npy
│   └── ft_1760_1900
│       └── ...
|
└── word2vec
    ├── w2v_1760_1850
    │   ├── w2v_words.model
    │   ├── w2v_words.model.trainables.syn1neg.npy
    │   └── w2v_words.model.wv.vectors.npy
    └── w2v_1760_1900
        └── ...

Download BERT models from Hugging Face

In addition to downloading the models from zenodo, the BERT models can be downloaded from Hugging Face Hub, see: https://huggingface.co/Livingwithmachines

Load models

After downloading the language models from zenodo (refer to Download section):

  1. Go to histLM directory:
cd /path/to/histLM
  1. Create a directory called histLM_dataset:
mkdir histLM_dataset
  1. Move the unzipped directories to histLM/histLM_dataset. The directory structure should be:
histLM
├── LICENSE
├── README.md
├── histLM_dataset
│   ├── README.md
│   ├── bert
│   │   ├── bert_1760_1900
│   │   ├── bert_1760_1850
│   │   ├── bert_1850_1875
│   │   ├── bert_1875_1890
│   │   └── bert_1890_1900
│   ├── fasttext
│   │   ├── ft_1760_1850
│   │   └── ft_1760_1900
│   ├── flair
│   │   └── flair_1760_1900
│   └── word2vec
│       ├── w2v_1760_1850
│       └── w2v_1760_1900
├── notebooks
│   ├── BERT_model.ipynb
│   ├── Flair_model.ipynb
│   ├── fastText_model.ipynb
│   └── word2vec_model.ipynb
├── requirements.txt
└── tests
    └── test_import.py
  1. Finally, open one of the jupyter notebooks stored in the notebooks directory:
$ cd notebooks
$ jupyter notebook

Language models in use

So far, the language models presented in this repository have been used in the following projects:

  • When Time Makes Sense: A Historically-Aware Approach to Targeted Sense Disambiguation (Findings of ACL: ACL-IJCNLP 2021): repository and paper.
  • Living Machines: A Study of Atypical Animacy (COLING 2020): repository and paper.
  • Assessing the Impact of OCR Quality on Downstream NLP Tasks (ARTIDIGH 2020): repository and paper.
  • 'The Living Machine: A Computational Approach to the Nineteenth-Century Language of Technology" in Technology and Culture (2023) Paper and Repository

Installation

We strongly recommend installation via Anaconda:

conda create -n py38_histLM python=3.8
  • Activate the environment:
conda activate py38_histLM
  • Clone histLM source code:
git clone https://github.com/Living-with-machines/histLM.git 
  • Install dependencies:
pip install -r requirements.txt

Alternatively:

pip install torch==1.9.0
pip install transformers==4.10.0
pip install flair==0.9
pip install gensim==3.8.3
pip install notebook==6.4.3
pip install jupyter-client==7.0.2
pip install jupyter-core==4.7.1
pip install ipywidgets==7.6.4
  • To allow the newly created py38_histLM environment to show up in the notebooks:
python -m ipykernel install --user --name py38_histLM --display-name "Python (py38_histLM)"

How to cite

To cite histLM or any of the language models:

Hosseini, K., Beelen, K., Colavizza, G., & Coll Ardanuy, M. (2021). Neural Language Models for Nineteenth-Century English. Journal of Open Humanities Data, 7: 22, pp. 1–6. DOI: https://doi.org/10.5334/johd.48

Link (Journal of Open Humanities Data): http://doi.org/10.5334/johd.48

License

Codes/notebooks are released under MIT License.

Models are released under open license CC BY 4.0, available at https://creativecommons.org/licenses/by/4.0/legalcode.