diff --git a/docs/browser/build-yml.md b/docs/browser/build-yml.md index 52dead4cc8d..c119ae812c5 100644 --- a/docs/browser/build-yml.md +++ b/docs/browser/build-yml.md @@ -14,7 +14,7 @@ * Add them in [Users and Access](https://appstoreconnect.apple.com/access/users){: target="_blank" } on App Store Connect. * Add them to your *TestFlight* Internal Testing group. - [:material-skip-forward:](tf-users.md#set-up-users-and-access-testflight) To skip the detailed instructions, click on [Set Up Users and Access (TestFlight)](tf-users.md#set-up-users-and-access-testflight). + [:material-skip-forward:](tf-users.md#testflight-users-overview) To skip the detailed instructions, click on [*TestFlight* Users Overview](tf-users.md#testflight-users-overview). Refer to the graphic below for the first four steps: diff --git a/docs/browser/img/gh-fork-loopworkspace.svg b/docs/browser/img/gh-fork-loopworkspace.svg index 4002f28968a..835466a6900 100644 --- a/docs/browser/img/gh-fork-loopworkspace.svg +++ b/docs/browser/img/gh-fork-loopworkspace.svg @@ -32,14 +32,14 @@ inkscape:pageopacity="0.0" inkscape:pageshadow="2" inkscape:zoom="0.70710678" - inkscape:cx="533.15851" - inkscape:cy="488.61079" + inkscape:cx="539.52247" + inkscape:cy="376.18081" inkscape:document-units="px" inkscape:current-layer="layer1" inkscape:document-rotation="0" showgrid="false" - inkscape:window-width="1252" - inkscape:window-height="947" + inkscape:window-width="1440" + inkscape:window-height="790" inkscape:window-x="0" inkscape:window-y="25" inkscape:window-maximized="0" @@ -56,2254 +56,38 @@ width="1077" height="743" preserveAspectRatio="none" - xlink:href=" -lgdQk9kWx+/3pTcCJEQ6oTdBOgGkhNBCUJAOohKSQEIJMRBU7MjiCqwFEREsK7oKouBaAFkrFqwI -qGBfEFFR18WCDZX3AUPQffPem3dm7nd/c75z//ecO/fOHAAoeL5Mlg6rApAhzZaHB/oyY+Pimbgn -gASIyNAAaL4gS8YOCwsBiE3MP9r7LgCNzjdsRrX+/f9/NTWhKEsAABSGcJIwS5CB8BFkPBbI5NkA -oMoRv/GCbNkoH0eYLkcSRLh9lFPG+fEoJ43zx7GYyHAOAGgyAHgyny9PAYCsifiZOYIURIfMQthO -KpRIERYj7JWRkSlEuBphCyRGhvCoPivpO52UHzSTlJp8foqSx2sZM7yfJEuWzl/0fx7H/7aMdMXE -HmZgtAB5UPjojJzZ7bRMnpKlSTNDJ1giHIsfY7EiKGqCBVmc+AkW8v14yrXpM0MmOFkSwFXqZHMj -J1iU5R8xwfLMcOVeyXIOe4L58sl9FWlRSr9YxFXq54ojYyY4RxI9c4Kz0iJ4kzEcpV+uCFfmL5IG -+k7uG6CsPSPru3olXOXabHFkkLJ2/mT+Iil7UjMrVpmbUOTnPxkTpYyXZfsq95KlhynjRemBSn9W -ToRybTZyISfXhinPMJUfHDbBIAjIABM4AFcQkC1amD1aACdTtkguSRFnM9nIyxIxuVKB7VSmg52D -AwCj73T8GrwNH3t/EOPkpC9zN3J93yPvYcOkL6kUgMYCADTvTvpMtgNAzQegoUWgkOeM+9CjHwzy -/qmADrSAPjAGFsAGycwFeAAf4A+CQSiIBHFgLhAAMcgAcrAALAErQQEoAuvBJlABdoBdoBocAIdA -IzgOzoAL4ApoB7fAPdAD+sELMAjeg2EIgnAQBaJBWpABZApZQw4QC/KC/KEQKByKgxKhFEgKKaAl -0CqoCCqBKqCdUA30O3QMOgNdgjqgO1AvNAC9gT7DKJgM02E92AyeBrNgNsyDI+E5cAo8H86F8+G1 -cDlcBe+HG+Az8BX4FtwDv4CHUABFQjFQhigbFAvFQYWi4lHJKDlqGaoQVYaqQtWhmlGtqBuoHtRL -1Cc0Fk1DM9E2aA90EDoKLUDPRy9DF6Mr0NXoBvQ59A10L3oQ/Q1DwehirDHuGC4mFpOCWYApwJRh -9mCOYs5jbmH6Me+xWCwDa451xQZh47Cp2MXYYuw2bD32NLYD24cdwuFwWjhrnCcuFMfHZeMKcFtw -+3GncJ24ftxHPAlvgHfAB+Dj8VJ8Hr4Mvw9/Et+Jf4ofJqgSTAnuhFCCkLCIsI6wm9BMuE7oJwwT -1YjmRE9iJDGVuJJYTqwjnifeJ74lkUhGJDfSLJKEtIJUTjpIukjqJX0iq5OtyBxyAllBXkveSz5N -vkN+S6FQzCg+lHhKNmUtpYZylvKQ8lGFpmKrwlURqixXqVRpUOlUeUUlUE2pbOpcai61jHqYep36 -UpWgaqbKUeWrLlOtVD2m2q06pEZTs1cLVctQK1bbp3ZJ7Zk6Tt1M3V9dqJ6vvkv9rHofDUUzpnFo -Atoq2m7aeVo/HUs3p3PpqfQi+gF6G31QQ13DSSNaY6FGpcYJjR4GimHG4DLSGesYhxhdjM9T9Kaw -p4imrJlSN6VzygdNHU0fTZFmoWa95i3Nz1pMLX+tNK0NWo1aD7TR2lbas7QXaG/XPq/9Uoeu46Ej -0CnUOaRzVxfWtdIN112su0v3qu6Qnr5eoJ5Mb4veWb2X+gx9H/1U/VL9k/oDBjQDLwOJQanBKYPn -TA0mm5nOLGeeYw4a6hoGGSoMdxq2GQ4bmRtFGeUZ1Rs9MCYas4yTjUuNW4wHTQxMZpgsMak1uWtK -MGWZik03m7aafjAzN4sxW23WaPbMXNOca55rXmt+34Ji4W0x36LK4qYl1pJlmWa5zbLdCrZythJb -VVpdt4atXawl1tusO6ZiprpNlU6tmtptQ7Zh2+TY1Nr02jJsQ2zzbBttX00zmRY/bcO01mnf7Jzt -0u12292zV7cPts+zb7Z/42DlIHCodLjpSHEMcFzu2OT42snaSeS03em2M815hvNq5xbnry6uLnKX -OpcBVxPXRNetrt0sOiuMVcy66IZx83Vb7nbc7ZO7i3u2+yH3vz1sPNI89nk8m24+XTR99/Q+TyNP -vudOzx4vplei169ePd6G3nzvKu9HPsY+Qp89Pk/ZluxU9n72K187X7nvUd8PHHfOUs5pP5RfoF+h -X5u/un+Uf4X/wwCjgJSA2oDBQOfAxYGngzBBvKANQd1cPa6AW8MdDHYNXhp8jkfmRfAqeI9CrELk -Ic0z4BnBMzbOuD/TdKZ0ZmMoCOWGbgx9EGYeNj/sj1nYWWGzKmc9CbcPXxLeGkGLmBexL+J9pG/k -ush7URZRiqiWaGp0QnRN9IcYv5iSmJ7YabFLY6/EacdJ4pricfHR8Xvih2b7z940uz/BOaEgoWuO -+ZyFcy7N1Z6bPvfEPOo8/rzDiZjEmMR9iV/4ofwq/lASN2lr0qCAI9gseCH0EZYKB0SeohLR02TP -5JLkZymeKRtTBsTe4jLxSwlHUiF5nRqUuiP1Q1po2t60kfSY9PoMfEZixjGpujRNei5TP3NhZofM -WlYg65nvPn/T/EE5T74nC8qak9WUTUcaoqsKC8VPit4cr5zKnI8LohccXqi2ULrw6iKrRWsWPc0N -yP1tMXqxYHHLEsMlK5f0LmUv3bkMWpa0rGW58fL85f0rAldUrySuTFt5Lc8uryTv3aqYVc35evkr -8vt+CvyptkClQF7Qvdpj9Y6f0T9Lfm5b47hmy5pvhcLCy0V2RWVFX4oFxZd/sf+l/JeRtclr29a5 -rNu+Hrteur5rg/eG6hK1ktySvo0zNjaUMksLS99tmrfpUplT2Y7NxM2KzT3lIeVNW0y2rN/ypUJc -cavSt7J+q+7WNVs/bBNu69zus71uh96Ooh2ff5X8entn4M6GKrOqsl3YXTm7nuyO3t36G+u3mj3a -e4r2fN0r3dtTHV59rsa1pmaf7r51tXCtonZgf8L+9gN+B5rqbOp21jPqiw6Cg4qDz39P/L3rEO9Q -y2HW4bojpke2HqUdLWyAGhY1DDaKG3ua4po6jgUfa2n2aD76h+0fe48bHq88oXFi3UniyfyTI6dy -Tw2dlp1+eSblTF/LvJZ7Z2PP3jw361zbed75ixcCLpxtZbeeuuh58fgl90vHLrMuN15xudJw1fnq -0WvO1462ubQ1XHe93tTu1t7cMb3jZKd355kbfjcu3OTevHJr5q2Orqiu290J3T23hbef3Um/8/pu -zt3heyvuY+4XPlB9UPZQ92HVn5Z/1ve49Jzo9eu9+iji0b0+Qd+Lx1mPv/TnP6E8KXtq8LTmmcOz -4wMBA+3PZz/vfyF7Mfyy4C+1v7a+snh15G+fv68Oxg72v5a/HnlT/Fbr7d53Tu9ahsKGHr7PeD/8 -ofCj1sfqT6xPrZ9jPj8dXvAF96X8q+XX5m+8b/dHMkZGZHw5f6wVQCEDTk4G4M1eAChxANCQvpg4 -e7yPHjNovPcfI/CfeLzXHjMXAHZ1AxC5GICQawBsqUDaWESfmgBAGBXxewDY0VE5Jnresf581IxU -AHDmfaf+g4337t/l/c8ZjKo6gX/O/wLQ8gGznroGBwAAAGJlWElmTU0AKgAAAAgAAgESAAMAAAAB -AAEAAIdpAAQAAAABAAAAJgAAAAAAA5KGAAcAAAASAAAAUKACAAQAAAABAAAENaADAAQAAAABAAAC -5wAAAABBU0NJSQAAAFNjcmVlbnNob3QDUX6FAAACP2lUWHRYTUw6Y29tLmFkb2JlLnhtcAAAAAAA -PHg6eG1wbWV0YSB4bWxuczp4PSJhZG9iZTpuczptZXRhLyIgeDp4bXB0az0iWE1QIENvcmUgNi4w -LjAiPgogICA8cmRmOlJERiB4bWxuczpyZGY9Imh0dHA6Ly93d3cudzMub3JnLzE5OTkvMDIvMjIt -cmRmLXN5bnRheC1ucyMiPgogICAgICA8cmRmOkRlc2NyaXB0aW9uIHJkZjphYm91dD0iIgogICAg -ICAgICAgICB4bWxuczpleGlmPSJodHRwOi8vbnMuYWRvYmUuY29tL2V4aWYvMS4wLyIKICAgICAg -ICAgICAgeG1sbnM6dGlmZj0iaHR0cDovL25zLmFkb2JlLmNvbS90aWZmLzEuMC8iPgogICAgICAg -ICA8ZXhpZjpQaXhlbFlEaW1lbnNpb24+MTEwODwvZXhpZjpQaXhlbFlEaW1lbnNpb24+CiAgICAg -ICAgIDxleGlmOlVzZXJDb21tZW50PlNjcmVlbnNob3Q8L2V4aWY6VXNlckNvbW1lbnQ+CiAgICAg -ICAgIDxleGlmOlBpeGVsWERpbWVuc2lvbj4xMjE0PC9leGlmOlBpeGVsWERpbWVuc2lvbj4KICAg -ICAgICAgPHRpZmY6T3JpZW50YXRpb24+MTwvdGlmZjpPcmllbnRhdGlvbj4KICAgICAgPC9yZGY6 -RGVzY3JpcHRpb24+CiAgIDwvcmRmOlJERj4KPC94OnhtcG1ldGE+Ctk11PcAAEAASURBVHgB7J0H -nNVEF8Xv0nvvggJKtyKiYsMCgr2in4AoRVBREQvSBBERLFiwoCIKIhaKINgFRQUUkSpNlN57XWCX -he+eeczbbHh9X7ZxLr/l5SWTyeSfSV7mzJ07CYkHk44KjQRIgARIgARIgARIgARIgARIgARIgASy -GYFc2ay8LC4JkAAJkAAJkAAJkAAJkAAJkAAJkAAJGAJ5yIEESIAESIAESIAESIAETmgCSYck1/K/ -RY6knNAYePLpIZAgUqCQHKlRLz2ZcF8SIIEYCFDUiAEadyEBEiABEiABEiABEsg5BBK2bZZ8na+R -hMS9OeekeCYZSyAhlxyp21AODZ+ascfl0UiABISiBisBCZAACZAACZAACZDAiU3g6FFJOLBP5MDh -E5sDzz52AhjUf+hg7PtzTxIggZgJMKZGzOi4IwmQAAmQAAmQAAmQAAmQAAmQAAmQQGYSoKiRmfR5 -bBIgARIgARIgARIgARIgARIgARIggZgJcPhJzOi4IwmQAAmQAAmQAAmQQI4nkDvHnyFPMBYCjCkb -CzXuQwKeEKCo4QlWZkoCJEACJEACJEACJJDtCRQtKCkNm2b70+AJxJdAwoH9kuuPH0UobMQXLHMj -gRgJUNSIERx3IwESIAESIAESIAESyMEEdJD2kar1JOmVMTn4JHlqsRBIWL9aCtxaVyQxOZbduQ8J -kECcCTCmRpyBMjsSIAESIAESIAESIAESIAESIAESIIGMIUBRI2M48ygkQAIkQAIkQAIkQAIkQAIk -QAIkQAJxJkBRI85AmR0JkAAJkAAJkAAJkAAJkAAJkAAJkEDGEKCokTGceRQSIAESIAESIAESIAES -IAESIAESIIE4E6CoEWegzI4ESIAESIAESIAESIAESIAESIAESCBjCFDUyBjOPAoJkAAJkAAJkAAJ -kAAJkAAJkAAJkECcCXBK1zgDZXYkQAIkQAIkQAKZT+DgwYOyd+9eOaCfKSkpmV8gliBLEcidO7cU -LFBAihYtKgX0M1ZjPYuVXPbeL9/mdVL9yFFJ0zt8VCTp0EFZuWqVJycXrzrrLhzrsJsIv8eLgFd1 -NlD5KGoEosJ1JEACJEACJEAC2ZbAjh07ZM+ePVKyZEkpXqyYFCgYe6M120JgwUMSOHjgoBG8Nm3a -JMW0jpQOmTrwRtSzA4mJUqxECSldqpTkycvX6sCkcsba/1aslFOrVzMnk5A/QXLlSkh7Yvo1vwpk -Nk3ajen/5q6zpbTOpddYh9NLMGvv76yzmVFSL+pssPPg0zcYGa4nARIgARIgARLIdgTwkp6UnCSV -KlY0DYyjR4/KEe1RpZGAk0C+/PlN/SipgsSGTRtl965dEo30hXp2+PBhqVy5skhCgrCeOenm3GX7 -LEk4Evgc9XHj2fPGXWdRB9MjbLAOB76GOW2trbOZcV7xrrOhzoGiRig63EYCJJDtCaSkHJG9+xNl -v/bKHUpK1pfQrOeGnidPbsmfL68U1t7kooULSe7caRxas/014AmQQEYRgBs1PDSqVatmGploaNJI -IBgB1A/UkJIlSsr2Vf9KOV129b0H3BX1DB4aJ6mgYWoY61lATlwZfwLOOrtx40YpVKhQTMOnWIfj -f22YY2AC8aqzgXNPXUtRI5UFl0iABHIYgW07d8uOXXulWJHCUlz/CuTPJxAQsppBaDl4KEn2JR6U -Lds3SKkSRaVMyeJZrZgsDwlkeQJ7NIYGhpxQzPDmUoFrkj6rkg8nS4o+t46YxnykwpG666tHQ259 -BufNk1fy6fM4Qb9nBcuvXhvFiuszN0JxAvUMQ05osRNIX10KdtysW8eClTjW9aizeNahLsYSEwbi -L+twrPRT90t/PT4B66zWvVjqbCr1wEueixoTJn8rE/UvUrvxumZyk/7RwhOYvfqQbNmTIs1OL6Qv -CuHTh0qxdv0G2akNwCqVK2mPBRtToVh5tW3RhiSZvy7JZH9h9fxSrUxerw6V4/NNSk6WTVt3Sr68 -eaV6lYpZUshwXgQILUXyFJQihQuqmFFMtu3cI2s2bJEKZUuac3Cm5TIJkEBwAuh9LF6saPAE3BIz -gQMHDsjBg4d0/0hFDPehdBiQigZHko9Isj6jEzW/AgXyS8GCBd0JM+V7fhVZoGlE8jqFela6VMlM -KWdOOGj661IwClm7jgUrdazrcf/s1gZiLHbw0CEpXTr9MTliOXZO2Sc+9Zh1Nl71wVNRY+k///oF -jdo1TwtbZqRfpn/R2sOfbpO5a5Lk8abF5cazC0e7e6an/3DGXnn/t71yZZ2C0vf6438kt+9Pkdbv -b5G9B49KzfJ55f02ZWXltsNy9asbTdlfv7OMtDy/SLrO442hw2XL1m1yf4c20vDcc9LktfvAEblu -yCazrmShXPJl5wpptmf1L3hJufKVDdqz5CvpyLblVDBIW/W/Xpgoz3+zyyS4+8Ii0uGSYmlO69Dh -o9L0lY36QuZbPf7+8lK2aHx7/D/9c5+89bPvx+m5m0pJp8soaqS5CBF+gaCxbtM2KVW8qJQolr77 -IsJDxjUZBA6IGbv27DPnUblCGQobcSXMzHIyAcxykj9/NJERcjKN+JwbmO7XIXwpKcd+ROOTreZy -VEWSgypwHJbCZthdfH9Toy1mvnyR1xswyZ077XtEtMc7EdN7V5eC0cxadSxYKWNdj2cdmMZirMOx -UPPt4209Zp2N9cp4+kS2HhofDH01ovLd26lLROncif5Sj4Wlm5Jl7c54/+C6j+TN9/+2JsvijUlS -pujx4+gPJB2V5q9tEqTJnyfBCBooRV7Hb79zeei0PfKZNo6vP6uwdG0SmcfFIVVrIWjA6tSsYT6d -/6FBj/LB8qTXJcSZcQYtw7s18dBRWb4l2Rzxl+UHVNRI25MHQcGeI0Qmt6gxd80h+Vs9KWC4DmWK -OC6AWcv/sgoBeGhkJUHjkLpqow7my5cvKkRWkMH5nFwJI71pJEACJJCxBPDyvm/vPhX0g0RFjENx -IJbgGEWKFlGhIOv/tnJoU2wXPSPqUrCSZbc6Fuw8ssN6eOjDcqrXfUbVY9bZ6Gu7p6JG9MXhHk4C -Gt9Q7nh3sxE0ICZMfqiC8dRAmsol88j0bifJzsQUubB6au8CGuYL1idJ1SiGLixbvsIctkTxYjpf -e/br2XYyC7Z8db1CKmrsNpt/XX5Q2lyYVtT4+Z+D/l0hkO0/dEQK508Vmab/m7q9ca2CppHq34EL -WYYAYmhgyIkVBAIVbMwXk2T+wkVyfoP6JmJ9pQrlpXat06SwBtuKxCZ9/b189d0Uef3FZwMKFf/8 -u0IGD3lHHu7UTurWqSlP9uonebVMLw3oE0n2adLgPA4eStbhKLsZYyMNGX4hARLICALw0PBS0LDn -gGPgWMWywdCheMUBQeMP3sm11JMZ3sxuj2antzPSZPdGYkbVJVun3J/ZqY65y55dvjvrbHavr8GY -Z2Q9Zp0NdhUCr6eoEZhLllj7wMdbZfp/vsb06A7lpP7J+dOUq3YFDE9I/xCFxUuXmXzr1DreSyPN -AdPxZcOuw1KheJ6IY3/sU1EhWT3qMNwlGoNnS4qONyniECSwf9N6BeWNn3yixoxjTG2+8OCAiOG0 -X1T4aK6xSqz95tjnas0rkEV7jsgD5d2fdCTdnh/JKUdls8ZXqVQicsY4/rZ9KREfO1HLuktFNBwj -EsOwnw279boXyyORTOaBoT04h4rFY+upwywnCAqKGBqh7GsVJGCTvvnBjOvGMkSHvj0e0ykgK+Br -SEvELCrq3RSst+6wulJjO8arwhpd0FCD4sV2TtgfMTZWrN0oJfVln7OigAiNBDKWAF7U7fDYYA3Q -jC1RxhwN48VDDTmZNPlrM6WpszRVq54i55x9ln/VihUr5c/Zf8l2nXqyWtWqcnnjS4MGiMOxcMys -EmPDfxIeLDjjzZmGoB7D7dU8aPAb/iMjTSDhw58giy+Eq0uIsfLLr7/J8n//k2JFi0r9+mdrZ0Ot -NGc1Z+48+euvORqL5aCccXo9U5ecAtORI0fkp59/MbMfXX/dNRpL6/h3lROpjqWBl0FfrIc+Doc6 -ntOEjXD1GOe9a9du+WPWLFn49yKd7vkkuerKK6RM6dLYZAxxhaZPnykLFiwwHWsXnN9Qzq2fdti/ -TYtP1lknjdDLx9/xodPnmK2TFyTK94sT5adlB2XfwSOC3vcraxeU2xsUNsML3Cc6R4cfTJi7X6Ys -PWDiWZxXNb80qVtQbqtfRBvrqQ0WeEk88sk2qVIqj7x3d1l58btdMl7327Q7RbDPDTos5M7zCqfx -AnAfC9/7Td4pY+fsN5uGtipryuZOd8MbmzTOxhEZ2a6crNx6WPp8uUP+01gbsO8WJcrlL22QBNUE -vupcUQrmU//3ILZ46XKzpW7tmkFSxLb689n75PPZ+wUiAoawwNsEDK49s5Dcf1namBU4AhgN/mGX -TNVrsnKbb6gIGtCX1iggD11RXHwijq8sYPOwcoZ10rwu0TRdPtsu644NQapbMZ/cfE5h6XJVcSOk -NNTj4viHteWMhvPOxCN+weTHJQd8mTr+/37xgTSixh8rfA1UJLlKY59Yi+YcGzy3XiB8wH56rJI8 -pLFgMHQKBq+bYAbB4ta3NwsCw8IanVpAxnYqb5YRg+OdX/b4zxsrEWC0xzUl5BY9f2vOY8/tXVme -+3qnDlPab3jAI6WJntMjVxaXMyunHSIBsaf7Fzvkm78TZcd+n/ADjojtMvDWUnKRlsVtH/2+19R5 -MMN1h+HaYUjPPY3SeshgG4b+fKZ1Zca/h/zlufi0Apq+qFyu92WkhmlbMctJuNlNIGBUr3aKPNW1 -s5ne9c+/5sq7H4ySUZ+OkycffVBfiPaal6YK5cv6D71x02YpWqSIFNH8nbZB1yNwXrVTqgSN4n/V -5Rc7dzHLSUlJsnLVGimu0fbLlysTdF8kxvngvHB+oTxQjjsIV5AACaSLABqSzoYlMrMNUCxHEtj8 -n+XLZc6ceXJ106vMTAXYb70G5v71t+ly2WWXSMUKPiF12/bt8uOPU01jrmaN+HYwPNWjt+CZM/il -QTh8RAbR1hcUNHDy5MOH5aXBr+p0kmmf0TfecL1f1Pj1txnS6+m+UrZsGalQvrx89vlYGTN2vLz1 -5ms6E1XaThp7FBwTUfGdjVW7LSd92vhxEDKswGGFC5wnlmG2jmF4NhqMtfV3K1Lbt2+fTP7qm+OS -l9IAp02bXHXc+khWfPrZGHn/gw9l8pdf6DTkad8Xgu0fri6hbnZ9vJtpBEKs2LR5s7zz3vvSs3s3 -LeeVJtsx48bLG28OlZo1TpNcuXLL+C8myJy5c+Xxrr5h69u2bZPnnn9B180z6Zs3axpQ1MDGE6WO -GRAZ+B/qrK3DEH9RX70QNdasXavi1TRZuWKVEQ0uvqiR1K6dVgDz4rTD1WMcEzPR3NO2g+zctcsI -b1Om/iQjRo6S94a+ZcoK4e3Fl1+Rr7/5Tk6tXt08lz8fM046tG8rre66M2ixWWeDokmz4YQUNfpO -2ilDpvp67S2NL+fvF/yNm7tPxnWqkMajAI1eDANx2m86HAF/r03ZLTOfOsnf271de74hbKzaflia -aSBPLFuz+4z5a598/XDFNMewafD5/vS9Jl8sI2Dk7eembUhhPeyPlb5G4B4N5Ikeceex0Ji039GQ -DxbPG1NJrl233uRXJ46ixnu/7pGnxu8w+dr/UI6ZKw6av9XKZ+AtqVGX0WBuorxso9/ug+9o9H6h -whAa/jbAZ6I2tm2DGUE+cR2chmE4+INnQb8bS2kMEp+gguPDftdP64kBcQuGxnrpIrmM6OEUOiCw -2GMhlsZJxzwVoj1H1A2bT0sN/GqFG3PwIP/B26HtiFSPHQw7GqZiGeyeD7fIpPm+sjt3R74dRm6V -JXr+Pa8paTY5j93inc3++CDYCOFiwrz9RriY3fMkvycGhJ+GA9b5xQx7DFxHsIWoBuHOKZ68+uNu -efarnTap/xNDeh4bs10W6Owug1ukKtYQZHqoaOI0lAeiHP6+uL+CXFrzeOHEmd4u79feG0zbGo1B -MLjw/AYybuJX8q/+QMJGjP5cFi5aKu8OedF8h6thj77Py/XNm8gtN15r1uG/t4eNNMNYsAyhpE/3 -rnJSpYr4msYGDX5TAxfmk2d7dzPr4SEyXo9nDeJJ98ceDul2XaRQAdm9bz9FDQuNnyTgMQHb0MRh -uh1rSKKn3L6444Xd9kqGenHftXOXDBj4ggqYxaR5s6tNqb/6+ht5462hJkjmPW1am3UzZ/5u0o34 -YJj5Huq/9h0fkPJly8pz/Z8Jlcy/befOnWZoh39FBAuYtjXULCd7dvuCWvfv1zdoL+MHH46UM884 -XQa//IJ6q+WRKVN/ln79B8j8+Qvk/IbnBSmFb8rY/DqrQ042NPpQl1DPrMDhHn6C80cds9uxTzS2 -Q6876h4MgVitnXnGGTGLGvsT98vmzVvkqDbOIrVwdQmePOjVfmHgc6ZewGuj/X0PyLjxE4yogRgG -wz8YYZYhdMAGvvCSwFOoY4f2Zth063va6Ww0paXRhRfIDL2XQtuJUcdCM4j/Vvs8hBCHug2Lt7fG -X3Pmyr3t7jP1GeLvdz/8IK+/8ZbWnQHS7Oom5pjRPh/NThH8F64eI4tXXxtiBI1PPh6hnr8V9V7Z -LA8+/KiKi19Lp44dZPnyf42g0ebuVtL2nruNxy9EjveGDZcrLr/M7BO4KKyzgbmkXXvCiRoQDKyg -AW8BzBpStEAu+Uobxmhc/aKxFbp8tk0wowgMjbCWw7aYZfQed2tWQmpprzPiMjwxdrtp8DXTQJ7T -u1VK4+GxRz0oICq0R++0zqZRIG8uGT9nnwzQGTb+XHVIek7YIc/fnNqoNwfQ/9Aj/qTmC3tYvRPg -hRCJ3abCRzONG4EywTOkqXqRvN2yrPZ2iDm/YHn8t3KV2VSwYIG4TU8GLxinoIF4FlfUKmA8Dcb8 -td8cD4JA5ZK5pfPlxc2MIs1eSxU0ShXOZXr0CyqzETP3Gi8EiAFNX90gs3tWluIF0w5JsQFAL6tZ -UOpUzGsYQjSBvameDI30uoENPGusqAGBCaIG9B54CMAu0nQ11ANhmJYNYgo8OsoXyy3Tj21HGnCF -RXuOZifHfxAeIJDACwVDM3DOgazb+O0C0QaG9D8+WlFK6JCcLXtT/IIGxJi3W5Ux3hMQY55VLx/Y -61P2SNerShznpYOAp8jrxrMLyUb1jvl+0QHjIQHGN721WWb18HmNvP/bHr+gAY+ZBxoXk3waJPXj -P/bK/LU+se6Fb3f5RY1x6j3jFDSuOaOQOT/cK7i/YLied55XRBpWyy/fqmjhFDTgjXNOlXwyTe9B -pIPdrgLM790rGe8TsyLEf4eSkrX3L7KeI2c2UMC379ipPaY+7xfntlDLm7dskV7dusj27TtV4Bgh -r7zxbti4GUuWLTeCxul1a0vLO26R/1RIGTZitHwx6Rtp07JF0MPhvLbs2BV0OzeQAAnEj4AVNNDI -tIKGzd0OAYCQYdNhWzBh48wzzzC7ogfZihrTZ8w0637TTytq2B7m0+vVNdswK8iqVavV2zKXYEiH -7RWHl8fq1atNo3LtunVSrlw5/7Y9OrXjKt12cpUqUqJECZOP8z80DvFSXUgbuFUqVw7pDZF82Oct -6dzfubx7t68joaQeZ83adfo7lktOOqmSM4n07PGkThFfwgga2GCHldhzSZPY8QXHzq//crLZ+uJs -CDrPF/UMjUNst73fdh9nukiWe/fsLrffdkvQpJvU43DHzh3qBVEjjXfDli1bzTtkMfUoXP7PclMP -3Zmgnm5VL4miOmSkhKYLZOHqUt06tWX4sKHqQVnN7J5bBbB8+fKaP6wwnhxdHtEYVbX92Z9yyilm -GcMBEAvu2ubNpX37e2X06E8jEDVEZ8PL+XXMD8uDBSvuImuIblbEsM9HfMKcohy+p3f43siPPjaC -xjeTJ5pnHK5/uw6dVNh404gaoZ6PqOfwAkLnU1kVha0FqudF1DPXbeHqMTw5INze9b87pFTJkspl -uZRTL7Wxn432Z7V4yVKzfHWTq8wnPNIuvugi+errb41HX6Vrj+8YszuzzloSwT9POFEDPckwNKz6 -qxeEtY6XFjM99U+O266Ntn3y4m2ljUiBxjd6pk8pnUc+71jeL1zcpFPHnlo2rzTWIR5ooGKIhdtV -HsMfBjm8ER5rWkISk48KyjBcp3AdoMeH6GANjetf/vEJKFiHKV4jNTRsSxRK8DdgIaKg8RvOFi/9 -xySJZzwNzB5i7a6GRWTI/3wCUftLMAxBe6yP9eQPV4EJosbSTUkmGCr2wXl83wWNWF/VvPciHVv5 -7DqBSARvDjSQr9PhK257Qa9XO00L63dDKbni5Q1+bwQMs4CoAUECw3pgv2k+sHlrfd4uWL5WG+E1 -yvlEDXzHUCOU/7d/D+CrMQg0sGjP0ezk+A/DNsbptLDwIAlmr6r3Cab6hRVT4W1KV30QH5tGFjE/ -rF1Ru4BfWDi9Uj6NYZFb5qsYB0Mg2YL50t7mEGr+VOHCBkJ1eiJhlh3MIlRFPUIgHt19LKAqpku2 -Hiq3ar0+tecak7+NR4K8Rh4TIrABgVitRwaGnQxU8QNDsWAQLCBqDPs1tZ44pyXGtMxF8icYQQr3 -3iQVySDwhTN4HYUbeoI80AuEH+FRn46VvXv3y9wFf5usm155WbhDpNnerk1LObVaVfOH+2jabzPl -gL7ghbKFi5aYzR3uaWk8MyqULycVNY5HuFgZOC+cH40ESMBbAlaosG7/zqPZxqVdZxuZtmFqv9vt -+MRQikaNLpTf/5hlVmNIwNx58wXixaxZf/pjSPyhy5c3vsx4fSHto4894feuQC/7B8PeNS7Wt93x -P7MeveXXXn+zjB41wjT2ej/9jEzS3kBrLf93pzzx+KPqqu97D9i9Z7fc8b/WguEwMAyHGfT8c/7t -dj/7mRLmebNbBRTY4FdfN73sWIZQ8tILz0uFYwIx3Kvhbj3q40+00bxTvvn2O7nlphvlzLPORPKg -Fu7YQXfMZhtQX1B3AtU1nAq22wajW1yLx6nuUmGq4/2dZcmxhhbyHPR8f7/49lCXruYwqGs7NCbK -sHfeSnNYNCg7PfCQrF6zVkZ+OCyoqBHuepbUBiD+Fiz8W+aq+DdH7w+47w/o388cD2JYk6uu8B8b -MQs+02EwGKqCoU2wzg928m+PZCFcmSLJ40RNg+ege1geRAwrWFguWLfsmLhhRQ98TtQEqM9W+LDp -I/ncunWrmbLbxktB3Xh36JuSmOh7Tw/0fKxdSwO2P9VTfpwy1X+I2269WSD2QVQIVM8bBvAkC1dn -tm3zdUhD8L35tjv8ZcLwmD69e5jA8pWOefMuWrzELwIvP/ZM3rBho798gRbCHT/QPifaurStnRx+ -9gh0aIc3oJHmtrbaKEbPMRpS6IlGwwtDPGAPauMbU3k67YyT8pmZR9D7D+8Lt6jRvfnxPSVdNcYD -RA0cY4WKIRBGrGGd0zBMAPEP0Aj1yhYvWWayjmc8DRsnAhn3ud43/MGWH3EbnldvFZwrvCngHTDr -GGOkuVU9Tqygge8IFIoefMSAgP2x8nhRA14EVtBAGng+vKxDHK7W4Syw+et817COxtlA4xvDG+Ct -gDIgdoa1ZqcXlHIqGkBY8W1LNKLG9P98+yPdZceGQkR7ju66011jXoQSNIapmGGHp6A8P6qggaEn -1pzxRXAOGG5ye4Micr7WWQh2dwbz7NUMIOZZQQP5IUYIYp2gDsNQ9yFqOKe1xTAYDEfZpX+I4+K0 -XTr8CfnNPea9gW29r0t73R/Veg8vDJitz06GEJMQt8ZaXRVnrP2usTkeTn2fsavT/Tlnvk/MqHFa -NbnkwvPlgobnRpUnFHhr5TQuBmzb9rRDaex2+7lliy8OjDPCf/WqJ9vN/CQBEshEAuaFWxuZeNl2 -CxR4ibcv5s4XctvwROMU+wV6Ub9IXeLhYrxLG2pouMF6PPWk3NX6HiNw1KhxmqzTYaBtWrcy28aN -/0IuatRIHuv6iOzWBty97e+T4R+ONO7533z1pdzVqo0REDD8BL3jI0eNNoLGE489Kldp42/CxEny -9tB35ZJLLjLu+Mh09eo10qtHNx0qUl/efPsd+e77H8047mDxOxDMLpTt1GE1sLPUE6VP757GQ+Tp -vv2kzzP95Z23h/h3Re/lnxrccf369eYlH14iSRpEGWJPMAt3bOw3dtwXMlY5BbPbbrlZ0HDJDmaF -C6/KunrNGiMW2PwRvBA91b169zWCxtC3hhjvHtTRbt17Sc2aNXW8v89rAoJHl4c7yyUXX2RiAixc -tMhkA++JJzUtBI0P33/X7G/zd39Gcj2xz8aNG01QWQxFwbClxP0+z15nfvsTE00ZDyUdkqeefDyk -t5FzP/dypGVy75ee7/b5ESyPQM+OYGkzcz3Kab2IgglyKJ95HjpiwNhnKPaJ9VxvufkmM4StSbNr -jXdOA53FDqJBuXI+z4tAz8d5Otxt/YYNRrA777wGZigThNaWd/0vaD0PxDdcndm+wydqwOuix1NP -yNkaMBmxP94e+p58/Mlncq8ONcTzEmLvc88PkvkLFhovpN+mTzeHS072dUYGOjbWhTt+sP3Ssz67 -1dnUVlJ6zjrMvrYih0nm+ea52itvrWrpVDHBroPXBDwy0FuNoIz1T8nn9yA4UwWMQHa6roeo4WyY -23TVA0yrisYfet3heYBGoFPUwH7wJnhWY0BcNGiDafBD2JiqQSXRUI+3oQdlxao1Jtt4xdPAkA2c -GwwNeQxzcBoYI4iqbbDP1YYs4ltYg1DktrqVUq/VTG3gus0d3BLbESjUGsQTiBQQBxqrKGGHQsxT -/jaeBoQR64lwQfX8Jl7K1KUHZTfilRwL7omGN4YqxXKOFzim3XWXz5bT+Wn5YB0C0brrST09Pwy3 -mfaPT5TBkCP8wZC21QVFpP3FxaRQvrRCHLZbcQHL1s6ukipqwHvFesNM1FgbGMIDoQMMgxmCvEIs -guG6u2etwTrr5YI0W3X4jK0n+N789eAKtVP8QNpgZr0ZwnlrOAOFBsorT+48xpvDF5gpv6A3K5Dh -Ze6MenXMptWr15nPCvrDunfPvkDJzboqVU6Sv+YtUBfILRo4r5xZN3vOfKPgn3m6L69AO0fqhRJo -X64jARKIjIB9gXP3isN7w25DTlh2vpTjJX2pih5G2HC8xNuj2l4/CBrwyKhTp7acrr3MaDjO+nO2 -ia2BtOed5xNWXxz0vAoAibJGnzF71bMDcX3+PtaYhIiRO3du49FhI+rDswPiROtWd5lDduzQTi68 -4Pw0MX7QkG1x+21m+//ubGF6LdesWWf2Myuj/O+iRhfIhHGf+YOfosf8f3feIe8P/1DgjWLdt1HW -1wb74hMhOGov9SjBWPNrr2kW5RHTJreCRSBhIzsJGrZxiPoTzJAmPQaXffxZe7pXD7npxuvNbCOo -M4hDAXv8sS6mEQZvCStqoK62vbeN3dX/CUFjxoyZMvGLMYLhUfGwq5s2UQ+iJuZ+eFQDh/bt95yM -G/OJqe/IHzOK9ejVR5YuWybvvv2GEVnicdyMygPPB+dzxHlctwDg3JYVl63oi3OC2e/BymqfoajL -4dIGywPrcd+XKVNaxmmg2M/HjjN/WP/sM33kxhuuMyKv+/nY4Nz68tnoj0wsmA0qbmCoFAxCa7h6 -bhJG+J99HiM56jHszha3y5QpP5nnPEQNiLkI2IxAtxDvypQpY+KBdNa4G6eckvU6uLJbnc0QUcP9 -AmCudID/gt3sAZLGtGr/IV+jDI1bNK4DWeFjjUBMKZrkC8tgkgVqHGJDYXWThzkbaPiORlywY2Am -kj3ajreNQKS3NrJtOdOD/1bLMnLfR1uNRwHibziDatq06f1cs3a9cQ1FI69SlPEEgh07VMPX7pPH -IdDoLJxm6tZA21LXpV6sFJ0JxG2BRnC4RSDb6dS0biG/qIFhFzY2RHPHNK1o0CPmBq6Pje2AY9pG -eSzneFyZHQzc29zfMaMLyoEhHdZQtz7vWE7e/WWvYBiPUwSBKPeMBsMdrcOoMGTF6ZWB/XMFqJjO -a3LYp03I0xN3GEHDHhOfqNcQdjAVrNOcCnKeQBfEmViXbcBUu9p6b9jv+LQxTcofG3Lj3BZoOX++ -vPrSkyRF8kQ+bCtQPlUqV5JZOiPK+yNHy4UNG5hx84HSvTt8lNx+8/WyTd1ykb7qyVVMQyNQWruu -/lmnywSNn/HaW+/pvjfISu09nayBQ6/TIKShRA2cF86PRgIk4B0B9JjDIn1nsSWxAkewQI41TjvV -jAOfO3e+aUhee01zs+vllzeWn3762fwOlypVSqpVrWrWv6WeFEPfHWaWIUbAEOwzmK3Rnvgap53m -34whJ2e7hniUKpk63BbjvWFHjx572Pv3TF3A74TzuZ66xbeE4I6IDfKI9uLbmUwO64wosDz6ToHy -vjbkLR3K0NQfFPQCFVpg6DkNJWoE+o0yO7r+CyRsZCdBA6fjbuBZrw0rZJjG7jEXftfpR/z10Uce -kuuvTw1yXaRwYbGu8hCYrJXX+CywddrYs1ZWG12BDIIG7JDGpApn4erSxC8nmfgDj6unEdKi4Qfv -pvfe/0C9NzYZ8SI5OVme7tNP5unQlLffeE1q6ZCC9FikdSw9x3DvC7E0UCcvrrFbSHXvmxW/27ob -TtgINaQvlvNqfNmlgj88b36bPsN4PfTu84wZUoe64zbEJsIQE3ir4TmLoVRuC1bPnenC1eNSOm0r -ZoM6+6yznLvpEMODUlFjC8EQi+3vvxfLDSrAWLFwytSfzbaTTw4tarDOGkwh/8sQUcPpqhmqNJiy -ykurf7Kv9x6NUgRaxFADty3b7AuOde4p+U0vNxpbaFwt0uEK9Rwu8Xa/v4/NboIpQ52GRpttlDnX -Y3pOrIed5Zo+E7M82CEJt9YvLD8vOyCjZ+0TxPVAkFLbe+7MLz3LNp4G3O/jZfB2QMMX548/DFdw -x/ZYeWzaWRzzbB2SAM8IzL4Bw7AQt4G9tfNdHg9Yb+NH2DT4XKazbViDF4bl6pyO9XXHjCnNNZ6G -tWYaQNQGOh2oQ2WsNT0mfMRyjjaPaD4hYlhRpevn23VoSYE009pCnEPwTvxBZMAwDUynamduQbwL -DE1BbBenLdQ6C48kpyEgrjXUS9TTd1Qwsfby7aU1sGhhvwdG3T5r/fUYacDYXneIQfBwcQZ0hZMH -hBeIS6gPGEpj0+M8FvXFlKj2aLF9FtZgt/sSD0qRwukTNa66/FL5Y/YcgQcF/i5udL5/hiBnyS69 -6AL5YNSnZtVJlSpIl84dfJtd54ExmwmYW1mtijZQHrzvXvnokzEyZOj7Zl39s88wM6uYL0H+w3nh -/GgkQALeEUBDMpDHBRodE48dFsv2Zd6WBA0VGLYFMogMVzRuLF9M/NK8UDfS4W6wizXWxjBtuO3U -ISaNL71EnxMJgjHjEDQQE+PRLg8ZL65Wd7c1gQ2deR/WoJ/WatWsYRqF8L7EsTA0YOpP07ThV0Os -UGLTRvqZW+P4HEkOLnqU1hd4TEuYlJQst958ozaEN5ipC9HrD5EDfytXrpLnB74oD3V+wATM++a7 -783hz2sQeqgfjh2pOYWN7CZo2HN01ifUpUB1zKaN5RNeM85eZORRrpwOx9WhQP/+958/SwSZhZ16 -anX/umAL7783VJ7o1sM0Fsd9/onGiAoe1D5cXUJDEy77qLsIoLhl6zYzvAjePwg+i3r9zLMDjJcT -pqJdr7EH8Ac788zTdVp0nxgTrKyB1kdTxwLtH+s6t7CBa50dBQ17/qi7EOIgbDjrsd2OT2yLR53G -cw2z3uD5gaDLiKsBcQMecHiO7tYZmayo4Xw+fvLZ50bQmPzleDNMCp5t93V60FnEiJbD1WOIDq1b -3mWmI/5IhwTC8+6776fo++M6DdTrGwqH5yJmgKpbt448eH9HgefIW2+/K/AmsUGigxWGdTYYmdT1 -aVs2qevjsoReC9vjgU+3J0awGyAuBw+QCYZC2KEf43WmBvfMIhgGYXuQzz3ZJ1I0UHEDwxXG6qwd -LTRmgdNs4EqsQ/wNt302e99xAQ7t0AekdcYNcO+L74gLMV0DkGL4RDud1vP37qlTmgZK71znjnvg -3GaXFy1dZhbrxXl+ZzBDuWGvaPyQZ27w9QrhO4JJWk8HNIThRYB4DtbGzN4vPZqX9MddQBwUTPtp -DTEj3AZPBgy9sFOLouHcS71brDmHtGAohxWq7LVGoxozn1hDPIlAaZzCVbTnaPOO9BPxWB7VmUsQ -5wLTp8IwEwimXIUYgFlyIE7AMMsIAoRC9MLfvR9uNdMTY5udGQbL1jClMWaCQT4wxI2x1wvfMZxn -ycZk/3Wys9FgGwzihBXmfGt8/9fXe8bOLjP4h7TXHTOpWKEIQXbfb1NWbHrUB9wXTtEOw1NePzbt -MoLLYpaicFZUX9C2bN8gZUpq0N8QL8V2qtZg+RXQqQQx/SrG7uZR1+n8+iPU7u7/+ZPfcesNgj/Y -zTc0NwE8sY81xKf5YOir9qsMeraXfxkLDeqfZf726RStmHUIrpKhDENP9mjasqUqhUrGbSRAAukk -gBdvCBt4CUfvon1HwXrc0/Z9xnkYp1s10gWzC1TIQCBPNCTr1a1rkmFmFHxHz6H1YrAB8PAiDDf7 -2SqwLli40AxZsXnD3X+2ekog8B1EhCuvuMJE3R/w/Atm2kscZ+KXk2X0Rx/aXaL+zJsnrxmGF2zH -Ovre0O2Jx2TQiy/7A/A11PHqPbs/6d/lhYH9pf+AQeYlHivRi9npvvZpgj76EzsWcOxoDMKGFTei -2e9ETusTEJqYaVNraQwNeATBQwj1EQ2scIYgna/oVL1t7m0vvdWDAsvIM5CFq0uI1/HIQw8YzwxM -0wpD/ohLAKFvv8bWwNAl2Pc//Gj+zBf9r3+/PmlFDU0fiUVbxyLJM9I0VthA+uwsaDjPN9Szz5ku -Pcv58uWTDeq5g7gvEDBq6zMIsYg++fQzM3Sj/LEhve7no32mLl681AxBeenl1PezaMoTrh4jL8wy -tENn0xumw/DwB2vTuqXccP11Zrm4Dh8c/OJAefa5gfLgQ76OfNxviLEU7P4xO+p/rLOWRPBPT0UN -e1graFgXJbseLwzWLcmu8/oTvdbo/caQDkzNaoN7ovHX4t0t5vCIn2G9CzBVKhpcmAnjpe93CQJd -otcfgsad7202Iggah410Ngu3YQgAGmRNNBAjnrOIVdDxI1+gwAvV4yBfGDd9bB/XqYJc8Px608C8 -degmmfmUr1HrPpb9Xqqwr4GE2VgwhKaIigbBbPm/K82maIKEogF6/8e+c3Dnq9qAmenkDg1UaRvJ -b/y02wzjgGgAjwo7nS72bdHA50GAuCQQnOBtAKGhqQb4fOhy3/ShH+jQCtuABudLdArUQHb/qG3G -QwFxL9Dgd8ZhuPGsVC8M7IthJM6ZOiCquK/FNeqt8YFjFheksd4eyCPac8Q+0RiuG4bQfHZfOWnw -3HrDBbE9Hvl0mwxtVdZMcztIZxSBva0xL967u6yco55IS1WMcM7Wgllf3AZR4pIXNgjq9jYVD0bp -MBVrEHMQC+aAztJjDXUddRniCe4TK07Y7fbzjvMK+0UNe90b1ypohJmh01KFqbYX+4bRIKCpFUEg -2vXQ4Km4vmt3HJZeE3f6Y5k8rrMGRWKYQaRUiaKybeceqVA2VUiLZN9AaQoXOp6dOx1+LO0Ppntb -uO9FiqT1oAmWHueD8wo3Q0qw/bmeBEggcgJWyLDvK/Y7cnC/uFtX8kjGiZ93rs87AR4bVsjEswNB -7hC0EwHvYJgFAsMFXnltiBmqgngc9eufY2ZJMQn0v1Ya4G7hwkXSVeMOYPaT665tLlvUrRkBQzHO -HA3Tnt27mbgd2CchSGPT5hfoM1/+fJKos1voIJVAm826a5pfbVy+0WteulRJPW7aZ1r58uVlyGuD -TSyEvXv2mrHwaKSGtgTBsU9EswIZzt0pqnnForsKUBjWMWDgC+YQiMvy5uuv6vTmFYIeUv0O/dvO -0UCIj3ftIi8NftXMcHO3Nt4CWSR1CQEg8bdNp4eFZ4ntcUd++D5tqs/LJ1D+znVt77lb8BfaMr+O -5RQxA5ydYi/qLQzeG3gu4pmJP3entkkUw38QsTAMydZZZAEPhxcGDvDn5n4+trzrTpmtwYqffKqH -SYM4MpgFKpyI4M/w2EIk9RjD+TETz7333i1bNm+RKlUqH/eOeK6KGOM1HtFGfW7CwwlTEoc31tnw -jPS3LvGgdoV7aLayBxIv0POB9XYcK4oB7w7nS0QkRbto0HqdFjR1uEGgfeARsGbgyUYcuG7IJv9M -D2go48/GxEDjGsIBeqetDdAhCC+roAFDr37pIr5gkXb7d10qCnruYT/pkJHbhm426fLnVYVZhQXk -jzgDNoYG8v6je2X/MXpr7IK3tGGK4Sdf3H/8j8kX6oXQXme3gMEbAQ1YWPnHVpvz+eWJSv6hMd8u -SpSWw7aY7fivmjZQsd0dE2SDztfcs+/z5qYe9ubLRg337+RawFCdOk+vda0N/HXzy6eYc8e0rXb6 -3EApr1eh4YM25YzYg+3rtcF+sQZHtdfBvQ+4//BoReNFgG0QJR7VIRkwDGWAt0Ygu10b7hABnAbR -o9X7qYye09lA3F47ELEQpNXa0zqbBwQtp0V7jtW6r/Gf32qti27BydYDHMNZJnd5cT7X6EwtZz+7 -zohrzjI5l8/SoT1Tu/p6953HxtATeP+4DYx/fbKS1Czv6yW7493N/qEsgdJaj5sFfSr7g6wGisPh -3BeC0uj2qa6ifb7cKRBAghlEKgTKddffYOmxfs2GLVKsSCEpUSySH4pQOWX+tl179qmXRqKcXCmV -WeaXiiUggaxLYOWqVRLrkAvnWTnfWQK9nNshJ5EIGs58I11O0eElmDITDbpghjHlblEVgY2L64ty -ePEgWK6p63H8g2GmqU5NHZ8lNGYxTWNmWML61ZLv5jqS66Dj91FfBY/UayCHPp6Rpkjxqmc2U1vf -0ADEezBENTR83UKaTR/Pz0jqWnqPlxl1KViZ01PHnNcd9aXArXVFEh3tjyD1JVhZ4rHeWaZo8ot1 -P+cx0MbDsxDPQZgVg20aW3+RLp71GfUJXhvlNTh7sGek+/m4d+9e9RYr5BeVbRmj+cysehyvOhvN -uXqZNh51L1D5PPfUsBXaHhwV3wZCwrpoBQybj/MzmuApaLiN61Reeqinxg8abwBeAPAOwLCUy2oV -kH43lPKLDfYYPXQoABpVY3Q4CcQT7IN8EAuia5PifkHDpsdnsYIJMqlzRbl/1FZZoMMEcAzs01iP -8YzrGLb8uYP0YMC7BGLJx9qjjmEWiPmAmBvWNFu/oWf+iatLyDvaMw6BAL3yiI+g+pU/DRaWLP3H -fMd0kuFefpz5p8kkxJfe15Y0TDFsxw6fQHKILM21Qd73+lJ63NQMEKcCokUf9Qj4dbkvSCe2QhDC -zCHdmpXwCxqpe/mWECcDniBdPtvuF44gTl2vQzEG3FLKnVwudXl72ACgzoSIYeI0zErjtmjP0Tki -wnHq/mxtPcAKZ6DT5nq9721U1O850nn0NoGQgOl+H/l0u0xekOgfKoJ9IeB1uESnJ9ZhPIEM3j/w -VPpOBTBr8ETBkBcraGD9qHblBMeaMC81f3B9864yxlsDdQvmLHc/nbkHsTRQT51CI4S8djoby1N6 -HZ2GoUnwihr7l+/esttwr7TXc0D6aAQN7A8vjXWbfN5E2VnYgKCxY/deqVwhcKA2y4qfJEAC8Sdg -303wkm7+Ahwini/p7uzhzRHsZd2mdQsaWI/ZUeJlEBeSkw9LSoqjkR+vzAPkk1tnnsosQSNAcTJl -Fd6Rba+27RT0uiCR1LX0liGj61Kw8rKOBSOTvvVWzLAiL+ou1tm6jNzjWZ9Rn+zMJcFK7n4+2llP -gqWPZH1m1GPW2UiujC+N554atihQoWH2RQHf7bJNkxmfGLsPwQG9/ZEYvC026PSVmDYzUGPfemqg -Ebe8vy+SLYJlwhMBQ1GcjdVIjhdrGh0lItt1OAeEAzRE3YYghXPmLZQbrr1abr6+uXtzXL+D7z8a -gLVamTzHeScEO9AaHYKQoicBESSQOT017tEGPwJZwuCxgRlV3IEwA+URz3WxnGM8jw+hbePuw3re -ef3BPJ35Oz01rJfIAXXSWqHCxGnqDQHxKJihLsGzo6B6HiEmSaSG/JfrTCyIUeKe4jVQHia9Dm8p -o55QFYvnSSN6BUofal2SutRu2rpT8qkrYLgYG6HyyYxtiKGBISc4Bwg0OAcaCZBAZAS86AHCyzj+ -0CGDXnR01rg7bCIrXfZLhV78fXv36UwowYOGxuOscmkw5SLqhm2H5sQjz2jzyExPDdQv6/1jy+2l -aGaPkZGfGVWXgp1TPOqY8/lCTw3fMCmIF9ZTw92uQ7224kZOqc8ZWY/jXWeD3RsZvd55H8Xz2JG1 -5ONwRHdFd3+PwyFiyqJsgBlQQmWEXvAa5VKHpoRKa7ehJ7pEoYwdIwrBJdS5LVm23BQvmnga9nyi -/USD2RmsM5L9Ty4VW9WMVJyKpAzRpInlHKPJP1xaxMLAXzSGqYUDzejjzgN1CYJUtIb8EZ8mUjPp -XTMCRbqvOx2EAAzZ2LZzt6xYq+MWNX5FkUIFNCJ/PnXXjo6TO28vvkPIwLStmOUEQUERQ6NCWQ45 -8YI18ySBaAmcSCKGm43pxVexYf/+RM88NtATiTggmSlouM87o7+jjllPZhwbyzlNOMuIuhTsurGO -BSOTvvVoy4Vqz5lnpw6jykmWUfWYdTb6WhN9SyX6Y3CPLEZgu0bmxbzJsFOrVcUHjQRyJIEyJYtL -yWJFZa++kO9WsWDLjl1mtpKsdrIQWvLny2umbcUsJwwKmtWuEMtDAicuAbzEF9PnqG88+SEFEa9Q -bAkaEDL/CT/kxNasUI1Dmya7f3pXl4KRYR0LRobrYyfgbT1mnY31ylDUiJVckP0Q/BHDPTJ6+EOQ -4gRcvVGDhBbTnpdqGk8jK/ZaByy0a2UxjduAOCiwUB4prt1O2K/wfMGQHjgpOGNgnAhAIBAgtkZ2 -jq9xIlwnniMJxIMAItojuKVz9oR45Ms8xIgP4JqkXmXJh5MlRT3MjmAO9YhFjgTz+5Nbf4gwPSFm -EwgX0ysjuR86dFAi8S08queMeuYORJiRZc3ux0JsgvTVpWAEsnYdC1bqWNfjWRftLB72WKzDlkTs -n/Gpx6yzsV+BtHtS1EjLI93fEHBx2bNV0p2PlxmcXre2vPZify8P4XneN51dWPBHi4zANJ0Bh0YC -JEACOZ1A/nz5KGp4eJEhQuRX7wr8y2mWdOhQxLGcUM8w5W2xor4pynMai4w4n5xclzKCH44BUQN1 -MRbLnz8/63As4Fz7sB67gIT5auqs1j0vLLrgEF6UgHmSAAmQAAmQAAmQQBwIFC5cWHbu2pXhU5HG -oejMIpMJ7N6zJ6ISoBGDerZHp8+F1waNBDKLAJ51qIuxWGGd3pR1OBZy3Cc9BEyd1brnhVHU8IIq -8yQBEiABEiABEshwAoX0ZQkv67v0ZZ9GApEQQM/hpk2bzPAaCBaRGOoZhs9s2bKVwkYkwJgmrgRs -nUWAXdTFWMzUYfXyYB2OhR73iZaAv85qfY21zoY7JkWNcIS4nQRIgARIgARIIFsQQAC3kiVLmnHm -mDYO4gZepmgk4CaAeoH6sVEFDcQXKF68uDtJ0O+mnpUoaYarrF+/Xvbs3WtibATdgRtIIA4E3HW2 -pNZB1MVYzD4roeOxDsdCkPtEQuC4Oqu/z7HW2XDHY0yNcIS4nQRIgARIgARIINsQyKtTOpcsUULs -mHEMKzhy5Ei2KT8LmjEEIGTk057qUvqSXUgDV+ZJPhDVgfPkyWMEtMTERJ3ydr/s3LmT9Swqgtkz -McRSWL7N66T6EQ0aa74d+09HIyVpwFmbxrkpHstp6qz2eKMOpsdYh9NDL/vs61V9jIRAvOtsqGOm -724IlTO3kQAJkAAJkAAJkEAmEMirjdUi2oNZsGABSUmhoJEJlyBbHBKzY+XOnSemnkMMVYGAVqRI -ETN0BcIZY2xki8sel0LmTkFgWddwJf2KOlGhfPm4HMOdCY6HRiJ6uuPR2+2uwykpKe5D8jsJpJuA -ra/xqLOhCkNRIxQdbiMBEiABEiABEsiWBOyLFArPxma2vISeFvq4BmmMR7P1jHUsRoDZdLcEncHB -rWngVBJUdPBySul41VsndtZhJw0ux5uAF3U2UBkpagSiwnUkQAIkQAIkQAI5hkBGvVTlGGA8kagJ -sI5FjSxb7xD8eicc78GRTc40+DllkxNgMU9oAmmGgp3QJHjyJEACJEACJEACJEACJEACJEACJEAC -2YoARY1sdblYWBIgARIgARIgARIgARIgARIgARIgAUuAooYlwU8SIAESIAESIAESIAESIAESIAES -IIFsRYAxNbLV5WJhSYAESIAESIAESIAEMoSATtGZkLhHci2clSGH40GyD4GELRtF5/DNPgVmSUkg -hxOgqJHDLzBPjwRIgARIgARIgARIIAYCEDVW/CP52zeOYWfukqMJHNXKcZBToOboa8yTy1YEKGpk -q8vFwpIACZAACZAACZAACWQYAW27yoHDGXY4HogESIAESCB6AoypET0z7kECJEACJEACJEACJEAC -JEACJEACJJAFCFDUyAIXgUUgARIgARIgARIgARIgARIgARIgARKIngCHn0TPjHuQAAmQAAmQAAmQ -AAnkJAIJejK5c+tfck46K55LRhLIpZUIdYhGAiSQ4QQoamQ4ch6QBEiABEiABEiABEggSxHIX1BS -Lr5RJOlglioWC5ONCCQkyNHK1bNRgVlUEsg5BBISDyYhBBKNBEiABEiABEiABEiABEiABEiABEiA -BLIVAcbUyFaXi4UlARIgARIgARIgARIgARIgARIgARKwBChqWBL8JAESIAESIAESIAESIAESIAES -IAESyFYEKGpkq8vFwpIACZAACZAACZAACZAACZAACZAACVgCFDUsCX6SAAmQAAmQAAmQAAmQAAmQ -AAmQAAlkKwIUNbLV5WJhSYAESIAESIAESIAESIAESIAESIAELAGKGpYEP0mABEiABEiABEiABEiA -BEiABEiABLIVAYoa2epysbAkQAIkQAIkQAIkQAIkQAIkQAIkQAKWAEUNS4KfJEACJEACJEACJEAC -JEACJEACJEAC2YoARY1sdblYWBIgARIgARIgARIgARIgARIgARIgAUuAooYlwU8SIAESIAESIAES -IAESIAESIAESIIFsRYCiRra6XCwsCZAACZAACZAACZAACZAACZAACZCAJUBRw5LgJwmQAAmQAAmQ -AAmQAAmQAAmQAAmQQLYiQFEjW10uFpYESIAESIAESIAESIAESIAESIAESMASoKhhSfCTBEiABEiA -BEiABEiABEiABEiABEggWxGgqJGtLhcLSwIkQAIkQAIkQAIkQAIkQAIkQAIkYAlQ1LAk+EkCJEAC -JEACJEACJEACJEACJEACJJCtCFDUyFaXi4UlARIgARIgARIgARIgARIgARIgARKwBChqWBL8JAES -IAESIAESIAESIAESIAESIAESyFYEKGpkq8vFwpIACZAACZAACZAACZAACZAACZAACVgCFDUsCX6S -AAmQAAmQAAmQAAmQAAmQAAmQAAlkKwIUNbLV5WJhSYAESIAESIAESIAESIAESIAESIAELAGKGpYE -P0mABEiABEiABEiABEiABEiABEiABLIVAYoa2epysbAkQAIkQAIkQAIkQAIkQAIkQAIkQAKWQB67 -wE8SIAESSC+Bpf/8KxMnf2uywbK1G69rZhZvOvZp1/MzYwnY6+O8NtGUoFvXzlK75mnR7MK0GUhg -wrF7b9mxew/3Ha9XBl4AHooESIBonYolAABAAElEQVQESIAESCBTCCQkHkw6milH5kEzhYBt1ODg -7hde+0LMhmemXJpsfVBbr5yNZduYcq5DnWP9yrxLPWjwG4LrYa8NSmKvj3NdoBLa/SBs0LIOAfvc -tmIiSoZraa+r/e5+3medMzhxS2KvHZ+JJ24d4JmTAAmQAAnEh8AJ6amRkpIiy/75R0oULyGVKlWM -D0nNZevWrTJp8tdy7TXNpXz5cnHLN54ZoVFjbaku255XvFzhpdi+DIdr4Ng8wn0ePHhQEhISJFcu -30invHnzhtsl4PZJX30thQoWkiuvaCy4fiNGjpILLzhf6tSpHTA9V2YcATSebL1CvQnUeEIa/KGO -4c/Wu/SUEvXg8OHDkj9//vRk4993//5Eee/94dKsaROpXbuWf31OWsA1cAtLVugIJ1bYZ0S0PJKS -kuTIkSOSO3dusys+7fMg2rzc6fft3y/vDRuuz9xmUrNGDffmHP3ded/hRHFdYc4Gsr3n8InnPSy9 -996+fftkxcqVUqZ0GalYsYJ5vpuMs8B/Iz/6WCpUKC9Nm1yVBUoTvgj2Nzd8yvimSE5ONvdjvO7D -WLg7f9Pje3bMjQRIgARI4EQkkKVEDbx4wdwNavNCptucL2uxXKxdu3bJc88Pkt+mzxA0YGCFCxeS -Z/r0jstL0OYtW+XV19+Q+vXPyZKihuVrG522IYr1eLmCGdbHXn7djR+TIIr//lm+XG5rcVeaPUqV -KiUXnN9QHn+si74Ul06zLdSXsWPHS7lyZY2ogRcycC5atGiOFTUOHTokP/08TerWrSMnV6kSCk2m -b7P1KFR9wT1t72vUNeyT3sZVxwceklmz/pRvJk+Uk06qFBWHQHyX//uvDP9ghMknp4oaUUGKU+IG -5190XE4XX9RIOnVsL2eeccZx26JZ8c+yf+SDD0eaBlo8RY1pv/wqxYsXl7PPOjOa4mRoWvvMDnvf -qWeNffbjvjMN6Ri8bfD72aNXH/P7aU8Uz/MXnu8vDRueZ1dl2ifEs5cGv2p+E6yokR2uY3qAmd/r -KN+N7O/yG6+/IpdecnF6Dm/2DcQ9kkydv+nB0v+9aLFs2rRZrrry8mBJuJ4ESIAESIAEDIEsEygU -vYB44bIvX87rg5cw/FlXTee2SJfxw9vlsSflu+9/lNYt75IRHwyTt954TerVqyePP9ldxo2fEGlW -OSKdfSHGyTgbnFjGSzIMaQJdD7Mxiv+uad5MBr/0gjz/3LPS6MLz5etvvpV7293nF5aiyOqESbpn -71558qmeMvuvOVn6nO09Gaph5TwBCJPO+uXcFs3yho0bjaCBfb757vtodjVpA/E968wzZNTI4XJf -+7ZR58cdQhOAeIxnwMsvDpS7W7eUxUuWSqu726rH3PLQO4bZes45Z8vID9+XDu3uDZMyus1oHH8+ -Zmx0O2Vwajyb8bwOJPa7n9v2GY9P97ZIi/3Io4/L3Hnz5OlePWTs56Nl6FtDpJJ6arTv+ICsWrU6 -0mw8S5cvXz75Ytzn8vorL/uPkR2uo7+wUS7Ydybnb3mUWcQleSDucclYM5k0+Svp3advvLJjPiRA -AiRAAjmYQJbw1MCPM36Yg72goUfX9jDhWgR6iQt3jT4YMVLmzJkrzz7TR2684Tp/cgxhaNu+owx5 -82256cbr/S7SR48eVRfbVfKPDlOpXr261Djt1ONcpuH+vmjxYlm/foOcfno9f57uBQxLmTtvvr4A -VjS9SNYN253O6+/giwalfQnCMtbBLONax16SsR7M42HXNL/a3yMEN3H0fvYfMMi8IKPHdvnyfyX5 -cLLUrVPHfzj0Cv6j6885+yyJdsjKjh075N//Vmgv8Okmb1zH665tbq6tua4rVgp65XG8k08+3gvi -wIED8pfWlUOHkuS8BvX185Cs1Jf28xqca1ytsQ1eI1UqV/aXd83atYIyO3ueMTRi4d+LZPv27Xoe -Z0vp0qX86bEAbyHUn61bt0nVqqdoeWqb/Ldu2yZz584zaVdoWWf9OVtOr1dXChUqZIbeLNEG4arV -a4ybNdYXKFAgTb4Z9cXet5EKGrZcuH8RyBCNK9sws9si/fz2W5+QAcFs/BcTpN29bY5zgwf/xUuW -yIYNG+VUvYdPPbW6uYeD8cUwloMHD8n+xETD2pZli3pgzV+wQNArDd7O4S5ozO3Zu0dq1aoli7VX -cafWgUYXXnDcNcExFy9aIknJSZq2ZqZ634C9FaNwjraR61xnz935aYNPOtdFutzi9tv8va1NrrpS -brz+Orm1xf8E17FWzRqmUQyONU47zTwr4Y112aWXmOyxvGTpUr2Om+QMfc46vXJwjSFYYxhKwYIF -/cUJ98zFc2DlqlWyZMkyqVLlJC1DTXNdca/PX7BQ9u7dJ1v0vsS9d8rJJ/s977DPMvUOKVKkiNRT -L6qSJUv6j5lVFnA98exOryeU83zMPaO/YQ8/9KDcduvNZhM8Y2rUOE3uatVGfv9jlnmG2X1i5Y/9 -N2/eIqvXrJEG59b3/+bitxbPXdzHeI7a+85dX/DshpUIch1RX9Zv2JAmb6T/T38vdu/ebbws8T2r -m332opy4zukxyzLcMyzY7xWObbmXdxQkUZ+jc/R3DM9U/HbuT9wv69atl4bnNXCkEnPvLtB77sCB -g/r7WU/Kli1rts+bv8B4aeAL7sOSJUqY+obvWel5ivLQSIAESIAEMp9Aposa9scZjehQP8620W0b -5NEKG3/OnmMEBaegAfwQGJ7u3VPmz58v+/btV5fjYvpCu1c9CTpqozq1FxExMkZ/9KH/B3f79h1y -Z8vW5gXMXsZbbrrRLvo/+z83UD4fO87/HQ2jz0Z/5H9J9m/IoAXboMTh3AzB2DZwvCzORY0amewR -1wSixjvvvW/ikcB7xhpekuGpMPXHb6MapoL9Z/35l+7bQy5vfJkZwoF1TZtcKSk6rr9dh07akFmK -VcYaNbpQ3nhtsOTJ47sVIHzdo14k1tDDfOUVV8iXkybL3Nm/m/rS+eEucnerlnJ/p9R0I0d+LH/8 -+adMmuC71v/++5+0vqdtGm+UB+7vKJ3ua2+yxkt0pwcfMvUHx8AL42WXXSKvvvyiETTgPQTDWGX8 -jR/zqVTQXtEuXZ8wHgqoRxBvTjnlZHl36JtSsUIFkz4z/rPCmD22bVSFEjuwDWP8jZgZ5Us5GqRj -x39hxMkbtHEMz5+Ff/+dRlDCvdvm3vZp+KM+DBzwbFC+ZcqUlvb33S8D+vczIhiO80y/52T8hIn2 -1Mzn++8NNS/p+DJq9Kcy7ZdfjEjx5+y//Ome6/+MXH/tNeb7Dz9OkceeeMoMdbPD3ro83FnaqhCT -GYbrE+g+t8/WjCgTGsN4pkJ0goHjj1OmmnW4PyEOQtQIdB1xn7yiXh+4Z/GsxjWDFxgEU1i4Zy5i -QrTTfZzPAdxHbw55VQqqQIj8YLNm7TD3GjwT0JB/efBrMuKjUf7riPv2Fb1fMZwup1t+9YKArV69 -WnBfIE4SrGyZMvLDt1+ZZftfevhjqB3uJ4jef/7+m19AhPCL6zL4pUEqjl0RtL70frqvnHXmmfLg -Ax0DXscS2jDu+viTxlMTgrm1h7p0NYIaho5mBbPP0EDvRfadCeXEb7b7+Rtt+SN5hoX6vcI7lOXe -t08vc3j8ft/X6UF/UXCvXHLxxfKtetXNnzPLX38gGLe4s6URO2ziYe++bYSP3n2e0fq2xqzGtYeA -jed3Vnue2nLzkwRIgARIIHMJZOrwE/vjHOiHOxAW+wOOl2/sG6nhJWzRokVyhg41CWSnVq8mt9x8 -kxE0sL1H7z7mZRqNFzRkPx09UgWPfdL5ka7+3XvqyxN6lPADjDQfvv/ucY2fzz4fawSNvk/3lL9m -zZAJ4z9Xr4M88uhjT/jzyWoL6X1BiuR87JCK0049NZLkMaeB58SXX4yV2X9MN724fZ/pL2u0BxDu -6rhmQ1TMmDFjprz51jvmGHv27JEHVbBAA2fyl+PlT92va5dHjKARTSHQa3V/54fVC+Rk+e6bSTJr -5q8CQeOtt9/xj0f/cORHkpx8WKZN/V5m/jbNuOUvXLhI0DDGePApP3xjDomXxAVz/5TT1FNoypSf -TCMLQyR+nvKdOTf0YE78cnI0xYtbWtsIDlZnQt2nwfaJpHB/q/cLevyaN7ta6uvwAwg8X32d+jyA -cHBfp85SRhtckyfqddTGEUQGxCgZo7FZgvF1H/tjbWhD0Oje7QmTBxpvaPQ8rA0gvIxbw3MAnlq4 -zqhv8OYY9fEnZjMCZD73/AtGsPr15ymm3rXXoRIjR43WnuE9NosM/YSghGep/bPXwn4P9mnTxaOw -8GwCN3itWINIBy8u1P0Ph79rBClcxwrly5v7Ec/QFwY+J9Om/SpvvDXU7pbmM5Jnbs/efY2gATFw -zp8z5eORH8g29aR54cXBRrTG/YZnALy7sAxBA+WFoAExCvcr/s466ywZNvzDNMfPqV+KFStmGpV4 -1rRu005Gf/qZYYjfVqell78zr3DL7vriTI/e/kDX8ZJLLjKiFAQ0axgChecJBNKsYFbQQFmcy/hu -35mwjPs0XvdkqGcYjhXq9wrbnbZz507zjoMg3t9+9aX5He32xONG0HCmwzI8WNu3vcfch6NHjTDX -5s1j9zY6CP53ZwuzDtcSgkZWfJ66z4nfSYAESIAEModApoka9scZP8r4cY7U7A95qAaTOy80btHQ -iWSmk0PqyoyX5ocevN/0xqIXAsMU8KOMnj241WJGDzSGOz/QyfQoIA0aO491fSTNoX/QFyd4IkAw -wRCK6tWqySMPdRYEv8IL2YliEDHgSvqHBnV85bUhMvCFF01DFA1SLw3XA8M6MOYXLurf//CjdLyv -g2k44ZqhJxjeNT9Pm2aKsXTpMlNP+j7dy/S8o3fy9ttuMQ3SaMqJfPCS2Kt7N+NBgeEh8NBAz/SM -mb+brCCSwZAOBpd8CBWhen3hzgtD4DS83OHcvp40we/9YTZm8H/hXqpxn97bqUtAERL7BvIYCHcK -EDDQ8wc3ZlzHG66/1ghPGDoAW7psmbm/0MOO4UUYLgKvCcTQwfCFSA0iCAIg4sUaeeD69dOgwniW -zFPPLqc9qKIVrjOuyXXXXWOeFfbaHjp0UBJ1HwxNQXkf7vyAudbwCsssA3v7Z8tgvwf7xNC0WG36 -9JnmGYBhVR+O+EgefKiLycodAPDxrl1M7z+8MOx17N2zu7kf8QxtdnVTcy1xLweycM9cPN9xXSEy -4l7Dcc4443QZ/t47ZvhhoDyxDtcPtkuHKOD5j/o39M3XZdg7b5n12ek/XN9YrH+/PiryPiy79+yW -gYNekjvuai1Nm18nEDKsecXf5u/+dNYX97ZA3/FMh3iBZwieobCpU38y1/Pii30ehIH2y6h1ThED -4qPxaFPPKgwnsu9MKIt9D4pnuUI9w6L5vcKQSzwjcd/inQvMMbT36qZXHVdcDGHC+xHuQ4jBVzdp -YoSO4xI6VmTF56mjeFwkARIgARLIJAJ5Mum4GXpYuJziJXTd+vVhj7tyxUqTxtmDiBUY9w1Dr05p -7RmGuWdIqFO7tlmP//DCNEsb8bDGV15tPvGfFTMwPKFhw7QxFvyJctgCGjH4s4aGYl8d8oPZS7w0 -55CMFceu6+BXXktTFns90CBertcEZq+1LdtZ6goPoStSW6pj7mH33f+gNoZT413gWPO0ZwrWru29 -0qHj/dLif62kcuWT1DX3Irn5xhuOq1Mm8bH/mjdrKhO+nGQC26I+QzC7ThvrNvaAM21OXUajFL3E -sAkTJ5nP7du2m5foX3+bYeI2QFSC1XFNywpekRruX3jNuIeI4FrBEOjSzrCAdRDOrFU95RSziDHk -5XOVk8e7PirPPPucXNmkuRkCd8XllxkxzY4dt/vl5E8MI7n7nnb+U0RjBiKTMwYNvCOc8XMwPA1W -89iz1+6MGYEwHaRtaNn1kTxz7TMH8Wuchl5l/AUzlOHmm24wzw48yxCLCdcfQ14gZmWGBRMnsB6N -4WDbYy0rGp73tGlt/uDZgFnERo762MwoBtEP4mK437xY+Qcqs7u+BEoTaB2u2Seffm5ip2AICuoS -hA47xCbQPhmxzi1oOIeHQhy2ArAXgkaoZxjOPZrfK/tbW71aVezqN7wvIVC70yACO626es3C4AFk -hzg5t2MKWj5PnUS4TAIkQAIkYAlkmqhhf7DxY22DmtlChfpEWvy446XN5hEqPbbhxxEvzwsW/B0w -KYYdbNTe71O0VxfBGGHojXOaDYRVWLfbgHTB0mA/O/87XOP79e3tzwqBylCeUz0eeuE/YBZY6PHU -k4J4BrASJYr7x0k7i5acnOz8KocPp6T5nt4vtuGBhsmVV1zuzw7XENvQg16wkC/QIK41AgFasx4S -9js+k/U6Og3X1Zo9Fs4b00Jaw7HsNLbolZo29QcTYO9PjQEydvx486KNoTHBppGEOPfpxyNN/IhZ -s2bLRI3zgZdEeKS0ad3KHibDPtFosi/awQ4aqoEVbt9AeU7XhpS1d94bZhYxjAf2kTaw0PNvrx16 -C+2ySRDFf7h/ce/a+97uiuE+sCKFC9tVpu74vwRYuPWWm0wcADQC7XCnTz4do0NVxgjc+k8EQxyE -bk88Zk61kN5ntnEb6twLFfQ9i4Pdj9YDy+YRyTMXQhMs0D1t8wn0ibwx9Xc7dZWfOfMPmfrTz0ao -gtcHpsbMDIPnDH4/A1kwQQP3XLBtgfKx69DIhGiE5yQMjeA777jdDAG7pPGVxvsFvfGwUL950fC3 -9xrydC7je3rsjNNPN+XHEBTT2aECjY3Hkp5807uvfR66323sew4C9XohVqHc9roGO4dofq9sIF+8 -U2For7W1a9bZRf+nvgqlsUBCRpoE+oXPUzcRficBEiABEgCBTBt+goPjxxo/0vgxh1gRzmIRNGye -iL6N3kLMlOC23n36yT1t25veAbys4UVnxozf0ySb+fss872G9thVqVLZLE/XIShOQ6PFaWjIoxF7 -kQajvPSSi80feobwQo9jnCgGF1S47uPPOXOEPf8S2vDHkBw7fADrMcNAPM3OcoKGkr0W+Kyts1ag -YYleSPQewxDkzBrEll9+nW6/mk/MeLBgYapAhhd+lN+a9RAo6DoWZr8prsIEGgcLFi7UcfzbTVkg -SkzS2A+wmceGp9iXuwOJvmj+2AbvHszaAoEOcRkmjh9jXhqnTv0ZmzPN7Mu4swBoOKFHMVivot0H -9380hjH9qEfz/vrDBChEnAsM28FwAozPRgDfOnVqmSynz0i9H8H89SFv+uPeBOLrLsc5Z59phgvB -O8QaZmCA1akTvFffpsUnvAlwrfHyjoYTYnsg2CG8dpYc8yhxps+py3hm2mdAJIIGONSuVdPg+EMF -PGu4jtP1HkEjy+kdY7eHe+ZWPsn3fP/Z5Xn1xYQvZfCrr9tszCdEMWsY8oXreFKlSnJHi9vknbff -kLvuvEOfDb8dJ4DbfTLq0x1fyv6eutfb79HeczgPiDfnNLjguKEB+B3Dn53ZKR78rdDn/A3Asy9W -c15H5IF7Hw1jDEH5/ocpRuCA0JHZhvchPC+tiOEsj90WiyDlzCeW5Uh+r5z51tN7E/bq60M0bpSv -swLPZnfAZec+wZYTJMF44aEMMD5Pg5HiehIgARIggUzz1LDo7Q94OI+N9AgaOBbcZuFO3ldnM1iz -dp00UvfhJP3B/WzMWDO0AAHgrAdGm7tbm6COJUqWMOOu0WBFr3CL227199DCLX34ByPMlH4Y24+p -y5xji3FMvPx2euAh6da9l3FdRqN9yBtv6dj63fLd118iSYYbXmxtgxLLlr+7ILYHENyDNUzd+8T6 -HUEWMUNM/wEDzXAKvMAiKF88DT2t93fsIG+/854ULlJYztchMGvWrJWXBr+iolMj4x2BRhREp54a -SBC9w5W0AYMhDhDDnHaOBgiEyzLqxLn166u3xA8mDdyhYTVqnGZiMfTu09dM81qtWlWZ+fsf8q7O -8tKrRzcjRGAmBeT77DN9jYfQjzquG3aGju+HlVLhBI1ANLYq6qwnmCYUcQSGvjtMnnjsUTn//PPM -NIT/6bAa9xAJk0EG/GcESa0fqCu1HXFx8OLt/B6oKLYOBtoWbB0C0KFxBUHH9srbtBivjUCsiIyP -OCgYaoJ7PSkp2cTVwDUCS8xWAQvE1+ZlP+9ocbuJ4P9ktx6mEbRz5y4TEwbiV6TxYPAy3urutkaI -evihB6SoegBNmvy1OQQENVpwAriPMMyjR6+nJfFAohEUMHsCZihCwNBAFu6Zi3rTru29RuBCQxzC -5iJ9vr/6+hvSquX//FnCWwoCGu7zC/RZsWr1alMXEIPn9ttvlf0qVk2fOdOIW9Yzy79zBi3g2b1M -OwRw/zmf4/becjaAsc7cp7g39S9agzAP8eLRx5408aYwRA/xRT4cOco0Oq+4vLHJMh787X2Ba9Lm -7lbqtXdYXnw5Nm8Y93W0Q74QZPi11980z2RMU2tFzmi5xDt9LNcm3mVw54d7JtzvlXMfiPd9dHgp -htyd27CREY0wXAkdS84Zopz7BFuuV6+O2fTusOHSRL29ypYtw+dpMFhcTwIkQAInOIFMFzXA376Q -4aXLNqKd18U2xNGIsmmd2yNZRk/8i4MGyAsvvaLiwxgjSGA/vKj16/t0miBxHTu0kxQd/jDhyy9N -OrjTIljgk4939R8KgUT379/vzwsNWsxUgRk2cuXy+VSiIYqX72Hvfyj3P/iw2RcBRV/WntpAHgv+ -zD1acL7Y4hDBXnItb7xg+fdxNFqjLZ67Aere/3oNrDh33jzT6ERDAiwREd09s0Du3Gmra7B8Lf8E -fRlzWicVNTBsZOy4L8zLLLZhLPVT3R43yVBHXnpxoPTp+6yZUhArcb2sgGUS6X/wrFitgoidNQUN -aEw3t2ixz1sDrryv6DXu13+AvPzKq+alH/XskYcf1Ab3rSabZzXoHqYLxfSCMGzHLBtoPMBwbg/e -30kGvfiSmcZ13Oef6At+a9mqszQ4X/AhtKG+Zoahftg6Ekogc5cNaVH3or2ff5ziE36aXd3EnaVU -q1rVNDAx9S7c4l8c9LyO9R8orw15w8+/pwZuvfKKxmbfQHzLlitrttkGDgJJvvTC81pXhkvnhx81 -2zCdKAKQWgHU7T5tEjn+Q68zZtlAXbBThaJ+Y9akzAwU6iii54uo25ZpsIMF4oj76GW9H/v1f15e -US8K9LiDHQIQImBoIIvkmYtnCxrK43Ra4I90FhoY7qNHtHFr7Y7bbzOBTXv26mOESNy3eP6/+fZQ -f48zYgMhcGxmGoag4Bnt/N3Eb6T7dxL3GywWLw3sh9+rcZ9/amYGQ2PVGq4trpGNVxMP/oizgHsV -Pf2YwhrHeKBTxzTPvUD1BWXCb0TCsd9ffHdfxxZ6XWFoeEPAhgfBNSpwnIhmfz+DsXQyCfd75eYO -T5gzVaBHcPCD2pnTWINyw5PVLWq4f9Odx8Qy4kVBDIFgjc4O8zw+wZ+nbkb8TgIkQAIk4COQkHgw -6WhWgYHGjm0oOcuE9TD3i5ozTTTL6D1duWq18bpAb3gow8wpiIsQ7KU8JSVF9u7dq7EiSoTKRhC3 -A0HwbGMoZGKPNjpffq1YEcgLAy/IMGxzLntULH+2mKEEQhFYBuPtT5zOBbj/22EngbKCpwZcZ5EG -gSkR7R/TwDrHHsMVFkNPQrnTo37sUs+ckur1Y18incfD0IYDOqtJsPqDuopyOEUwrIPXQLA8nfl7 -vWzrFI4TiUhhBQ2k/2Doq/jw1MLdn4H4BioQ7nHcuxC+YjUT2FJbEM54HLHmFet+mInGfZ1wj+M6 -hrse9tqFSxdr2ULth+u4b9/+44SgFStXyk23tDAeOFawsvlE8syF9w+e74HuTdzbeCbhue3cjn0K -a0yVQMNf7LEz8tNeF/x24tri0xq2wZsD19d93W2aaD8Rj2St9ryX0mea9XwIlEd6+dvnHOIwOZ+7 -gY4Val2g64i8W9zZygybwVCizDLcj7he+K3NDhbu9wrngGclprSG16EVu3ANbrntDiM6jf3cJyRG -c764D1EHnPUgKzxPozkHpiUBEiABEvCWQOxv6B6UK5hoEWx9rEXAC6ozgFWofII1Nu0++JENlwZp -7Thhu19mflqhAmVwvgDbMtkAdHjhguFlOCMMjYSMaijA+yaUoQEbToCKJAgl6ocdbx7oeIi4Hyrq -PuqqU9BAHlgXKs9Ax/FqnX0hR52yvcFY565XVkTDJyyjXuLD3Z+B+AZiFUq4CpQ+0LpI6kug/bjO -F8jQ7dmC2DeYIhp2fsMGx2GK5JmL+DjBDMKq+95D2lD7BMvLy/X29xH331K9D+09acUOHDteggby -QjBt9wxRWO+29PKP13POfR1/nvaLxtP4xgz/G97tHXexM/w7nonO3+RoC4Dfa1sHot032vThfq+Q -H56VmMYdQz0xlTZ+a3/+5RdZvXqNCbYb7TGRPtB7AZ+nsZDkPiRAAiSQcwlkKU+NnIs565yZ7blD -idy9es5SOtNlVAPUefystIxggIitAddXvGjTAhNwNqKQwgobVsiw60LVu8A5c228CFivDHttkK+9 -Ps51gY6HdLbBHGh7Rq+b/NU3OrXuErnqisvNMLGMPn5WOx6ujxE2jgmHKF88xYysdr6xlqf/gEGy -du1aE+cq2DCmWPOOdj/n72y0+9r0GSlq2GOG+8RMX/DWQKyx7eoVWUfjBzVpcqV/eGW4/bmdBEiA -BEiABKIlQFEjWmJMTwIkEJQAXtJh1msDy7axTDEDNDLX0PCNtVcY15HXMHOvXyRHxzXGHyyjevAj -KRfTkAAJkAAJkAAJkIBXBChqeEWW+ZIACZAACZAACZAACZAACZAACZAACXhKgL70nuJl5iRAAiRA -AiRAAiRAAiRAAiRAAiRAAl4RoKjhFVnmSwIkQAIkQAIkQAIkQAIkQAIkQAIk4CkBihqe4mXmJEAC -JEACJEACJEACJEACJEACJEACXhGgqOEVWeZLAiRAAiRAAiRAAiRAAiRAAiRAAiTgKQGKGp7iZeYk -QAIkQAIkQAIkQAIkQAIkQAIkQAJeEaCo4RVZ5ksCJEACJEACJEACJEACJEACJEACJOApAYoanuJl -5iRAAiRAAiRAAiRAAiRAAiRAAiRAAl4RoKjhFVnmSwIkQAIkQAIkQAIkQAIkQAIkQAIk4CkBihqe -4mXmJEACJEACJEACJEACJEACJEACJEACXhGgqOEVWeZLAiRAAiRAAiRAAiRAAiRAAiRAAiTgKQGK -Gp7iZeYkQAIkQAIkQAIkQAIkQAIkQAIkQAJeEaCo4RVZ5ksCJEACJEACJEACJEACJEACJEACJOAp -AYoanuJl5iRAAiRAAiRAAiRAAiRAAiRAAiRAAl4RoKjhFVnmSwIkQAIkQAIkQAIkQAIkQAIkQAIk -4CmBPCkpRzw9ADMnARIgARIgARIgARIgARIgARIgARIgAS8I5Fm/eZsX+TJPEiABEiABEiABEiAB -EiABEiABEiABEvCUQMJRNU+PwMxJgARIgARIgARIgARIgARIgARIgARIwAMCjKnhAVRmSQIkQAIk -QAIkQAIkQAIkQAIkQAIk4D0BihreM+YRSIAESIAESIAESIAESIAESIAESIAEPCBAUcMDqMySBEiA -BEiABEiABEiABEiABEiABEjAewIUNbxnzCOQAAmQAAmQAAmQAAmQAAmQAAmQAAl4QICihgdQmSUJ -kAAJkAAJkAAJkAAJkAAJkAAJkID3BChqeM+YRyABEiABEiABEiABEiABEiABEiABEvCAAEUND6Ay -SxIgARIgARIgARIgARIgARIgARIgAe8JUNTwnjGPQAIkQAIkQAIkQAIkQAIkQAIkQAIk4AEBihoe -QGWWJEACJEACJEACJEACJEACJEACJEAC3hOgqOE9Yx6BBEiABEiABEiABEiABEiABEiABEjAAwIU -NTyAyixJgARIgARIgARIgARIgARIgARIgAS8J0BRw3vGPAIJkAAJkAAJkAAJkAAJkAAJkAAJkIAH -BChqeACVWZIACZAACZAACZAACZAACZAACZAACXhPgKKG94x5BBIgARIgARIgARIgARIgARIgARIg -AQ8IUNTwACqzJAESIAESIAESIAESIAESIAESIAES8J4ARQ3vGfMIJEACJEACJEACJEACJEACJEAC -JEACHhCgqOEBVGZJAiRAAiRAAiRAAiRAAiRAAiRAAiTgPQGKGt4z5hFIgARIgARIgARIgARIgARI -gARIgAQ8IEBRwwOozJIESIAESIAESIAESIAESIAESIAESMB7AhQ1vGfMI5AACZAACZAACZAACZAA -CZAACZAACXhAgKKGB1CZJQmQAAmQAAmQAAmQAAmQAAmQAAmQgPcEKGp4z5hHIAESIAESIAESIAES -IAESIAESIAES8IAARQ0PoDJLEiABEiABEiABEiABEiABEiABEiAB7wlQ1PCeMY9AAiRAAiRAAiRA -AiRAAiRAAiRAAiTgAQGKGh5AZZYkQAIkQAIkQAIkQAIkQAIkQAIkQALeE6Co4T1jHoEESIAESIAE -SIAESIAESIAESIAESMADAhQ1PIDKLEmABEiABEiABEiABEiABEiABEiABLwnQFHDe8Y8AgmQAAmQ -AAmQAAmQAAmQAAmQAAmQgAcEKGp4AJVZkgAJkAAJkAAJkAAJkAAJkAAJkAAJeE+Aoob3jHkEEiAB -EiABEiABEiABEiABEiABEiABDwhQ1PAAKrMkARIgARIgARIgARIgARIgARIgARLwngBFDe8Z8wgk -QAIkQAIkQAIkQAIkQAIkQAIkQAIeEKCo4QFUZkkCJEACJEACJEACJEACJEACJEACJOA9AYoa3jPm -EUiABEiABEiABEiABEiABEiABEiABDwgQFHDA6jMkgRIgARIgARIgARIgARIgARIgARIwHsCebw/ -BI9wIhLYv3+/bNq8RY4ePSrVqp4iuXPnPhEx8Jw9IIC6tfzf/+Tw4cNSo8ZpUrxYMQ+O4svy0KFD -kpKSInny5JF8+fJ5dhxmTAIkQAIkQAIkQAIkQAIkEBuBBG10Ho1tV+5FAmkJ7N69W8aMnyAjRo5W -QWNzmo3nN2wg59Y/R9re09rTRmiag/JLjiIAgaHrE93l+x+n+s/r9VdelOZXN/F/j/dCtx69ZfyE -SUaY+/7rifHOnvmRAAmQAAmQAAmQAAmQAAmkkwA9NdIJkLv7CMxfsFA6PvCIbN+xIyCSP2bNFvxN -+uobeev1wVK7Vs2A6bLKyjlz58uKlSulQIECct01zbJKsU7ocgx66ZU0gkbpUqWkeHHvvDScsA8c -OOj8ymUSIAESIAESIAESIAESIIEsQoCiRha5ENm5GH/NmSd3trrHfwpobLa7926pVauGWffP8n9l -ytRpMvuvObJ27Tq5/uYW8t7bQ6TxZZf498lqC5O//kY++vhTU6zmVzfV4TMMP5PZ1+jnX34zRahQ -vryMeH+oVK9eLbOLxOOTAAmQAAmQAAmQAAmQAAlkMgGKGpl8AbL74Q8cPChPdO/lP42LGl1gBIu8 -efP611168UXStk1rGfHRaBkw6CWzHp+X6HqKBX5MXAhBAPUMghjsumubUdAIwYqbSIAESIAESIAE -SIAESOBEIsDu5xPpantwrh+P/szf2KxSpbK89vIgcQoa9pC5cuWSe9u0MjE1sG7lqtXyy6++nneb -xv2JAI3Jycnu1f7viLEQS0iYpKQkfx7xWjhy5IjEM1+cdyznFup8YilfrIxDlSOWbc56cFKlSmGz -QHrUn1gMAkq82cdSDu5DAiRAAiRAAiRAAiRAAiQQngA9NcIzYooQBCZO+sq/degbr2qMg+L+74EW -OnVoJ8M//MhsGjFqtFze+FKz3KP3M2ZGi/Ma1Jebb7xehn0wQr77foqYmS4Wz/NntXTZPzJs+Aj5 -bfpMf/wOxOf43x23ye233hxQUMHO333/o3z97feCWBkIYoohMg30WJfrEJhbb77Rn//oTz+XLyZO -lnnzF/jX2aE1jS+9WB68/z7/ejT4x46fKJ9+PlZQLhjyveTiRtK+bRupVdM3/Ma/Q5iFxUuWyigV -iRb+vcjkV7hwYTn7rDOkgQZYbaf5FdT4HuEsMTFR2t73gDboj0ib1neZMnzy2RjDC0ISyndu/bPl -8UcflmrVqgbMLlLGCAzb8cFHzLE6aPmaNrkyTX44nz79Bph1HTu0lauuaBx0e/cnH5P655yVZju+ -QCzC+Wzfnhqr5Z33houtd0/3fErOOL2u2Q8zooz46GP5ccrP/roBoe265s2kdcs7pWzZMmnyxzV+ -bqDPc2jQc8/Ir9NnmGu/aPESQb7YJ5RBOMH54biwDu3ukaZXXWGW+R8JkAAJkAAJkAAJkAAJkEDG -EKCokTGcc+RRMBzANubr1a0jNWucFvY8S5YsIfNnz5DD2oueKyHVUSi1IV9IG6U/GU8Od2YLtLF/ -a4uW7tWmDGhcLvx7sQx4to8kJCT402Daz+cHvSwjP/7Evw4LCGgKoQN/8xf8LX16PWWmnf33vxVp -BA2ktQJH9epV8dUYGttPdu9thBK7Dp/Id8KXk83f5AljIhY2xn/xpXTr+bQzKyPoTJ/xu+Bv2q/T -ZeibrxpRIk0i15dkPV/EOIFVr3aK9OrzrMnHJkP5MHsI/sZ9NkrOPON0u8l8RsO4mE6lumrVGnPO -U376+ThRY5p64lh2X3/73XGixozf//BvP9XB1lkgeEzg/J0GUcrOrrNv/z6zCQLKjbceL0Kgjr79 -7jCZ/M23MuaTkWn47dy56//snQW8FcUXxw/dISXdLdKNtKAogu0fECSUblBUFAwQBOluEJBQQEEU -6e7uTulQuuE/v7lvlr2Xm+9dno/3focPb/fuzs7OfHd2dufsOWes80+aMs2KoYIMH6p/3gTtqsMn -n8uffy3QyaDEqlK5ordDuI8ESIAESIAESIAESIAESOAJEKBS4wlAjSpZnjh50qqq+VpubfCyEj9+ -fI97zQD2paovynN5c0uqlCl12lOnz0jjpq2s4+rVqaUtLU6r7bN//0Pwdf0XNZ1sxozppVnjD610 -C5SCxCg08NX+9RrVJZdSvmzaslVmz/lDD8hhyVC0SCGpUf0VbbVRvFgRmf7LLFmxcrXOB9OGQk+S -Nk0aK9/+A4daCg1YPmBa0RQpUiiFwhZrcPxBwyYye+Y0SZXKUQfrYJeVs2fPWQoNWGfAcgTlOXrs -mPzx53yttIFyoN+AwdLta2fFh0tWTj8xFSmkTq13pUTxYnp92s8zLCXB19/2kF+UYsMogQJljONe -rFxBpv08U5YtX6Xzt/9Ztnyl9XPxkuXaHSRGjBjWNsyGAylYIL9HCx+cY1D/3koxc0M+7dxVp8c1 -rFypvF7PkT2bHDt+QmrXa6R/40/N116VF8qUElitLFm2Qpaq/1BuNGrcQiZPGC1g7CoICosApK9V -ryYp1XUsGcLLNR1+Q6GBqWWNQqPxhw3k4/Zt3CXlNhIgARIgARIgARIgARIggSdMgEqNJww4Mmd/ -yeYSkCd3rqBVFa4IDevXdcrvi67faAUENo4bNUwPWk2C/737lh7UQrHRt/9gee2VapI+fTq9G4N4 -CAayE8eNknRpHYoJKE3efL2GnokF+1etWauVGrA4wf/1GzZZSo2qL1Z2CmgKFxZ8/YeUKlFcxowc -Yrm9vFrtJeVGUVDadfxUl7f/oKHaekQn9vAHlh1G+vTqLpUrVjA/5cMGH0ix0hW0tQXcKgJRaiCT -H77vrgf5JsOXVb3rNvhIT68Lq4yz587pwTz2h4YxlAdQasACBIoDKI4gl69csSxG8BtuRLuUNUX+ -fM/hp1ZwQNkAgQuQJ0EslperVpErV69aSo28eXLrbeaY9h0/s6xRYKkDNyQjtf/3rnzTvadWNKF9 -DBs5RrvemP1miXJPmzxeKzTMNndLxOmwW2g0bdxIOrR9pGxzdwy3kQAJkAAJkAAJkAAJkAAJPDkC -j+z/n9w5mHMkJfDv5StWzTJmyGCth3Xlg7rOLiYYSBqrCZj5YyBtF1h+9Oz+tbUJg1cjHdq21kqQ -6T9NsBQaZh9icZhB9oaNm81mn8vNWx/F+IAVh2tg1OqvvCxQmkAwja0vqfZyFV3GKRPHOik0cBzy -NrEdoDg4d+68r+ys/bCAgNWCXWD5UKfWe9am48f/1uuhZVyyeHErr81bt1nrxgoDMTyg+IGsWr3G -2r97zz5rHTPmhFZQ7jXr1uvDwd2u0DB5QkmWPVtW/dPT9ahfr45fCo2OnTpbFjrNm35EhYaBzCUJ -kAAJkAAJkAAJkAAJ/EcEaKnxH4GPDKdNlCihVY2Tp05b62FZwQDYdZrXQ4ePWFnGiRPHiuNhbVQr -cAkwsmv3Xkup4OoWc/XqNbl+47pcu4b/1wTWCpC7d+6aw30ud+xwHIOE9vgO9gOjK+UBBME5YaXg -zuXBpIdCyK4UwuwbV69c1cddU24Xx44dN0kFMTP8FbjFuJO0aVJbm69eu6rXQ8s4adIk2n0E7jFQ -ZBglCgK5QhA8FPEyoHiAO4pxDYKbDgRc8j3nCPSpNwT4BzFQjLgqu8x2KIZKlSwuSIt4I2grMWM6 -d32w/vAmCAqKqYt//2OeTtayeRNp07KZt0O4jwRIgARIgARIgARIgARIIBwIOL/Zh8MJeYrIQwCx -B4wgUGMwJEGCx+Nt7Nn76Kv+kGEjBf+9yc7du512b9u+QzCrCeI+wNohrAL3EyOvvfGuWfW4xOwY -sJrwJrDAwIwvcMmAIiQYkjbE1cY1LyiGXCUsjOE+AqWGsaZB3vMXLNKnwIwxmTNl1OtQKMAtJUni -xEoBskFvq1SxnA7Qqn+E4s+uXY+schBfw5PkzPFoJhooN2ClY5f48eLZfz62jnYz5/c/re2vKasQ -CgmQAAmQAAmQAAmQAAmQwH9PgEqN//4aPLUlsA+ad4ZYPDyJysDSwS5ZMmey/7TWoQxAbIRECR9Z -kGC61S+/6malMStwi8AUn2b2FrPdn+VVZeFhxFtZkAb7Mb2qN4GSpHmrdo8pXFDGxIkTBU3J4a0M -YWEM95F+A4doqxUEG71586ZVlxLFi2prDAThhFULrDkqVyyvLDccSo2yZUp7K5bPfXfu3rHSxI4d -21p3XYmtrDWMYCresErTlm1l5vSfJGHCBGHNiseTAAmQAAmQAAmQAAmQAAmEgQCVGmGAF9UPxRd4 -DNqhTIAbx/ETJ5zcKNzxweD5jXdqyxXlXgF3AQSy9CW5c+WykkwYM0JKlyph/fa2gtkvjEIDbg4d -27WW8mXLWMEscSwCehqXAm952fcVLlRAWyXA+gLThIZVevcdYCkB4J5R5cVKeuYXBMmETJ0+Q9Xj -27CexuvxoWWMTOE+Ar64tpvVrDKYKhUCZYdxu9FxQyZMErilZFSKJ6NEgVtIWMTuNnJQWcS4WmCY -vA8cOmRWJWfOR1Yb1kY/VkYMGaCVYFDgoM1/+kVXGaRiqpjZY/zIgklIgARIgARIgARIgARIgASC -TMAxagpypswu6hAwMRRQ4ybN2+hpNL3Vfpwa2GJACHN+fwNE5s71aBC6c5eza4n9XBhMX7h4UW7d -cnyJ32AL0tlCBXV8v/Z7TgqNhw8fypq1jiCT9nx8rT8fMoMHXC4Qa8GdoAwoixngu0uDbXDHMMEr -y75QWtq3bSmIA2IUGkhj4k9g/UlJaBmjPJimFW4kEMwaY6ZyraQsMoyUe6GMXoVbysZNjngaCN4J -C46wiN2tZMu2HR6z2hISxBQz28SLG9djOm87UB/MdvJipQo62V/zF8qoMeP1Ov+QAAmQAAmQAAmQ -AAmQAAn8NwSo1PhvuEeas9Z7v7bATQKCWAWffN5FHjxw724Bi4gBg4fptDgG05/6I5jdxMxeMXTE -aEGMCleBgqF4mQpSqmxl+XHST3q3PXioa2BIJJgz90/LQsI1PwzUjZw7f86s6iUGxka+/a6XWXVa -tmrXUZcFZfLm7vDA5priOosKMkRdFyxa4pT3k/gRWsamLHalxbIVK/XmsqVLmd1SpEghvQ5l1ohR -Y/W6XelhJQxwJW7cONYMNrjua0PcWuzZTPppmjW9LKxsQiNG+QJlU68e3bSFEvKBlc3qNetCkyWP -IQESIAESIAESIAESIAESCAIBKjWCADEqZ4EZUHr1fOQaga/XNd/6n8ycNVswtSoCiP42Z660bvex -dvUwrGCR4C0Ggklnlp0//Vivwm2hbv2PlEvGL3rAf+z4Ce2eUf/DRzNR1HjtFZ22aGHHQBo/MJBG -OU6fOaPLNHjoCOnwyec6nbs/aVI/miFk8pTp2qLCpEPwS2NlMmXaz9KpcxdZvnKVjhmB+BhNWrTR -AT+Rvl6dWuIuMKfJ65lnkipXE4eSZPGSZfrLP2YiQb3A8J1a9SxXDXPMk1qGhrEpi5m21QRihRIg -S5bMZre2jjAWDoitAfE0W4l1kJ8rn3XqYKVErAtYAyFWChRdA4cMl6+79dD7oUhr1OADK21oV9Dm -hw/ubx3evHV7OXnylPWbKyRAAiRAAiRAAiRAAiRAAuFHgDE1wo91pD0TvtKPGzVMWrbtqAfgGFBi -oO9OEGOh/w89pYKaMSMQwQD4++7f6HwxcDaxMlzzGDKgj+XSkCRJEqlT612BUgLHdOzU2Sk5BrlZ -smS23D/sO+1xO6AQwf+333xdenT7SitjBvX7QWrXa6gHz1A+4L+rYErVju1bu25+7PeHDT+wFD69 -+vQX/LfLS1VfFCiLnrSEhrEp07PPptLWNGaKVcTQcJUK5cvJwsVLrc2FCoTOasLKIGSlaJHCMmRg -X2mhlAtQen33/Q+uSXRsjwljR0g6DzPCPHaAjw1Zs2aR4UP6S9MWbfU5W7TpIFMmjQu1a4uP03E3 -CZAACZAACZAACZAACZCABwK01PAAhpsDI4AB8dzffpGPGtW3gkPac8CX+9drVJffZ013q9Cwu3vY -j7Ovv/lGDR1YFMFJXaV82RdkxvTJUrVKZaddXb/4TNq1bmG5yJidsBpAkM+MGdKZTU5LBJwcqIJA -YvYOIw8ePnKrwdf6MSOGCMrkKlDcdPq4nYwbPVzi+ZgqFMdWV9ODIgila73gcjN5whippJQB/kpY -g1aGhrEp24uVK5pVMe4o1ga1YrfMgOsJXEf8lejRvHdVVVVw1aGD+rkNFAqrmh/HjZRcLgFCo8fw -nifKFj36Izck17JWrlhBWrdoqjfDKqnfgMGuSfibBEiABEiABEiABEiABEjgCROIpoIlPnzC52D2 -UYwAgmeeOXNWu2PEiBFTsmbJLEmTJgkaBTTZCxcuausLxMpIny6dXwNkTDd69epV9bU+bUBTcZ49 -e04H/UyVMqWeBta1Ijdv3ZIzmMpULVOmSCEpUiQP9YwYCBx6WuWFPFIkT+56qnD7HVrG4VZALydC -gFa0D0iaNKklSeLEXlJzFwmQAAmQAAmQAAmQAAmQwNNMgEqNp/nqsewkQAIkQAIkQAIkQAIkQAIk -QAIkEIUJ+La/jsJwWHUSIAESIAESIAESIAESIAESIAESIIGIS4BKjYh7bVgyEiABEiABEiABEiAB -EiABEiABEiABLwSo1PACh7tIgARIgARIgARIgARIgARIgARIgAQiLgEqNSLutWHJSIAESIAESIAE -SIAESIAESIAESIAEvBCgUsMLHO4iARIgARIgARIgARIgARIgARIgARKIuASo1Ii414YlIwESIAES -IAESIAESIAESIAESIAES8EKASg0vcLiLBEiABEiABEiABEiABEiABEiABEgg4hKgUiPiXhuWjARI -gARIgARIgARIgARIgARIgARIwAsBKjW8wOEuEiABEiABEiABEiABEiABEiABEiCBiEuASo2Ie21Y -MhIgARIgARIgARIgARIgARIgARIgAS8EqNTwAoe7SIAESIAESIAESIAESIAESIAESIAEIi4BKjUi -7rVhyUiABEiABEiABEiABEiABEiABEiABLwQoFLDCxzuIgESIAESIAESIAESIAESIAESIAESiLgE -qNSIuNfmqSvZ7dt35P6DBwGV++HDh7LvwGH5c8ES+ffylYCOdU38x/zFsmrtBtfNj/2+fuOmjBg7 -SfYfPPLYPm5wTwDXadmqtTLmx6mybuMW94ki2daI3k5wTe7eu+f2P/aFRU6dPiuTp8+Sf/+97Dab -YydOyrDRE+Xylatu93OjZwLTZs6RJctXe04Qwfa4toUt23fJ9Fm/R7BSPt3FCc/+1fV6Pt3kHi99 -ZO+b/Ok/nsQ9ev/+ff1MwPsaRcSfdhbZ7zW2AxKIaASo1IhoV+QpLc+2Hbvlg6btpMNn3/hdAyhA -mrT9TLp+10emzZgjd+7c9ftY14TI68cpM2SfH4qKI0ePy5IVa9TAYpVrNvztgcDPahCDQey6TVvl -chiVTx5OEeE2u2snq9ZtlB2790aIsv76+19S96M2bv+vV9cpLHLqzFmZ8+dC+cfDtV65Zr1Wcu3e -uz8sp4lyx969e1dmzZknP/8616r7nn0HNUtrQwRbcW0LW7btlN9U24vqcubceVm4dKVcv34jzCjC -s391vZ5hLnwEyyAi9U3Bvrf97T+exD0KBTqeCXv3H4xgV/y/KY5rO3PXH4TnvYaPiuiP/j55+r8B -wrOSQAQgEDMClIFFiAQE0JlC0LHfvHVL4sWN67NWi5askCvqS+/Xn3eQXDmy+kzvLcGx43/r3f7k -81yenPLlJ60la+ZM3rLkPhuB9Zu3SbJnksrQvt1tWyP3qrt2Mn7SdMmcMYM8nzf3f155Y4vx/ntv -SPz48Z3KkzN72O4np8zc/Hi75quSP18eeS53Tjd7uckTgVixYknPrz51ul7zFy+T9Ru3SvkyJT0d -xu0RkAAGrKMnTJGc2bJIggTO91+gxY2K/WugjPxNH5H6pmDf2+w//G0FTz6dazsLZn8QmtJfu35d -90fvv/empE+XJjRZ8BgSeOoJxPhKyVNfC1bgPyVw6/ZtGTrqRylcIJ+cPntOUqZIrhQGGT2W6fad -O7J95x6ZMftPuXf3nhQumE+b0CdJnEhghntCaZo3b92hTd+TJk0ssWI+0r1d+udf2aO+FOAlcsv2 -nbJzzz7JlCGdbFCDbliL1PvfW2rAEE+fG18Ujv99ShIlSiCxY8e2yvNAWXWcVOb1CVS6+PEcaWHp -gfSb1VfIq9euyzNJk0hM23mtg0NWUM59Bw/r9ChTogQJJE6cOK7JnH7jGJgs4iv6LaX4SZI4sTpH -DKc0eDDBdBRKGuyPa8sTdfn75CnNF3XdsXuf5pBQnRty9do12bVnv66XvSwXLl6SvQcOiStL+4nx -FWbvvgM6z7hx40iihAn1blzb7bv2yrKVayVpksSSPHkyvT1RQsc57XlgHel3qnJtU9f31q3bbuto -jsE5UY84cWLL+QsXZa1ya8E5zPVDubENSrJkyZ6R6NGi6UPtx12/cUOnwTVIqcoWI4YzT81csdyw -ZbvguuO6RgvJx5Tj4qV/BF+2Dh05LrFixZTEiRLpXfZ2EiN6DMVhj6xcs0FiqGuWIuRcZjDjiR8y -spfX1BNtfb8y48U5EidysEZawxvtIoGLogL77YL7ANe7VdMGkjtHNsmSKYP1365UDLRsuAZwBVu9 -bpO8WOEFzQznPX3mnBw4dERfL5T7wsV/JLm6LiiraZtJ1LG7VZlgovzssykfu4dgwrxHtTO0D1x3 -cMU9nFC1pzi2e9Rez0Dvtd17D8jNm7e0KxzaD/obXC8IvqpvVG0B/VSyZEmd+hZzXBzV/mGRdOTY -cVW/pG7Lheu4ftM2bbX0TNKkj93HcF3CfQCrHnxdBSfT7k6fPS+qo1P3YxKdBv0B3HyyqD4TbR1t -FOKr7Zryou8y9cR9gLKZ+uqM1B/0tyiTydtsN0tv9y2+NtrbAvonWDG9VfMVc7jHsqIOW1V63Jfm -PATaZQAAQABJREFUXrlyVfVTysInsboHYislDwTnOHDoqKRJnUr/9nRP6p22P/72eb5Yooz37zvf -i/jiiWdRqpTJbWd0rB5VfQo4HDpyTNKmeVa3q9TPOsqOFL7ah8nQ3O+u/Sv64ND0jSZf1Bdl3KSe -o+jT0N8YsV9P3LuhfWbcU/032jj6IfSZ8eI5PmScPXdBuXYeVvd0fOvewVdk9J+4/+Op566pmz/9 -t6d6uOtX0Xeh7va+ydwnUAKv27RF92NpVN8UPXp0OXrshH4eX1P9QvLkz6j+yNl42dMzCCxNvtHU -MeB8QT1Hnk2ZwrrPwcbTvW2uhWm/KDeuEwQuCwdVu0pja0/gefHSv7of8af/MPdozVer6v4Wz3DU -F+fxJagzXEyxtL/X3FPXDtaBUOinUKzQRyJNUvWeEju24z5G3uDv7d3IFzdTPvThm7Zul0NHj0ky -1SfCahAuw6aPMOfy1D6wP5D3OjCGO6XpI1EPcAS3hCFKS3O98LxC+zPt7O9Tp932B+Zeq1y+jH5W -4D0E9wLOgXzt4u3d77Dqb8+ev+DUr+MZvVs9S1OkSKafH+jj0Q6TJEmkn7v2NmU/D9dJIDITeDRa -jMy1ZN2eKIFVazfq/Gu/+7oeLCxYvFwPhjyd9NDhY9Kr/zBrN9bfef1V/cDuO3ikfskyO/GS0a3L -J3qwhm1/zF8iv89bqF+IYeUBqVqpnFJIHFIvBbF0p48H2ahxP8nSlWvklaqVpFD+53Q68wdKC5yz -wfvvykuVy+sX0q49+mqzPeSBQQgG7d2+/ESeTZXCHGYtMUjq+l1f/UJkNqKcnT9uLXlz5zCbnJZ4 -YH3y5XeCQYcRnKPrp+0srTriikz46RezWy+rv/yi4Es8ZMZvc9XL4B79Eo2HnJESRQtKuxYfafcd -1Kv6y5XVMW+a3TJhyi+yecsOGT+in7XNvnLw8FHp2r2PUzyUbFkyKQua9nJRDVzNtTr+9029/nr1 -l+R/b9WwZ6HXMQjoovK5cfOmtQ8Dtx5dO1kvCtYOtYKBHPLOnjWzoAwQPOwxIOuj2sEGNWg0guvS -p/uXeoBhjiuorisGI0ZwDb5TX8Gh5ILgOn/8ZXd9HpMGSqIfun9hvRzADQnxVXAs2g3ktWovSp13 -39DHm3ZSpODzFgfUE9trv1NTarxSVZfdEz8oxkx5Xes5WsUnSaoGG72+7WyKJ6uU0mSU+vr7TecO -Wnll7Qjlirdr661sri9cJp9MGdPrNrt+81YZMnKC9O3RRdKmftZqm1AU4KUcMnT0j1K/zjvy8osV -9G8M9Np//q2+v/QG9adY4QJaIdn541ZurV9Cc6/9MHCEVuCdVcoDXFMoZqD0mbdwqYyf/LM5tV52 -aNVYlwE/cFxqNdhB+THYNNKo3v+kSsWy+idedHsPGK6VmWY/lp3aNpNCSqkLOaIGSl/36KfzMO0K -9xOuKQb3/YaOluzq9yfqmAHDxuh2huPQpvLlzSVfqH7En7brrp6496CAGD+8r6UQxSDzuz6D5W3V -x7pTNgd636KsdvFWVihz+g4ZrRjnl9ZNG+rD8HyA+43pf7ER1wWKseH9vtOugZ7uSft5sQ6XRXDz -1ud5K59R/uCaVlbXuKF6JhiZNmuOUvQelFGDeplN1vK3ufNlzfpN+jf6bFznyWMG6QGdr/ZhZaJW -PPWvGAShXq59hq++EXlDcYd+z/6sQZ/YXT1HXRX1/vCzl9es4/nz5be9rT4T23Gf437H8xNlx+AX -9zVk4tQZ2jS+h+qfTX/oq//2VQ+Tjysj9Bn2vgn3CQbhJ0+dscqLgXHRQvm1O4UuoPqTWSmFwQjX -EuLtGYT9yDelGlCeUspe1BmC58sXygoUZfJ0b+uEIX8wiAarZh/WtSy1ho+dqAfvpm9F0m97DZRS -xQtLzuxZ/Oo/zDm+Uv2QebZim+t9YtJhib6t7+BRuj+2b2/TrJE+t9kGhdSUX34zP3Wde3frrJ9X -/vTXvrghYyiekc4IrknuXNn1u+GUsYO14shX+8D+QN7rZiq3wEPqPcTc71Cy4trgYx36asjyVetU -W54pIwb01Eo608489Qem/FNnzNaKZfMb/fDX6nlgPtj5eveDazXae//vvzJZaEawFIP1LBQaI8ZN -1vtWrF4v+P+deu9y199bGXCFBCIhAWdVYSSsIKv05AksUG4keNlKnzaNVCxbWlsjYADjSTDwH/D9 -13r3B7XflqnjhuivfngJwFejxg3qyLhhfQQPU0iPvkP0En+MPydeoEYO/F7GDPlBa7zxZSCHepHA -V8DPv+qpFRrNP6wn9Wq9ZX05sTJxWVm+ep1WaMAlZeLI/nqQia92eNC4k7UbNssJZXGBF5Gf1Ius -GZQisKIn6dl3qH7J7Ni6iUwaNUC6dGorN9SXUwz8INC44+UYJv14YI4e3EvKli6uFTgYpBjBYAtf -uwb/8K2uO15+1ynTdVwDDCDwEFuuHmhG8DUNCo2SxYtYD1CzD0t8vf26Z39JoBQsGOxPVGX78INa -+gskgoKmS5taXx8oJ/ASimvlTqGBvGb/uQALwYsrXvAxiMGDGGXzJrBewaBwwvB+eoCJmANQaECZ -g/L0/Poz/aL5zff9nbKBQqNpo/c1z25ffizR1YARg0lYEUB6qnaD8yNvlOcrpaTByycULxC8xI2d -OE0w4JygFD6TRw+UymoAPG/hMu0WpROF/EH7Rt2hiMLLOtah0PDFz56Haz1x7TCQsw8+EIwVX7AD -cR+5evW6bvdo+/iPMkHCUjZ7uTGAgdIme7bMWtEFCwt3graZM1tWPaDGPQFms/9wtAmk7957kDxQ -bRcDHVwPDN5hkeVNQnOvIT8oJmq987q+jzB4xlc4DJyhRMFL6/D+PfS90l8NuGEVYAR1LVOyqL63 -cI9lTJ9WB8fFwB+CwTisuaCERXsd2Osb/eUQL+Cmz0MgPyhTMEBHPZs0fF9fZxznKigLBit4aUeb -AhOIr7Zr8nGtZ5WK5fQuuLMYMcGTK5UrbTY5LUN735pMvJUV1ikF8+dV1jj7TXJtNYUfGzdvt7bB -dLuoUhwGck/iYH/6PG/lswoQ4EqbZg31dcVhvb75XF9nrPvTPpDOiK/+1bXP8Kdv7K3aIuIeoS2h -T4MlF/IZo/o6V/GHn+sxsCb6Rj0zYJWF5zgUaHgeQ2mI+xWm71D4wkoJX/xxT8E99Y3XXrY+TiBP -X/23v/VwZeRaXvxGP9taXTM8r//3dg1trYF+/vuQa4d+H1Ybxo3VH87IF+dG/4Jn+ucdWmpF5sIl -K7FL9zPu7m29M+QP3plgLbp9pyNOE55PJoD55q2O/uKEss7EdihhXMVT/4F06INwjcYN7SP9enTV -1+X3eYucFLb2/GA5C4tXXCdcU3xESJ0qpQweMc7pmH3K6lO/K4W8K6Dfn6PyhfjbX3vjhmd2P6Vc -gbsryo1ncx31LoB3Q7v4ah+BvtcVU3yhAP1HnR8CxQoEFrHolyCwMITllt3yCds99QfYB8HzY1Dv -b3SbKFemhL4noByC+PvupxN7+FNR9e1D+nTTe/FBC88SKjQ8wOLmSE2ASo1IfXmffOVgfoiXgUpq -gAZBhw1ZtGyVXnr6AzN2SA7ljwzBiw+0za+/+pLg5Rvm83ghKKxedGGRgQcdBGbP+Frxpnrwwmwf -LiR4ycL+mMp8s22nrwRfJjHINWXRB3r5A+UC5Nz5i3pAjIHM2KE/6K9O7g6D7zsGK1jiizbSF1WD -Jbw4uRN8vcDXErz44cUEX8ug2OmirDSqVnYMQjaqlwlI+5Yf6QcmXEqaNqqrrU9cZxuBYgQDRtQd -Cgi8FOFlBIIvyuCFlwbIVvXgNF+r9QaXPwfUYA8vTC2UAggvWPhygC/bUK5AWRKIQIkEbnCDwCCt -dIkiumy4tt6kWpWK+is3BssYBCEYJ76awUoF5cmsrANqqZdktDXzwoH8YKFS4YVSmie+jEGBhS/V -f6svcmAO03BtqaO+tOgvPeprPV6OoERAXnhRwSAb7QdfzPAV/SPFE4otKBb8kUD4udbTDDJXq/pC -8GUJL7RQdgQi7T//Rhq37mT9b9XxS314WMpmzg+G+CKbB+1VKeJgMeNNGtV7T3+5wz1RoWwpzRr3 -Fcx2EW+nhjKHhlII1wNWCe+8Wd1bdvoeC+ReM5k52k9lZTacQF9X05bx8gnFFExzWzapr+8NuL8Y -wT7cU7i3cI91aNVE79q20/ECagZtcL1Ae8ULLu5Z3GN4+YXcUC5RkHMXLullRcUBbQoKFX/En7Zr -8nGtZx71NRN1wAu9EXxdxAsuBgnuJLT3LfLyp6zo80wfjgEQnhfo2xFkFtzwwo8+qIhKF5p70luf -50/53DEJ7TZ/2kcgebv2Gb76RnCE4v+1alX0/YU+rUyJovprM0zT3Yk3fu7SH1B9FK5jy8b1tSUj -rBNgoYHlhhBFFc6Ptong0vj6D8sIKALt4q3/DqQerozs5zDrUFyXKFpIP6/xHIZUeKGkwIIFfVEV -9cyDnDx9Ri99cdaJ1B8ocNCP45mOZyaeQ4EGaYaFlwk+bQbusA7YoKzhIDt2OfoV5B+o4HkGtyDw -rxpibXZUuSW5EzyH4Er13puv6WsJhdvnHVtJw7rv6fvTHFNaKX2fy5PLelfAdYeFA8TfdyNv3ODO -hH6hVZMGutxwS8RzPG+uHPoc+ONP+wj0vc5Y2u1QrjqQjVu26X4K58JzEALlK95JA5XaSsEOt2z0 -zW9Uf1kfbt6LAnn3C/S8TE8CUY1AzKhWYdY3uAQWhygv/lEDxdl/zLcyh++lpy/6SARtPwQDYIix -wMBA2C7wM8eA/c7de/rrCh52ZUs7FCcmHRQGEChFIB+3aapfLvQPP/7gKw2UMDDfgzlfLjX4rVzx -Bf0y6O5wvHjPUVYJcLs5rwYut9ULHsrlSY4ec7xEuAYxxW+zDYNZDDrwgmAEL1t46TIKIGzHoBIP -RyNQAmTJnEEre7CtlOKHOqxQg5pMSmOPJR6kGOy4E/juQrJlzeS0G8om8ITbjInZ4ZTAzQ9YBkxV -ZqkYAF65ck2/eIDL/Xv33aR+tAn+zUbA1nwVr9u4rdlsvVThRQADZoirNQMsdSCHlQ8uYpZAcijr -Artky+L4DdNSDKzeU240P/38q7To8IXmX1wpSqq/VFkPaO3HeVr3h5851l5PbMN1xIs/Bp1Q4CAu -AiRQpUYTZdkEH18jJjZFWMpm8kJbgrzzenWtHDDb3S2hXLMrPcx1gqLJWDGY+90cj8GGNwn0XjN5 -ubI2A4QGzTuaJNbysIqlYoJ0or/BPWUE7me4Dw8qlzmUBZYRUFLYBcpACJRIGODUevt16dZLWWN1 -/0Er9Qo8n0eqVamklbH24zytm6/F3touFC4Q13piW8VyZXRfjIEn7kMok2At4klCe98iP3/KigEa -BNYa8L0Hz3q13lbuG5v1c8DkkU8FcIaSONB70lufBwsdiD8sdcIw/PG3fQRyCvv19advNLGQfp37 -l8xVU5wbwcAMAn9+V/HGzzUtfpvnUffeA7V1nEmDc5jnOu6hjsq1q6VSsKIdwpXC1aXNe/99W2fr -Tz3sjExZXJdQPhoxcVwSqY8iRkwMqocPHur73NczCO6IkHRpUpss9BLuefjwEohA6QdrKsRIgHUA -+sTySuHST1mRIW4DYpHgOWF/N/Anf9xn9hgaGdW7BMS0BXsentouuOH9CILrCHGtMxQhJk/k48+7 -kWsedm5HQt6X8DHDLlkVF1g1QEwab+0j0Pc6vH/hPxRMuL7o62E1jHcFXBfEuUE9ixXyTzltLzsY -GTExQcxsf/6++5njuSQBEvBMgEoNz2y4xw8C8EOEwIfPVRCcEr7s7gQvP+jc8SUJggcIJKXt5QO/ -EawPAt9VmOZDcud0zhPxNCBwB5ir4m3ADQQv0vbBiU7g4Q8e/DDdQwArmIgvV+cZNHycnFCWF+4U -M4hRMW/BUm1dgAEoXDNg2m53I7CfKkGCePqn+XJg32fWERzzrBp8uApeJEzgTOzDQxUvDva6IaCW -eSnDi0/hQs9rF5Rab9fUJt6vqgGzJ4kfEtwNQT3tygvkCTEDZE/H27d/2a23II4BLGRyqusOZQrM -8qNFfzRItKd3t27qhcFxc+XeY+SuUmohHwyK4X4DQZntcjPkNwbXJmidaxqj7MCXeEiNV6roL3ZQ -KODFBdd10dJVlimnPX936/7wMyzdHY8vhIihgbaDdoeXVzNgdZfe3baiKl6BGczY94e1bMjLKCl6 -qJgMA3p9/ZjZrf18MWJEt/90WkesCsgZFaDTLqdD7nv7Nvt6oPea/Vj7eopkybQllr1NYT/ah13R -YtqHORauTFDM4R5E2wQP83Jv0iCAHsTMQAMFIsy30Z4QaA5xUjCA9xQ3xORjlv62XZPedYk+CQpm -uKAgeCEGN1DgeZKw3Lf+lBVtE2bsGJxFU//gG4/YOXjR36Rc4/B1HNZ3pq15uydhnecq3vo8f8pn -8jP9ivXbhzLWpDNLf9uHSR/o0p++EQEvIfjqXE65LxpB3xhPDcrc3aPe+Jnj7UsM7iB1lWWc3Qwf -50huswY6g4C4IYJnNGLv2MW1b7b33+YcgdTDnndY1v3hbPKPHsCzzRzjuiz4fF69aZeyGNuorGle -qVJBCoRs26PeSWC98bqycHuSYtrutRArM2/nMnxMGvtvf/trb9zMoB/vQ3geGjkVYkWD3/60j0Df -65AvrOkQAHWr+jCDfjOXmkWseJECui9HftiG/itQsTNyPdbfdz/znDHHu/ZXZjuXJBCVCXh+C43K -VFh3vwiYr2AwPcVLvPmPOBeQhR5iKWBQjqBdubI/Uk4YTbY98CPSIB4EXmzwUNinXozwUDFfRk0h -oSCBuwD8eN//35taQbJUBYD0V/D1H+aFmMKzrjoesTqQ31o1EHEniAMARQZiNVRVgUaLFymoTdHN -S7nrMfgqgXKvUf7Gdpn71yJtnotteHjCnxN1NgKXGgz6sM8udnN5xFDAl077l0gEToW59yxlLYMB -mbcv/9mzZtFZ202TMZDDzDIYXHuqk708WMfAHYqpF0oV11+F8TU7T4i5qLcHums++A0TXsyUAK6l -VCwQ/M//XG6tdLEreGDmi7ZkBINICEzt0UbA3LjluKbB1zBYoeBFUjUuHWwWPtGI0QHFkWnb5jj7 -Eu4qRsLKr0ypYjqr+YuW6xlDjBk0Nnqz/jHn97YMa9mQN4LFfvlJGz2Qx5fZ0JYJvvtQNs2cPU+7 -/iBvKHKmzpiDVY8S6L3mKaO86t6GwALJtCm8wOI+tlu5IIgxXGWMYAYDCAJ7QrJkSq9nfIBbgxHT -Z2FgjvaINoWo+DgPXDsGqdgcEGOab457tIymuZpYMP603UfHPr4G6xJYycAFZbmatQhKTk9fecN6 -3/pbVijeMAPD5m07LDccuANsUvcsgnGaeAGhvSc99Xn+lg9KYWNlAKK4joeVm4w3Ud2GFjMYxw9f -7cNxROj/+uob0yuXAQgUGKadY4nnA5RLroFCTUk88TP77UvjMgqFkf0cUFwaJQf6SLid5M6ZXcdi -GqMUt/bYNcjPe/8dunrYyxmWdV+c/c/b+d52dxw44n6FMh3P/KKFCuj7Fc8xWLzieWQsQ9wdrx5g -Tv2H+zS+t2ZVFp+7du93UtrCWhMBUz19sHHNNRj9tbEqhbIflioQlMMek8ifdh7oex3OA864BotU -XJT8SrGEd5dihQtq61G450ChgfcKd+KuP3CXznWbP+9+mMEPLrN2SyvjEmPyM+9Z9vcTs49LEogq -BGipEVWu9BOoJ4J/QRBYzy74Cg5/+TUqwCXMnk2EZ5MG0+RhcJQzx6PBOvwUEeF5xNjJOiYGzJQR -rAvSoM67egnLjwzKhNJ03nqj+nNQmQc+ny+3/onZTOb+tVjGTpqugmMW1rE5TDpPSyhA5quI/IjT -gXJg9gIoBYqEmE27HpchfTr9Mg6lBKbxw/GY7tKTAgDlrVa1ogr6uUgGjxwvJYsV1i/Qc/5cqNg5 -BrWwbvhVRdT/WgXDhE8rptqbpQaAkCpKSWGXPgNH6mBnGPiDEVhWrVTeSpIvTy49gPxFBTXEy5K7 -GVxM4mxZMuo04xQvPAwxjRxmBEF9EFvAX8GLGQZOUCLkX5tbvzxP+fk3fw93SocvtXghRsT3auqr -FR7kk5T1DQZgo20zESBuCNIhoCpcCHA9MLA0lg7gNm/hUj27Ca4rBi0IWlpMfXkBOwxecQ6Y2NZX -bQxTqJogbznV4PeBTWFiCphNKVwwiEW+GIiFlR+YYXANM1qIUXLgBabNJ131gLRDy8bm9AEtw1o2 -nAxtF0zhV42gqphVCIqf0Min7ZvrIK0wSYcVD5R48K2+cfKmx+wCvdc8ZVROuawhQv0X3X6Qd9+o -ruPxYMAA17Vvv+hotRncS5jZCMHyEONk8vRf9b2EQTkE1mCwPvr2+wHy6kuVVIyXK3omAChH4PMO -XqPGT9HuNo0b1pEM6dLq6ZBxbB41wHMncEHDTBro/2B2DssRX23XXT72bTgegX4huHaeJKz3Lerr -T1lxr6D/gxgFBtq96eOLFHTwhTLB2z3pqR6e+jx/y5ddDfoxcBr/089SIF9e3adjcIN26kkw8IVg -Joiaqs+C8t1X+9AHhOGPr74RLh5QtM9ftEy3WwzS8LydpmZfyKGU43guuxNP/NylhUIY9+1I9axG -QNKM6nkIhTLeB2DZiK/rI5UrJ9wyWzb+QD8LWrTvrPtqzC5ixFf/HZp6mLzDuvTF2d/83d3b7o7F -PQGrV7Q384EHSn3MmoH3CrvFguvx/p7D9TjX36+rWA/f9xuqg8AiJsq/ly8r18zftNUjLKvsilzX -Y83vYPTXsOpCDAq4hdb9qI1ux3BhBBdj0etPOw/0vQ51QKwzKC3g5mJc9sAX2+Amgg94nsRdf+Ap -rX27P+9+eHYgeDpmzkLMM7yjwm3VLrhGeJ+AKzWmFoYrrSdltv04rpNAZCJApUZkuprhWBd8VYRZ -NTp8d6bvlZRfN75y4kscBvF2MUGlMHA0ggcZorUPVJG28SCHIJ7EN5076kEnzoeBtgnyZY7DiyfM -wY2bCx52zVSAzW+VT/s09RXY3UMIL7oQs4QP90X11RgvFcadBgPfempmFneCaf9gCjlRTe0FwUse -0m/dvttdcr0NEanvKXNmPGhXKm4QHNO4fm29jvgK+CoOpceo8T/pbWCCqcQy23xL8dLz0osVxExN -id94+JqvGzgQ9apQtqSe/hYPQG8C958un7bV/rs/z/xdK0iQJ1xX7MdGD2HmLS8EMMWAb9CI8ToZ -jr+jvjJ5EsPf1T0FL3MIcPbzb3/ocuF4mKTCkkLPvHHVkSNePGFiD8UGBIHEOqgyGMHMOjDRhGsU -FDV4OYQZPgLcQdBuMaUngtlh6jbHtgSaOSx1LivFFsSUE+s4J9ov+MN8GtPb+uJnjnetJ/KDwJIG -yiC4TJmXEGOB8kD5eHuSkA/FTuWzp/Xn2voqm9mPL7nwpcc0yblzZZOYMRyPjkd+8qY09hI4r8OH -HhHgMQCCaToso6AAxSDWk4TmXnPk5VweKK66dGojw8ZM1AMupIHlCGaGMF+esQ3XAMosTNUHQbtD -wDrTx2HwAT/r6bN+V1M2jtVpcP8jWCiCG0M6tmmi2yTaFQQvxAiSWLJYIf0bzKKp/0ZKq0COUKpC -UYYgfl991k58tV1zrGqdj1Ztay8oZalRajyvrJy8ib/3rWkLqsE5ZedPWXHtwQGzMRilI5Q3uCeh -9EZQQoive9LpxLYfKJunPs+f8uGZ0fW7Ptr9bJ5yQcMgEgoAE+/DdiprFVYgCHaJILSIp4KAtv60 -DysD24pr/2pYu/YZPvtGlWcDNfBCv7dMDXrMhwe4M7RW7dgu5hzY5o2f/Riso1/BVOSYoQLPWCgC -cW0RF6imcpPYolw44W6FWUbMtYarCvpMKJWNu4Wv/ttXPUz5XRnBxQnyqG/CL+c267rfpDVLfzgj -D3f5OrY7/rq7t+37zToCjePdwyj3sB2KVLwLFS7wnEmml/70H673qFMGHn4UUrObYUa3Kb/M1tPR -IhmUV5+0aeb0jDHc3WXjf3/9+PWw54e2gfsPz4o7yioOHNdu2CKzT8+3kvlqH4G+1yFjWDJB+YcY -b+ajFng/rxTW+Jhht5hxbWfu+gNTWG/M/Hn3wzvfDvU+jXsL5cA7Gt4b7AH5cY53VeDtydNm6Vn1 -cO04A4q5AlxGFQLR1Muz57fmqEKB9YxQBOBSAfNZvPCGp0BxgmBd8J00Lzfezg9Tadw9eMAEIlDE -YNDs6RxQ0uC2NIMkk3e/IaN03A9M44aXVnCCdt6dDBw+Vtapl4DRg3tb8SXcpbNvw8vpdfX1HGUL -i2CGEgwYPU39GUjesKbAi4adBYJOtvq4iyBAJqYyg1VNHNVevMX/wHWFabSnlwtcS7ykwILDl+Da -IMgXrIns+YWWH2LFYADsGnPBDBZ8lcef/aEtmz95+5tmuprqNLaKZA9FkBEo8aDkwzTGxnTd7LMv -Q3uv2fMw67i/cP1c4zM0VEFEEdQTU0kjDeK4eLu3YWmCfsqTST++bMK6CP2JPwIzc/QJJs6QOcZX -2zXp7Etzj2CgiamR/ZFg3LehKaunsgVyTyIPf/o8X+ULTTvDtNl4iXK1SPTVPjzV29/t7vpG12Nx -TdGGPbVRe3p/+NnTYx39Cqw18Byy94Wu6ey/TdsMpP8OpB72cwVj3R/Ovs7j6d72dVwg+4N5DrRd -PN+8PVO9lS0095HJD+fG1Mh5lauH+SCGZ26Ttp/p/hFTZbuKt/YR6Huda96B/vbUH/iTj6d3P3Ms -rjEsCKEc9nS/ob54dgXj/cucl0sSeFoI0FLjablSUaicroON8Ko6BhSepj10VwZ7YE13+z1tg6m6 -NzFf672lwcDHnUIDXxiWKT/61cr152XlugHzcn8FX9vCqtDAudyVy98yuKYzX8hdt9t/+1NmXwPL -QK4lXibcvTAEyg8uJvMWLpO/lKk4TGsx1aldkF+wJNCyBeu89nxuKPcmfI2EqwUi2aOtwvoKbhve -FBrII5DrYz+nu3XcX77uMX/SeFN44LwYEAQyKPCkxPXVdl3rCJcOfMHDNa/5ahXX3R5/B+O+DbSs -Hgujdvh7zQPp83yVz99z2svtSWHgq33Y8wjNuj99oz/XNBB+ruVEGwvkmel6PH7703/7Uw93eQdj -mz+cfZ3H073t67hA9gfzHGFtu6G5j0xdce6du/dqF6r8+VZrpTAsFKDsQMwzd+KtfQT6Xucu/0C2 -eeoP/MnD13MJ19jX+yPq6+79xJ/zMw0JPO0EqNR42q8gyx9lCGTLktmjdYeBgOBRmEsdbjp1lctL -ZBQE9YPbE4JPPs2Cr0trVfDY55WZLVwaIrt8oKbxRMwWmKZv27Fbz4iBGBI1VZyKiCAw0Uegx6dZ -8EUTJv4pkj8jrZVrTTAGZBGdR1To857kNQhvfpGl/36S1ySq5/1d107y86y5smvvfh2kEy6CeFYg -uDCFBEiABDwRoPuJJzLcTgIkQAIkQAIkQAIkQAIkQAIkQAIkEKEJBM++OUJXk4UjARIgARIgARIg -ARIgARIgARIgARKIbASo1IhsV5T1IQESIAESIAESIAESIAESIAESIIEoQoBKjShyoVlNEiABEiAB -EiABEiABEiABEiABEohsBKjUiGxXlPUhARIgARIgARIgARIgARIgARIggShCgEqNKHKhWU0SIAES -IAESIAESIAESIAESIAESiGwEqNSIbFeU9SEBEiABEiABEiABEiABEiABEiCBKEKASo0ocqFZTRIg -ARIgARIgARIgARIgARIgARKIbASo1IhsVzQC1mfXnv3y45QZMnPOPKt0N2/ekt/nLZIR4ybL8b9P -WduDvXL9xk0ZMXaS7D94JNhZ+5Xflu27ZPqs3/1KGx6Jjp04KcNGT5TLV676fbo16zfL+J9+9ju9 -PwnnLVwqy1at9Sdp0NNcv35Dho+ZJAcPHw163oFmeOfeQ7n34KHbwx6qzbfV/vsPRC7ffCDNJp2V -dYdvuU0bETfO2HRNOv58PkxF+3r2RRm/+kqY8vD34P1n78i3v1+UFpPPyY077q+JP3ndvf9QOs+6 -IGsO3fQnOdOQAAmQAAmQAAmQAAmEkQCVGmEEyMO9E4BC49teA2TBkhVy/vwFK3G33gNl0rSZsu/A -Ibl1K3gDtVXrNsqO3Xut8xw5elyWrFgjS5avsrY9qZU9+w4+NlDfsm2n/Pb7X0/qlAHnu3LNel3G -3Xv3+33sr7/Pk3kLlsqVq9f8PsZXQuS3bMV/o9SAMmPpStUmVLsIpri2PV95Q5eRusMhqfzD326T -TttwVZ5pfVB+23pNNh+/JRPU4H786stu00bEjb3+uiRDl/wrF67d96t4Kw/elElrHykwbt19KN/P -uyTdlaLhScu/Nx5Iye+OS48/Lsn2v2/LA2iUQilQRPVb8I+sOhi8fi2UReFhJEACJEACJEACJBAl -CMSMErVkJf8zApvVoB4ypE83SZwooV6/e/euHDpyTCqWLSVNGr6vtwXrz/hJ0yVzxgzyfN7cOsvn -8uSULz9pLVkzZwrWKTzmM3/xMlm/cauUL1PSY5r/esfbNV+V/PnyyHO5c/pdlE7tmsvFS/9Y18/v -AyNoQtT/i49bS7aswW0Trm3PV/WjRxN5r1giraw4f/W+pEwUw+mQcasuS0yVqHr+BBIrRjT5o006 -KZwprlOaiPxjVvO08vc/9yRFQud6eSrziGX/ym9brsv7JRPrJHFjRZM1n2WUJPGfvO5947FbAiXK -xEZp5K0ijn7KUzm5nQRIgARIgARIgARIIGIRePJvixGrvixNkAk8VF809ypri/mLl8uGzdvkis2t -YfvOPVp5ESN6dG3qDxeQ8xcuytqNW3Qp8DEUSo+r165bpbpw8ZIsXr5adu87oMzuld29i9y7d092 -7dknC5eulMPKCgPnh9y+fUfndUst/7l8Wa+fO39RHqg8bt+5KzduOkzB//nXsQ/p8cV+kcrn0j// -upzF8ROuGqjX7r0H9AZYXZw+c85t2p2796m6XdL7UCeUzS72ch89/viXedTjyLETul4nTvrnjnM3 -hMWiZavk1Jmz9tMJ9qEcqNtxVY+/Fi0TsL11+7bcvXtP/zcH3L9/XzOFNc3fp04L3DPs1+WGcuHB -cUbAA3nCcmP1uk0CFxtwdhXkBYuI5avWeeTmeoz5bc6B88ICAq4qV685W4rAbQlt4aay9Fm/aatO -Z473xuaequ8dpVhDveziq+3hGuHaoU3gvGhDEE9tz563p/VGLyTRu6Yqqwy7wHJgxYGb8r/iiSR2 -zGjaReWmcom4otxQ7IJ0P2+8qq05rt56tA+uFAt237AnldXKHWLj0UfWA7h1/txxXQ6cc9TDKXHI -D6TZeuK2jFlxWXafepQO58WxOI9dFu+9ocuNbXCZuXb7UZmwbYeyghi78rLANeXM5XvYpGXJvhty -/KLjN/LdrJQMkKvq+MvqXBBYQGDfqX/vyaHzd2W8UvpsU2VzJ1CmwG1l1pZrAhef9UduyVoPrjs4 -1x8qX8j5q/f0OUyeqD/OMVrVH3nAFcguy/fflJ0nb8tJVSZY0oCxO7l0/b7OF1YgELgc4foOX/qv -/LXz+mOc3OXBbSRAAiRAAiRAAiRAAu4J0FLDPRdu9YPA7Tt3pOt3feWoGowbgQKjs/oKnjd3Duk7 -eJQ1GO7Vf5iylsgo5cqUkPGTHfEZMODF/y8/aSOwqOgzeKRs2LTNZCWxYsWSPt2/lFQpk+ttUEJ0 -7d7HSdmRPWtmdb5WeiCOc0D+PnlasF77nZrqfCX1eoP335WXKpfXg/VR43/S1gpQuhgpVbywtGnW -SP+EAqLzN70ESg0jRQrll01btkv1l1+U9997w2y2lgOGjbGUMzh3vry5tDWASfBVj35OMRyqv1xZ -5fOm3g0lwsdfdndSrmTKkE66d/lEYsZ0f4u6Y5EtSyb5+vP2+ph/lfIG5QAfpIU8kzSJUvDckSEj -J0jfHl0kbepntZKp/effKiXHXZ0Gf4oVLqAVVOAKi5df5/4lGzdvl/HD++o0PwwcISlTJFOKlHPW -cXHjxJEvlEUMzgcZpyxmoEixC65HjVeq2jd5XMc5Uj+bUk6dPmu1ISRuVO9/UqViWX3cjN/mquu5 -SxIlTKDZoZ2UKVFU19e1ndjZXFNKNLBpWPc9qVqpnM7LV9u7dv26fPLld07XCOft+mk7iRs3js4P -Gdnbnj91LZo5rqROElMP0FtVSqrLgj/TlaICYpQel64/kLeGnZK+76aUphUc6YapAXGH6c4xK6Y1 -SSOvFUioFRofq3gWB7/LImmTxtSD6Jf7nRRYP5zrl03nvfv0bZ3nuAapJUeq2Hqb/Q8UF8W6HdMD -drP9+fRxZMUnGbSipamK8QFFA86RME50rVipNfK09HwrhZTNEU96K/eT37ddt8730YSzMnndFW19 -gkE9rFAmf5Ral7fu6DOCgT8E9ayYK77MVZYpdUadFjCa0SytVoKYfVCCGMmQLKZs7pJJEsR26OgR -xwNuL0bAN0HsaKru0WXDFxnNZmvZXbmcQFkCaR/C88bQHLo8Rbsdd1K+oJ6bvswkOCfk3RGnJI3K -/9C5u5pxo7JJJL9iZJeLyv2mdM/jWsmzolMGAdfKfU7IntN39PWAhUiyBDFkueKaNWUs+6FcJwES -IAESIAESIAES8IMALTX8gMQk7gms3bBZTqiBf7MP68pPYwZJr28764STp8/SSwyC4YoB5cTUcUPk -u66d5OUXK8jIgd/r/R/Ufltvh0JjlgoiCoUGFAYTRw2Qnl9/JlCQfPN9f50WAT+/7tlf4sdXg6Vu -nWXC8H5Sv847egA7+48FkiJ5Mp0XBpoYiON83gaV+Co/vN93Mrx/DylcIJ8gGKYJnomgplBooCwT -RvSTfj26yjE31hW6YCF/Rg3qJVCMoMw4N9wbjMDiJEmSxDJuaB+dV/p0aXSQVGP90FsN4C9fvqKP -mTx6oLRq2kCff8zEaSYLp6VhkUDV9YfuX2heH35QS1vFjPlxqlNa1KNT22aaF5QVrtK99yB5oCwX -oMCYrK4hyr156w7XZI/9Rr5QFE1S1+rzDi214mHhkpU6HaxxYG1TucIL+rzDFOfMmTLITz//5qSQ -eixTlw2wdilTsqiMGfKDDP7hW8mYPq2gflAcGIEyJleOrNq9qe93XSQQNiYPX20P6Xr2HaoVGh1b -N9F17tKprbb0GDr6x4DbnjmvWUJxgQHusYuPFEtwPYE7Soms7t1NYHUAhQYUGH/3zipHemaVQhnj -KCXAGe3y8apyWYHAcgKC+A5QJMByApYFkMV7HVYFVfPG179d/7wz/JScvXJfKxcuD8ou4xum1pYW -baeek/hKSQBFAyxHOv1yQecLpUUR5R7TqtIzrlnp+kGh0a7KM3JlcHY53Seb5EkbW75SgUAhqAPc -PqDogEIBCg1PsubwTa0AON8/m3xdM7mcuHRP/tjuUEr8rpZQaIDL8V5Z9f9SiiEsOzwJ6oG6QaCw -wPkhNQef0gqNmcqNBmVe2CG9dlGp9MMJvd/82XdGBRh9PbmcVHWA0skuUNRAoXH99kNZ93lGrTwC -B1xvuBNdGpBdK1pwbYbYFDH2PLhOAiRAAiRAAiRAAiTgnQCVGt75cK8XAlBYYCCMZXQ1mMegs6ga -OIdmNhO4GGDgC0uIWMo6IXPG9FJLfdmH8gEuIwcOHtZWAc0/rCcZ0qWVOHFiawVJ2+aNJE/O7F5K -6X5X/drvSFJluZBUKRter/6STrRRuc9ANiqLDFiVoCxxYseWNKlTSfuWH+l9of3zkVI6xIsXV+dV -NcTSAK4MGJTv3X9QXqtWRVt3xIgRQ1sbQNGyyYNywbBooVikT5tG83pRKRAQK2Kdiulhl2pVKkoh -lRd4RYumgjjYBO4cZ86dlxqvVtWKIChkYGHyzpvVbancr0IxU6lcaW0VgvPCQgMuIJCUKZLLxJH9 -BXXGeWEh8lKIRcQZD+477s4CBRWUNQmUIgtKqw6tmuhk23budkre/KMPJHmyZ3RZAmFjMvHV9mDd -AmsXKOSKKosdWM/AEqmLstKoWtlh6WHyCs2yfhlHDIlJax3WGaeVWwZcHj5UX/09ya/KrQIysVFq -/ZX/2cQxBBYXGBwvVVYMmZPH0koRo9SYu/2a5EkTW2/DwB+ycPd1yZVaXR9lJeAqsB5YpQJ3QgkB -qwnE9Hi3aCKp9nwCmRti1QALig5VnxEoYF4dcFIP+KcqSxGXZqazNm4ziB0CxUqSeNH1IB9KhECl -cbmk2noDlhltX1TXXSlCZmx28EA9IT8qLojlgf8T1DrSBCKY/WSTckuB9czL+RLo40tniyfd30yh -LVeOK0WKkQIZ4kgbVQ5wBCcjF5VC44WeJzSXdZ0zSiZ1TSBwy4EcVe42cGd5Lm0cOaOUPH1cFCI6 -Ef+QAAmQAAmQAAmQAAn4JODett3nYUxAAqLjWcz5c4GsWrtRx5O4reIfuIuD4YsVYhWYr+91G7e1 -khuXCHyxNzEqcmTPYu3HSslihZ1++/sjbZpnraRQkkDwlR9lQRwKKALskkkpWUIrUBZAeWIko3It -gaB+R479rdfh4jF3/mK9bvZhiXgNUAzY5aAKsgpxDXSZI1sWgUsNXCWMpFEuHJ7k+IlTelcWpUyy -C1w1fEm6NI4v2yYd+GCmGSOIr/Ln/CWC+CCIc2KuJfj6K1mUYsmuiHk2VQptCXPwsKP+yAeKDyjB -jATCBsf40/YSJnBYPcAixC747brNvt/f9XTKPQQWDogR0fnVZDI5RLlRv7RnpcbsrY7BO2ZPcZXN -x2+rYJsirygFxF+7HJYacAOpVSKRsjy4L3O2XZNPqyXTMR1aVEzqerj+bWJVwIVk0OJ/rDRQdkCu -33mg3T261kiuXWU2qFgd/f+XSlAXdwIFCJQDmN0E/zGQR3kal0uiXVfcHeNpW+7Uj1w0oERIkzSG -XA1RFCD+B1xD4qg4JEag0IDyJhAxsS+KZXG2lCmayeFaskHF18iYzBFQNHuqR+Wxn2PAQge31pWf -ceICy5xxKq5Ic+W+0/qnc1IqW1yB2wqURhQSIAESIAESIAESIIHACbh/Aw08Hx4RBQlMmPKLnuoT -CoDK5ctoywfEy/AUeNMTIjNwhZtKc+XKYgQBLaOpAQkG3edCpoO9ceOWmEGmSRfMJcqCgfKZs84B -Qc+duxDM01h5IR4DBAzLlS5ubb9567bEU/tixHjcmCq+sviA3FJp7Cxu3nQEV4R1iVm3MnSzgpgV -ENe6nlZxLHxJdC9fvhFQtc+gkQJrDli7INYFAo+uWL3eV7ZO+12n+kUwUijN4ILkSfxhg3ZlxJ+2 -Z4LMugYWNXkEYwmrjGZqkItgnBPUtK1wJTFxG9zlj31HlbvKyHqPlHNId025ORRSlgMQuGAgeCXc -TZC2hvp99so9bVmB4JhQUFTP7xiY6wNsfxLGdSgFoIiorZQPRq6pYKQJ40aXWCHX/x8V6wPWF5Bl -ykIESgp3gmYMNw64XcxWSpVfNl6TL2ZdUAFDr8qqTzO6O8TzNnemICGpoWD4bcsdpawSJ4sRuPYY -SwnPGT/ak1jVEQKedjG//Z2RBRYzAxf9oy1cyud0tFtY1ezvnkWWq0ChiOUBJU/9sWf0tf9KKYko -JEACJEACJEACJEACgRF4fMQU2PFMHYUJIPYCXDgQs6GqCsJZvEhBbVUA5USgAveFBAni6zxKFS+i -4lMUkfzP5daDdgxiYYUAWb9pi5U1BrkI+vn7vEXWNqxgNoywSO5c2dXsFvtl6/ZdOhvMpDF87EQ/ -soymB93uZgLxdHD6tA6LBygwTL2xzJEts1KuqBgDNisEk0f2rA4WdvcUnHPL9p3aTcNf/nDZiB8v -nsycPU+7+SB/KKSmzphjThWq5dYdDvcQxJ2oqVxbUB+cJ1A5pCwy7DOeYIYZSHYvliShYeOr7cEq -BdY2a1QMGbvM/WuRDBvt3C7ctT1/rJfeLuqIJ/HZzPM6/sNHXlxPUIZyOR1xMEpkiSdvF0mk/0Np -kUYNmBF0ElI+l4M5Ym8gwCXcJMorVxLIZzMvaJcKV0sEvVP9yZ3aoRhJpAb3Jn8si6vzJVcuHZiR -BYLBOCwhvqyeXM80AisQd3JYxbSAWwyUDp1eTqbjSCC/LcqqxMyQEk0cs7y4zjDiLj9P2+AqAxec -L3+9oBUbUG58M+eidQ5Px7luz61cdVAv1/qY30X9mFoXTFZ9mkFfjzeGnNSxTnAeKJTg2gIlB4Kq -IvYH4qdAwWMEdaCQAAmQAAmQAAmQAAn4R4CWGv5xYio3BDKkT6dnBMHgLvWzqWTpijV66k5/B9X2 -LGu8UkXPlvJtr4FSrUoF7XYxSQUchcXBaBWEE64IiLkxadosuaOmaIUVwBJ1PlgFIFCpkWxKOQJl -xLyFS634B2afv8vG9WvL3n0HpWe/oXowji/1qVN5duMw+cIVYc36TYJAo+VfKKktTMw+T0vEIoFC -aL6aKQQD/yIFn1cuG6dl2ozZkiN7Vh3jwvXYbFky6vglmGEEg+g0ij1YYLpZxKAIRD5t31y6qBll -Wnb8UluoYHpdsL1x0hFEMpC8TNp0IYqaSdNmaoXGPjXlr+tMKCattyWUAZhd543XXtaz20ye/qtm -VLRwfo+HhYaNr7YHa45qVStq5dngkeO1yxPqNOfPhSqQaTGrLK5tD3FARk2YIktV0NQeX30qxu3I -OsC2gvgQ1QskEBMr420frgh1SiaSPvMvSfneJ6RL9WSSIlFM6T3vksANZOnHGbSVB/KEWwumDkUQ -TgjcMspkj6e3VX0ugYQYXNhK4liFZUWT8kllxLJ/JbGKf/GqcmXZrawsvvrtog5eCuUBpkzFLCSI -X/FW4UTaDeUDpeTAbChGsWIyxrHvqsCjiMnRXsXpQFwJxPuAuwoULhC4YfyiBvaf/HJe6pZKLAVD -LE5MHv4sG5RJIjNVfI2+C/6RoWp2GMg9ZUiCGVACEXD5SFmdYIYZWNDAlWf1IdUXqaldaxRMKEnj -+/4eANcYxNlAQNCS3x2Xav3/VsqcTPLjmisycvll7QKEfOEyA2sXrEMQryNfl6Pyigr2OrVxmkCK -zbQkQAIkQAIkQAIkECUJBPamFyURsdKeCDR8/1015eYZmTh1pk6CWAzFihRQSoVHgRyNeb89D3fW -47DyQGDJn3/7Q/oNGa2TI0AnZtYwMSUw9Wt/tW+GSoMBL76ev/fmazpQqckfA9RDh48K3GDgnlFR -BbOEmHKYJZQJngQWEv17fqUsH3bJfhWgFIN0KCnqN23v6RC9vXSJojJ/8XKtUEEQ0K8+a+dsA+/h -6AZqFpf7agaSZavWycKlK3WqAs/nldZNGrg9AsFEu3zaVnP6eebvmgVcZmq9XVMQMBRi6gn3Hbvg -azjE1D+nUpwM6v2NDo565ux5PbUuAnNCuWTE5GV+O5bO+dr3gfmO3XtluaoP/qNsr1V7USsB7Omi -u3Gtse9HsNQH6lM7pqCFoD20UkxwfRzyeBn8YRNysLXwp+1h+t17anQMxd3KNRv0sWjrUIAZcW17 -CEBrXGZQD18CFxQoNTBoNgN9c4ypqXH7gVvDvLbppcnEs9J8ssNVCsoHzOJR3BYH4jWlKIFVAKw4 -jLxeKKEOAlqzoGMQbba7LjGTx937D1WMjysyRg3mIVXUTCkTGqbRs6IgHgSmboXFBQRBS4t3P66U -AOcEU8vamx6UIp+9kkwpXv6xpk9F4FIEFjXyjlLkYLAPRQJiWixon17d49GsfEw7tOdrjjVL9C2z -WqRVViE31bS211VA0hhqWtzE8sbQU1q5YdK5Lg1f+/Yf3nHUf+r6q9qNB9PhQjk0tr7DusqkNfeU -+W2WpovBFK9j1DGNxp+Rxj+elUG1U+lgoz3/vCT4D8E17/W2Q3Fq4s7cp7WGQcklCZAACZAACZAA -CXglEE29QPl+2/aaBXdGdQIITIlWhMFrMAQuB3C7iBfXOUifyRsKjatXrzkF3zT7sESThjVH7Nix -rMG9fb+v9RVr1ivFyDGtMMGMJRAMzjF9Z6sm9Z2+zrvLC0ExoTTAADtQwUwv4OjO7cRdXmBxXVlX -JE78KO6Bu3Setk2fOUdxim3NAIN0sEbAwH3EgJ6SJJT5Ih9wuH79hnZRwu9ApGHzjlLg+TzSplkj -PV0s4mAE2r48sYHC6dOuPbSFD2busYuvtoe0/6prBN5GMWQ/3l3bg8IqNG3Bnq+3dbhvID4GZvp4 -UoIZWZIrqwPjdhKW85xReSWNH0OgJHAnqAv0XbB0CFTWqwCeU5QSooGaUQbKBAimfM31xRGpUyKx -jPrAOQaJv/ljattUykXEnULW3zxc08HNBjFOnk0cU9fXvh/uJ3B/oZAACZAACZAACZAACfgmQEsN -34yYwgcBe7BKH0n92v3oS7z75K6zibimwhddY93hus+f3wnix9fWFquVK0nh/Pnk9Nmzsu/AYT2o -Lqh++5LQuN+YPDH9aSACFqFVaOA8N5T7ysw587TbTFZlaYPpZeHGgmlaw6LQQN7ggJgrYZW4ceII -/gcq7thgut6xE6fprODq4yq+2h7Se6uTu7b3JBUaKA+sOhIGjgeH+i1pAnTf8JaxL1cQT8oOb3ma -fVlSxNJWJQi2Wi1fAhVfQ7TFBvY3VBYboRUE9wy2QHGT1sNsMVRoBJs28yMBEiABEiABEojMBGip -EZmvLusWagK79uyT2SpmwslTZyShspyAm8Y7r78asLVAqAsQTgfCsgAuM2vWb9YzzCB2SH5lIVHz -laqhsnIJVrEHDBurYpKklxqqHMEUxC7Zd/CInmkGLj6UyEcAM710VbE/tqogpHD7wXSy7VQcD2O5 -EflqzBqRAAmQAAmQAAmQQNQmQKVG1L7+rD0JkAAJkAAJkAAJkAAJkAAJkAAJPLUEPEdLfGqrxIKT -AAmQAAmQAAmQAAmQAAmQAAmQAAlEBQJUakSFq8w6kgAJkAAJkAAJkAAJkAAJkAAJkEAkJEClRiS8 -qKwSCZAACZAACZAACZAACZAACZAACUQFAlRqRIWrzDqSAAmQAAmQAAmQAAmQAAmQAAmQQCQkQKVG -JLyorBIJkAAJkAAJkAAJkAAJkAAJkAAJRAUCVGpEhavMOpIACZAACZAACZAACZAACZAACZBAJCRA -pUYkvKisEgmQAAmQAAmQAAmQAAmQAAmQAAlEBQJUakSFq8w6kgAJkAAJkAAJkAAJkAAJkAAJkEAk -JEClRiS8qKwSCZAACZAACZAACZAACZAACZAACUQFAlRqRIWrzDqSAAmQAAmQAAmQAAmQAAmQAAmQ -QCQkQKVGJLyorBIJkAAJkAAJkAAJkAAJkAAJkAAJRAUCVGpEhavMOpIACZAACZAACZAACZAACZAA -CZBAJCRApUYkvKisEgmQAAmQAAmQAAmQAAmQAAmQAAlEBQJUakSFq8w6kgAJkAAJkAAJkAAJkAAJ -kAAJkEAkJEClRiS8qKwSCZAACZAACZAACZAACZAACZAACUQFAlRqRIWrzDqSAAmQAAmQAAmQAAmQ -AAmQAAmQQCQkQKVGJLyorBIJkAAJkAAJkAAJkAAJkAAJkAAJRAUCVGpEhavMOpIACZAACZAACZAA -CZAACZAACZBAJCRApUYkvKisEgmQAAmQAAmQAAmQAAmQAAmQAAlEBQJUakSFq8w6kgAJkAAJkAAJ -kAAJkAAJkAAJkEAkJEClRiS8qKwSCZAACZAACZAACZAACZAACZAACUQFAlRqRIWrzDqSAAmQAAmQ -AAmQAAmQAAmQAAmQQCQkEDMS1olVCgcC+46cDIez8BQkQAIkQAIkQAIkQAIkQAJRhUCuLOmiSlVZ -zyASiPZQSRDzY1YkQAIkQAIkQAIkQAIkQAIkQAIkQAIkEC4E6Pr9HeMAAEAASURBVH4SLph5EhIg -ARIgARIgARIgARIgARIgARIggWAToFIj2ESZHwmQAAmQAAmQAAmQAAmQAAmQAAmQQLgQoFIjXDDz -JCRAAiRAAiRAAiRAAiRAAiRAAiRAAsEmQKVGsIkyPxIgARIgARIgARIgARIgARIgARIggXAhQKVG -uGDmSUiABEiABEiABEiABEiABEiABEiABIJNgEqNYBNlfiRAAiRAAiRAAiRAAiRAAiRAAiRAAuFC -gEqNcMHMk5AACZAACZAACZAACZAACZAACZAACQSbAJUawSbK/EiABEiABEiABEiABEiABEiABEiA -BMKFAJUa4YKZJyEBEiABEiABEiABEiABEiABEiABEgg2ASo1gk2U+ZEACZAACZAACZAACZAACZAA -CZAACYQLASo1wgUzT0ICJEACJEACJEACJEACJEACJEACJBBsAlRqBJso8yMBEiABEiABEiABEiAB -EiABEiABEggXAlRqhAtmnoQESIAESIAESIAESIAESIAESIAESCDYBKjUCDZR5kcCJEACJEACJEAC -JEACJEACJEACJBAuBKjUCBfMPAkJkAAJkAAJkAAJkAAJkAAJkAAJkECwCVCpEWyizI8ESIAESIAE -SIAESIAESIAESIAESCBcCFCpES6YeRISIAESIAESIAESIAESIAESIAESIIFgE6BSI9hEmR8JkAAJ -kAAJkAAJkAAJkAAJkAAJkEC4EKBSI1ww8yQkQAIkQAIkQAIkQAIkQAIkQAIkQALBJkClRrCJMj8S -IAESIAESIAESIAESIAESIAESIIFwIUClRrhg5klIgARIgARIgARIgARIgARIgARIgASCTYBKjWAT -ZX4kQAIkQAIkQAIkQAIkQAIkQAIkQALhQoBKjXDBzJOQAAmQAAmQAAmQAAmQAAmQAAmQAAkEmwCV -GsEmyvxIgARIgARIgARIgARIgARIgARIgATChQCVGuGCmSchARIgARIgARIgARIgARIgARIgARII -NgEqNYJNlPmRAAmQAAmQAAmQAAmQAAmQAAmQAAmECwEqNcIFM09CAiRAAiRAAiRAAiRAAiRAAiRA -AiQQbAJUagSbKPMjARIgARIgARIgARIgARIgARIgARIIFwJUaoQLZp6EBEiABEiABEiABEiABEiA -BEiABEgg2ASo1Ag2UeZHAiRAAiRAAiRAAiRAAiRAAiRAAiQQLgSo1AgXzDwJCZAACZAACZAACZAA -CZAACZAACZBAsAlQqRFsosyPBEiABEiABEiABEiABEiABEiABEggXAhQqREumHkSEiABEiABEiAB -EiABEiABEiABEiCBYBOgUiPYRJkfCZAACZAACZAACZAACZAACZAACZBAuBCgUiNcMPMkJEACJEAC -JEACJEACJEACJEACJEACwSZApUawiTI/EiABEiABEiABEiABEiABEiABEiCBcCFApUa4YOZJSIAE -SIAESIAESIAESIAESIAESIAEgk2ASo1gE2V+JEACJEACJEACJEACJEACJEACJEAC4UKASo1wwcyT -kAAJkAAJkAAJkAAJkAAJkAAJkAAJBJsAlRrBJsr8SIAESIAESIAESIAESIAESIAESIAEwoUAlRrh -gpknIQESIAESIAESIAESIAESIAESIAESCDYBKjWCTZT5kQAJkAAJkAAJkAAJkAAJkAAJkAAJhAsB -KjXCBTNPQgIkQAIkQAIkQAIkQAIkQAIkQAIkEGwCVGoEmyjzIwESIAESIAESIAESIAESIAESIAES -CBcCVGqEC+aocZIrV6/K5i3b5PKVK1GjwqwlCfxHBO7fvy937961/t+7d+8/Kon/p3348KE0a9lW -qr32JvsI/7ExJQmQAAmQAAmQAAmQgA8CMX3s524S8Elg3vwFMmr0eNm+c5eV9rm8eeTDBvWk+qvV -rG1P1cqDB3Jt3UY53KSt5JwxUeJmyyISnTrAp+oaRuLCNmneRpatWOlUw9TPPislSxSTTzq2lZQp -Ujjtiwg/bt++IwsXL9VFOX36jCRJnFhOnjwla9dvkDRpUkvpkiUiQjGfrjKofgr90qEPmkqsVCkl -Y69vHOWPFu3pqgdLSwIkQAIkQAIkQAJhIEClRhjg8VDRA6tWbT/WKDJkSC/FihaWDRs3y67de6Td -x59J3Hjx5MVKFZ4qVHfPnJUD/2soicuXkQfXr8vF6bPkypLlknPWTxIjUcKnqi4sbOQk8OChGswq -gfIwTepn5d/LV2Tjps3y6+zfZdOWrfLbL1MlUQRrq3HjxpE/Zs/QVhq5c+XU5d+ybbt82rmrvFT1 -RSo1NJHA/pz6vp/cPXdB7ijlEPqqQw2bS+JyZSRlg/cDy4ipSYAESIAESIAESOApJkClxlN88f7r -ol+8dEk+bNJSF+OjRvXlkw5trSINGDxMBg8doc3NVy1dIPeUufyGjZv0F+TSpRxfZA8fPiI7du2W -zJkySoH8z+tjd+zcLYePHJH8+Z6TZMmTydJlKyRp0iRSUO1ftmKVXLr0jxoAVVYDudTWubBy8+ZN -2bJ1u2zbsUOyZ8smRQsXkmeeSWqlmfvnXwIT/YoVysnadRsE5/6gXh2JFzeulcasPFRfP+PnzysX -Jk3Tm86PnSgpar8jD+9HfBN/UwcuowaBJh81lGovVdGVPX3mjJSr9LKcOPG3bNq8RSqUL6u3+3tv -IB9YTezff1CgdChSpNBj98fRY8dl8+atcumff6Rgwfzy/HN5JU6cOBZsuJggjz179gnW8+TOpa1H -oodYOR08dFju3Lmj7++du/ZoBSgO/vvvk/LbnLlSsEB+yZQxg87vxo0bsnX7Dtm+faekT5dWChUq -KOnSprHOtX7DJkGdSxQvKseOnZBtKm25F0rLvgMHdZoqlStK/Pjx9Tpc45YsXS4xYsSQ6q+8bOVh -VkxeJYsX03lCMZszZ3Z5oXQpfYxJB7efFStXC+qBvHLnzik4JlqIZYTpZ6DIXaP6mf37D8hzz+WR -8mVfkKtXr8kf8+bLP4pdgQLPS6kSxU22eunrOjklDvkRV5XxwpQZWqFxW22LpRRcKeq85y4pt5EA -CZAACZAACZBApCVApUakvbRPvmI7lUICkiVzJunQtpXTCVs2ayILFy2Rvfv2K0XDTsmRPZt07NRZ -YCK/YslfOu34iT/JlGk/S5HCBWXqpPF628Ahw7QiY9yoYXJHxQwwx0Cxgbwg3Xv2ls8+6SAN69fV -v8+dOy9vvfe+nDl7Vv82f36bMVXy5smtf3bu8o1cV18yixYprL9oY+Nbb9Z8bNCG7dFixJTocZyV -HdFixVIDF7qfgA8lYhKAoq9M6ZKyavVaPeiGUiOQewMD7sVLllmVw309c/pPkjBhAr1t2MjR0rf/ -YGs/VmAp8uO4kZI4USJ5oJSBrdp2lPkLFzulQTmGDx6glADR5bMvvtL3IRQB036ZITNnzdZpYdmF -e/3br77QSo2zZ8/J2/+r+9g93btnN3m9RnV9zKSfpsqffy1wuqczKmsxKFSh2BkysK9UfbGSTguF -BvKHAsSdUsPkValieScGyZMlk4Xz5mgGUErUb9TEyc0Omdd87VVBuaDYMP0M6gyFrJFmjT+UWb/N -carP5506SoMPHBYV/lwnk5d9GS12bPtP0f1ULD7WnaDwBwmQAAmQAAmQQKQnwFFapL/ET66CO5VV -BaR4sSJOXzOxDQMYuKJAoPyANQYUGlA84AUegoEGZJP68guFAwZF+EIKgaLDCI7JkSObQNHxzltv -6M1Tp/9idmtrEKSprywv/pwzU7p+8ZneV7teIx1I0UqoVo4cOar3DxnQRw1U3LuSPFQWHVeWrZRk -77yuD01Rr5ZcXuwoqz0vrpNARCKA+BRQaEBgRQFBYE5/74116zdKz+5fS7/ePfS9euToMenVp7/O -BwN0o9DA/ikTx2oFAZQRn3XuqtPs2LlLKzSgDFm+eJ5WBsDiCsduVW4mrtKyaWNp18Zh6YX7HQqU -KiFKiCYt2uhywy3l5yk/ytddPteHf/zpF7J7z16nrOB207J5Exk6qJ88r8739hs19X67UsEoa6CA -8CZggPpBSQGFBqzRVq5erQ+BJQniBsHqAgrT0SMcCh5sR79il6vKMmTCmBGW0gIKIVh1TBw3SurW -+Z9OOlEpZYwEcp3MMVje2LJdEpUpIbGVMieesgiJnTa13FKWNhQSIAESIAESIAESiEoEqNSISlc7 -yHXFoAeSIX16tzmnT5dObzcv/PgKCtmxa5cOEIjBFszNIXAdOXbsuFZu4GtzPBWLwy49u30tL5Qp -JV985ojfgXNjEIdBhwlQioFNKhUsr8Zrr2jzdihKDhw8ZM9Gfvi+u7xf+z2pWqWyWysNJI6dLo08 -t2ahPPPqy/rYFHXelTyLZkuMJImd8uIPEvivCfQbMFjqf9hU3nq3jlSo8oouDpQKcNcK9N7opqwk -3lIKAQT37dXzW53XytVr9HLFKscSFlnYD4snDPwhsMyAW8b16zf07ytXrsqhQ0f0vThj+mQ5sHur -k5JSJ1J/EIMHlhWQFClSKIVEXq1IuHDxoo7Jg+29e3yr+4ja/3tXar33DjZp9zG9EvKnedOPpE3L -ZgJ3k3TKTeWVai/pPbA8uX//gVZsYh1SpXIlvfT0p1njRrp+sAapU+tdnWz5CodSA/0G6gJlBizA -ShQrZvVfcEexS5fOnwrc7IzSBvu6qm0I5NqmVXOdFNYkcIkL9DrZz5O2c0fJMqyfChKaQuLmyCrZ -J42SVI3q2ZNwnQRIgARIgARIgAQiPQHaqUb6S/zkKpg1axad+bHjJ9ye5PgJx/Zs2bLq/WXUS/5P -U6err7Y7tH85Nn7cvo3U+aCRrNuwUcXCcKSD8sIuGKTFDjGzho88fkOpcfPWLTmhfPGNFC1Zzqxa -y71791suKNiYK1cOa5+3lWjKXz5R2VJS8NA2b8m4jwT+UwLnzl8QKBEwMIZASfjj2BESM2ZMOXDg -kULPn3vDxLVBPgWez4eFduNAbIvtyoUMkk/F0DACd5cECRJoRSRibcDaAnEi1qxbLw0+aqaT4TeU -A7C48Fdwz0Jg5WFXbuZTlgiQnbsdFmL6h/qTV8XtsAuswnAslJ07du6UW7cQbUJ0wGK4sXkTHGsk -u3KZgyDWBQSxQEaOHieIm+GqxED8ELtAuQqxx+wxMX4SKmZ2CfQ62Y9FPwXJMX2CfTPXSYAESIAE -SIAESCBKEaBSI0pd7uBW9rm8uXWGCAyIL44YSBnBl1uYckPMYKR4saL698ZNW+Tc+fP6qyxcVDAA -QfA9mGxDApnaMX4CRyBAHDeof28stPz772UdYDRPbkcZzXYT0M/85pIEnmYCPbp9pQOFzl+wSFq0 -6aDdPK4pCyUoAwK9N65eu2ahuHbturWOQKDJkj2jf9vTwAoC1lAQxNRAuvFjhusgpStWrpEly5Zr -BQeUHLBugNuGP5IkiUPxYD8XjkNMC0jSkP36h/rj7p5GvBwoNRBc+JZSfkJq+HA9QRp3eWE75Pve -/eTHyVN0EFUoY1OnflY6fOJwi3GkCN3fQK9T6M7Co0iABEiABEiABEgg8hKg+0nkvbZPvGb58z36 -mgvfe/O1Ess+/QdZXzNNOnwlhQIDPvDLVMyK8uVf0IOI8iqoHnzzFy1epr/85sqZ0++y58ye3Upb -qEABeblqFf0/TZrU+gt27NixrP1cIYHISuBF5XqBoJ2Q4SPG6GWg98YvM3/Vx+HPzF8dATxxv2KW -D2O5ASsFI8tXrNSriD2RMmUKHTvnD7UfCpX2bVvKnFnT5c3XX9NpduzYZQ5zWiJvCAKDGsmp4udA -YI1l4mdAaYq8IflDrEj0Dw9/4F4GmacCif6lFD6QCuX8U6roxG7+rFjlcEPp/OnH0vjDBvKSOgdc -aMIqgV6nsJ6Px5MACZAACZAACZBAZCPw6NN6ZKsZ6/PECcCcGsHwPlAzAoybMElmz/lDBw+EhYYx -h8cXWgx4jGBWAHxBxf6yarpESCnlZz5oyHAdGPC16tV0kFGT3tcybtw4eoABs3DMloDjEWsDPvQw -jV8WgNm7r3NxPwlEVAKYMhWKhEaNW2hrgnp1a+tZRDD49vfemDh5qmxTrmGxlcUFFI+QOrUc04O+ -puJo/Dhpivw1f6G8X/9DPaXyr7N/12latWiql5jmtd3Hn+n1Fs0aS3yl3PhrwWL9u2TJ4nrp+qeg -mtoUgkCimB66yUcNVIDhItY9jWC/mGp2z959WvEJ17MK5cq6ZvPY7xTJk+spbU2wUMTIsLuyPHaA -HxugNIKi5etuPaRypQqyUsUZQVyMsAr7sLAS5PEkQAIkQAIkQAJRnQAtNaJ6Cwhj/REMb9jg/jpw -IBQVUCZgCf/6wf1/eMzkvJRKb8S4o9i/vJYtU9rs9moKbiVSKwhe2FQF+LurpoAdNWa8LgPOP3XS -OEmSmME97ay4HjkIRHczvXC5F8pYATmhJIQEcm/06fWdnDx1Wis0YH3RrnULefONGjofWCTAtQRT -okJpCYUGtsFqwQTUxL37TdfOWpk4ZNhI6d13gMRVChIE5y1auJDOx/UP4nIg0CdkmbL8OHzkmF7v -2K61YBrURAkTCixIYMkF95XxSolq4mJ4cxVBJvaZTqqHBP3Vmbv54ysvHNLp43Y6ZgniaYwYNVYH -OTVTxkZTSiVfAsWTq5jzBnKdXPPgbxIgARIgARIgARKI6gSiKVcB5whnUZ0I6x9qAgiod/jIUR3I -EwE9/wvBzAn4Qvxfnf+/qDPPSQL+EPB0bxQsVkbHxlizYpGOcwOLi2TPPONRqYjAm7jXTeBLd+e+ -fPmy3mziY7hL47oNSslYsR53Fzt/4YI8kzSpU8we12Pd/R49boKOg4GppJcsmBvw8e7yxDbE9oge -PZpW3nhKE5btnq5TWPLksSRAAiRAAiRAAiQQmQnQ/SQyX91wrhvMu41ffzif2jodzM4pJEACjxPw -596A5QCsNLwJ3CXw35sEosww+bhTaGBfSjXdayCCOBxfdv3Wmuq5Y/vWQVNooByJEiUMpDgBp/Xn -OgWcKQ8gARIgARIgARIggUhMgEqNSHxxWTUSIAES+D975wFeRdGF4RNC772L9N5BmiBFxIa/ioqi -iIUqVVAEKQLSpAmCoIBdQUVFFAXpIL2DIFV67zUBQkL++SaZy96b21Nuynd4yO7dnfrO7uzO2TNn -PBFo2OB+CVWWF66UCp7iJ7bzWHr1krIUaVC/njzz9JPy+KMPJ7YisjwkQAIkQAIkQAIkQAJxSIDT -T+IQJpMiARIgARIgARIgARIgARIgARIgARJIOAIxPZclXN7MiQRIgARIgARIgARIgARIgARIgARI -gAT8JkClht/oGJEESIAESIAESIAESIAESIAESIAESCCQBKjUCCR95k0CJEACJEACJEACJEACJEAC -JEACJOA3ASo1/EbHiCRAAiRAAiRAAiRAAiRAAiRAAiRAAoEkQKVGIOkzbxIgARIgARIgARIgARIg -ARIgARIgAb8JUKnhNzpGJAESIAESIAESIAESIAESIAESIAESCCQBKjUCSZ95kwAJkAAJkAAJkAAJ -kAAJkAAJkAAJ+E2ASg2/0TEiCZAACZAACZAACZAACZAACZAACZBAIAlQqRFI+sybBEiABEiABEiA -BEiABEiABEiABEjAbwKp/Y7JiCQQTSAkNFQuX7kqIaE3JDw8nFxIINkTSJ06tWTKmEGyZ8uqthkD -Vt/roTflwuWrgm14eETAysGMSYAEEi+B1KmDJXPG9JIre1a9TbwlZclIgARIgARIwD8CQZFK/IvK -WCQgcubsObl46bLkyJFDMqRPL+kzpCcWEkj2BG7euCk3bt6US5cuSc4c2SVf3jwJXueTZy/K5ash -ki1LJkmfPo0Ep1KGd+zNE7wdmCEJJGoCQSIREXfk5q3bcuVaiGTPmkkK5s2ZqIvMwpEACZAACZCA -rwSo1PCVGMPbCEChEaoGdjmz55B0SqFB/ZgNDXdSAIGgoCBR4wU5efqUZFTXf0IqNqDQCL15S3Ln -yCrBwcGSSik0UBYKCZAACTgSgK7zzp07EqGsuc4ry66M6dNRseEIib9JgARIgASSNAFOP0nSzRe4 -wmPKCSw0ihUrppUZVGgEri2Yc2AI4JrHYCGHUuqdOnVKMmfOlCBTUTDVBBYahfLnkjRqGgyUKxQS -IAEScEUAPUQqpfyENVfenNnk+OkLkjVzRk5FcQWMx0mABEiABJIcAToKTXJNljgKfOnyFT3lhMqM -xNEeLEXgCKRLl07fC7gnEkLgQyObMiGnQiMhaDMPEkg+BKAAhT8g9B/oRygkQAIkQAIkkFwIUKmR -XFoygesRqpyCplcmrBQSIAHR9wLuCX8lVFk+4b83SkJYamRSvmtooeEvbcYjgZRLAP0G+g/0IxQS -IAESIAESSC4EqNRILi2ZwPUIj4iQdOkS1ilohMoT/ykkkNgI4F7APeGPHDp0WKrUrKf/r1y9xmMS -WOUkbRrOHPQIigFIgAScEkD/wdWSnKLhQRIgARIggSRKgG/GSbThUkKxbyonpCEhIYJt2O3bdlVO -myaN+jqeXjJlwsoPCatcsSsIf5BALAls37HTlkLZ0qVt++52aKXhjg7PkQAJuCPA/sMdHZ4jARIg -ARJIigSo1EiKrZbMywwlxuXLl+VWWJj20p5FOTSD/wC9ZKWqe4Ty4n47PFxu3QpTS8qelXRp00r2 -7Nmp3Ejm10Vyrd6Wrdt11fLnyyd5A7A0bHLlynqRAAmQAAmQAAmQAAmkDAJUaqSMdk4ytYQy45L6 -nzlNsOS4ckEk2vci7DTsbTVE4NED/29lzyWnTp9Wq1Bk18qNJFNZFpQEFIF16zdoDvXq1SYPEiAB -EiABEiABEiABEiABHwlQqeEjMAaPPwIXLlyQ0Bs3JE+uHBK+d5dcWbLAq8wy12sgearWlEtXrmmf -G7ly5fIqHgORQKAJXFLLIh86fEQXo0a1qoEuDvMnARJIogQu3Dgl59X/wllKSaY0WZJoLVhsEiAB -EiABEvCPAB2F+seNseKYACw0oNDInSO7pFVTTURNMYkMu+Xdf+WgEXEQF2kgLW/lwMFDMnnKVPln -xw5vo8R7uKNHj+kybd26Ld7zYgaBJbD9n7vXXZXKleK9MHcwdcvBP028Z+okA1flgCNgZ+VzddxJ -0i4PHT9+Qr748mu5dOmSyzA8QQJJkcDpkCOy5sR8mXfwW1l29BcJvX0tKVaDZSYBEiABEiABvwlQ -qeE3OkaMKwLwoYEpJzmzZZXgYP8vScRFGkgLaXojR48elanTP5MdO/71JniChDl+4oQu0+ZEptRY -sWKl/PHn/DhncPr0GZn75zz5778DcZ52Yk9w6/Z/dBHh8LZkiRLxXtyffp4tNWrVk6tXr8Z7Xu4y -mPLpNF2O69ev2wXr9XYfffzs2XN2xwe/P0weaNw0Vqsf4b6aMPFjuXiRSg07uPyRpAlAobHh1CJZ -d2qh7LmwWTadXiKHLiee51mShsvCkwAJkAAJJBkC/o8gk0wVWdDETgCWFVmzZJY0bpapTHNPUUlf -prz+n7ZYcZdVQhpIyxdrDZeJ8YQdgVFjx0m/Ae/ZHYuLH7CS6T9gkKxdtz4ukktSaWzYuFmX976a -1WOl0PO20pGRkd4GjddwNWtU1+n/Y1n5JUw5Bl62fIU+vmHjJrv8V65aI/fXq6cYBdsd5w8SSMkE -zoYe1wqNDacWy5mQo5ImOK1kS5dbJCgoJWNh3UmABEiABFIgAfrUSIGNnpiqDIsKrHKSM3tWt8XK -Ur+hpCl0jw4TceGcnD801WX4LJkyyqmz57W1hr/LveJL8bbt2wVfkqtUrizFihWVVKnsdYDuwqBe -q9eskwIF8sk9hQvL3ytXS7hasaVWrZpSIH9+u7KHhobKps1b5MyZs1KjRjW7c9YfKAsGgZieUr58 -WSlbpoykVSu/WOXatWuCKQ3Hjh2X4sWLqbJXslsVBsqeLcoC5NSp03LPPYWlevVqkllZCbiTG2pK -z5q1621m+0uWLpdcuXJK1SqVdTTUa+e/u2TPnr1SqlRJqVixgl6RxprmDlXuPXv3KcVVGl320qVK -6dO7du+WrdGrf+zdt1+QNgb4WbNGXQ/nzp0TDPzvRN6RGtWqScGCBWzJIu6pU2d0+F2798iBAwel -xdNPSoYMGWxhEvPOrVu3dLujjDVVOyQmwbWG6yj8drhUqVpZsmfLFqN47sIcVn5Crl67KpUqVtTX -21m1SlEVdb0ULBDVfubaQdvXq1tHp71z592vy2vWrpXmjz+qj584cVJZV1yUevWiwuEgpqjs3rNH -Tp48rfKoIIUKFdRhzbmt27ZLieLFBfcDrs3a6r5zJidPnhJYcOBeya188YSEhMq/u3bJuXPnpWjR -e6V8ubJqfBg1QPRUJ5M+FEco26FDR/R9Uq5sWcmmLMisgnsG1y/yRzlLlCgeo3/BtY96gFk5VQ4q -dKwEuX/x5hlZd/Iv9X+hQLmRPnVGKZ6tojQq8rRUyE2nw7xCSIAESIAEUhYBKjVSVnsnutqGhISo -ZVvTe1UuM7hQn6E8hkeaSNsfpcbMH36UD0aNtcvjwSaNZOzoD2wDC09hoPDo+VZvNeCuIfDbgUGZ -kQH9+kjL557VP6GgeP7F1nowZc4/3Kyp2bVtYc3Qus3rtt/YKVy4kHzz1ed6MIbf8MHxyuvtsWuT -EmqwNvnjj/TACIPG9p062+WVL19e+eKzqVrxYovksANzfdTFCPYfaFBfPp44Xis6XmrzmsBfgRGk -OfPbryRPnjz60MBBQ+S33/8wp/X2jU4d5I2O7WXWrF9k9pzf9LHf5/4h+D/zu6+lYoXy4oxx925d -pN3rr+rwM2b8oKet1KtXV9asWauPPdT0wSSj1NitlEBGqlWtYnYDvkVboc2s0qN7F2n72qu2Q57C -fDfzB1nx999SpnRppdBbZYuH6x7XP+5LtNuGjRuli3TU57EKTCalkGzT+iX55rsZyq3OHT3Q3xY9 -RQf3EmTf/v3yymvt7K7jhg0byPixoyW18q0D56vtOrwhjRs1tFl+fDplUgylgUmnRvXqMm7MB1op -1qlLN61cRDmg4EC6E8aN0fe9pzqhbFDQ9uzVW1atXoOfWpDWtE8mS6VKFfVvky/SN4KyfjBiqO3a -HTb8A5n18y/mtOTMmVN+nPmt4N6iJH8CEZHhEhZxU9KkSiup1X+rREqkhIRdkVXH/1D//xQoN9IF -p5cS2StK4yLPSNW8DazBuU8CJEACJEACKYKA/afnFFFlVjIxEYBFQ7p09i9tcVE+pOmtXw1rfhs2 -bNQKDSgMvvvmC/nt15+k6YNNtAXB1Gmf6aDehDFpbty0WRrUryc//ThTPhw7Sh8eNmKUVnTgB3wI -YHDz6isvyy+zvpchgwbKgoWLTXS9hXVFxze66n2k8defv0uXzh21IuEtFR8C54edu/WwhZk3d450 -fqOjzucT5b8A8sVX3+i8vvx8mmzZuFaGDhmkLVF+/TVKqaADOfkD64jFC+bZBlTYH/b+IB2yd9/+ -uhwYqC5ZNF+GDx2sB4Vvv/OuPo8BHAbAGBxuWLtSh8EA/ptvv9NlfvvtnnqQi8CdOrTT+ZQpXUo2 -b9mq2wFfqH/9ZZb88dtsbVUycdJkWa/ayCoHDhyQ8WrgiUFf9uwxLQqsYRPTvtVJaMUK5RJF0aD4 -gkLjiccfk7+XL5Y1K5dJm5dfko8mTrYpJ7wJg8rA8ihcOf5csnCerF21QiujZv30s8z/a4Gu6/3K -QgOWCLAEgqxQyo+HH3pI6t9fT1+ne/ZGKX02b9miFXiweMK90qFTV8mfL5/88fts2bxhjYz+YLjA -38vHUz7V6Zg/4Pv59E9l47pVUqd2LXNYb/fv/08rRurWqaPvy3Tp0slX33yrLEDCZcXShbq8UHTA -1w7uYSOe6rRSWWRt3bZNpTlatm1eL7//+rOOOu3zL/TWlD937tz6mkbZhg8bopUv8HcC+XHWz1qh -Mfi9/rp+c2bP0lPzrIpFHZB/kiWBSGWVdj70lGw+vVxOXD+krNQibPWEQuNmeKgsVc5A8R8KjeCg -YCmZo7I0vbclFRo2UtwhARIgARJIaQRoqZHSWjyR1TdMmZGnUV9X7USZe6crUUpytnrFdjhNnny2 -/eBs2e3OBcM0PtpE3ARCmkjbV1kT7ddhQL++UrlS1GoUGPwvXrJUli5boRUF3oQx+eLL6qCB/fUX -ZAzW+/R+S0aNGaetKnKq1Vow6IdVQs8e3bSZO6ZvHD5yRL5UCggjMJ/Xg6H2bbWCBcc7tm+nrBPW -6UEhnD7uUINRhMFxKGGiwrSVvHnU/OpogeUK5IhKH2b1T/6vuf4ffVrgsBN5WwXTDsqWLSN58+bR -U0dwDvsQTD+AggdWG/gCD3mi+ePqC/0qWbhosVxX+aFMkKtXrsrJU6ekeLFi8vWXUcohfUL9yZ49 -u97NkiWLLe1VyocCZGD/d5V5fjG9369vb3m25YuyXn3Rr13rPn0Mfwa/N0D5W6hr+23dgULnk6nT -rYfs9mEtAquRQMjmLVGr21QoX04yZswYiCLEyHPN2nX62MAB79qsnHBtwkHsylWrdVt7E8Yk/L5S -0hmLna5d3pC/Fi4StO2jjzwstWtHtSGu3ZJq+sVuNYWofdvX1fSkctpiY/36jeo6LSew4Higfn2d -JBQdsHr6UCkcitwTNR3tkYebCZQJuObe7B6l/EPgV9u01pZSpixmu/+//2TI0OHS8IEHtBLOTOvA -9QyB4iJHjhwCqx/8dxR3dWr6YGN1/zW2RcEUluZKQbRo8VJ9zJR/zKgRUqRIVPmhQMqh7oFM0dfA -ItXXQLHT4umndBzcMz26ddX+bFB3WG1Qki+B8zdPy8zd4+TQld1qGkktefDe56Rk9sq6wrDQgDJj -4eEf5JZSbkDKq6kmUGiUzRVlyaQP8g8JkAAJkAAJpDACDqPJFFZ7VjegBLBMI8TZiifBmTIL/juT -IOWXIW3hIs5O2Y6ZNJGHGbTYTrrZgQIBArN5IzAfx8AaCgj4QfAmjIkLfxwwiTdSQSkwIBhYYcAD -qaosF+5OrRHth0CfiP6DwR4EPjSsAt8V+NINXxTwZwEpV+5uGKRpBkY41/b1V7UzzsHvDxf8h8XE -48pvwTNq8ARGGLQOHT4SQW0Ck3987XYm+NoNwfSCytXuKhlMWKxmAn8HZhrAUy1a6gFZ0yaNpdUL -LbUfARPWcbvj33/1oRdb31VsmTC7LNM2cOzeIq6vBaOwcKbYCKRCA34X/o5W3Ljy92Dqm5Dbf3ft -1v4brNO2cG3AN4tx6ulNGJQZg2+jAMNv+KSpWKGC/LNzJ37q1V5wb8GywTj2BQvkB8UcpnA8/tij -2hKoTp0oS4u9+/bpuKWVgtAqUIRgBR2jmMA5q/8Va9h3lHUR5BVlgWLtG9q+/pq07/iGtGzVWluG -NKh/vzz95P+0Us/E91QnTJmZrSyfFi9dpnzfHNXWSEaxhzRs96lSFFoFSgwI4kNRCGn04MN6iz9m -+hruqVq1qNSwgUmGO/subpPTyunnjdvXZce5tQLfvhFFIiRPxoJ6ygmUGlBowGoDU00w5QSWGrDY -oJAACZAACZBASiVwd7SVUgmw3iRgIZBVWQtAQm+ESi65O3iA1QEEji69CaMDqz8mnvltrCXwVdY4 -6IQzQ6uYMOYYLBggN1SZrBJyPapMWTJnVo4Io6ZdOMa1hq91X009nQDKC5jUYxrA1uHbBY4Y8TUe -1g8w5bcKvli7kozRDkYxMB0+dIgtWIhyfIr6FbmnsFbofDR+rHaKCMuS5WqaAHwF4D+msVgHvbYE -1E6WzFHOS2HlkkNZtBhB2sbZpDlmVQiZY9atM8VGIBUaKNvRY8eVFUtU+1VPRP40cE3Cca2jgLu5 -Dr0Jg/gYiEN5Y20fpI3rFQIlx4NNmqhB/CY5pRx+QoFm8oBCAVOYcK1CakQ7Us2YIcqiBVNWMken -g/OmzHCcGxoaNZ0Fx52JsXTo3vMtPS3MOEGFxdSKpWppTGUZslE5p/159mz5/odZ2m+NcWzqqU7T -1TSTyVOmytNP/U+aK4VMzpw55CM1ZcooJk2Zoegw+9YyGmfEKOP7gwfaTsGxKDiWSIBlf22Zcicg -BMopi4szapnWtcoJ6KWb52T3hY0ScvuK5EifRy3ZukWuh13W5aqW9wFpfG8L7RwUPjUoJEACJEAC -JJCSCdCnRkpu/QDX3XwljYi447Ek4ZcvSfj5c1H/L911uukqoknT5OEqnONxWBZA/lZTKIzg6ypM -0uvWqa0HYt6EMXHhwBJKAyN/LViod0srS5BixYrqfSxXefnKFb2PL7Xzo8PoA+oPVjqBLF6yTG/x -B8qS1WvX6t9YOcFYaCxcvEQPJHUYZU7ftXtPGTRkqMBiBRYVWCUEpv/vDegns3/+UcfHIA4Cc3iY -8lv/W6d5GJbmy7OZFgL/BverL81NGjfS/+9V6WAQhlVI4CQV+ebOlVvatX1N+yl5pkWUWb3xmaAz -V3+uqGk0RrBqBgQKE5MulDLp1KAV/g98Fe2YNHqaSaAVGii7cX6J/SpVoqY5YT/QAuufI0eOyrHj -x21Fgb+Wf5XlTOXoe8ObMCay1W8IpknBP0alSlFtizC4p6BgW7BokTRq+ICJphRsUZYZkyZ/oi2K -jLKjbJkoC6r1ShFiBPfMajVtBkoJx9WATBjrdvqnk+XTyRP1Pd1HWW3g3kAacMZ7/vwFPcXmrV49 -ZK7y4wJZGz0lx6Thrk4rV64RrOwD3zhYvQUru+A+MIoUc5+uXrPGJKfzhq8Y4zAXlk1YiQVTqjC1 -C/9hVQUGuB8oyZtAzvSqPy30uNQp8LDkzlBAKTSuyoHLO2X72dU2HxpV8tZXCo1ntEIDq55QSIAE -SIAESCClE6ClRkq/AgJc/7TK8uG2GgAHB6d1W5LLv/8k4WfO6DCplE+NvB26uQ2PNJG2r/Lwww/J -19/O0H4v4AMCX1PhuA/y0osv6K03YXTA6D+vtm2vvto+pvxVHNYOR+FnA4M5DM7hiwLOE19Tq5Y8 -qEzusfTp2mi/HiYNLAmJr9jLlq/QjkUxeIOPDyhaXn/tFW09YsLAYWKvt99RA+UqsnjxUj1Qg58B -KCSmTf9C/3659YtqkFRVLTkbNbBydKJo8nXc1qxRXQ94+/YfIE8+8YT2HQBFxWeffymdu3QXrNpy -XClwvvr6W7n33iLqK3xjVcYzWrGC3+2UeT9k2fK/9baymtIAwZQEyIyZ3+ttq+dbyiOPNFMrYMwU -TBX4Ty3VCouOX2bP0V+8YU0CBr6KVmYoHxqJQbZEL2MLhRD+J7TAt4WxejB5Q2mENps6/XPp3qOX -dOzQXlvafKtWIoE0b/6Y3noTRgdUf3r3eVewYg2sO76b8b32sQK/K0Zq3RflBwCKMrO0K85hCVQs -N7xFOYx9UU1VMgKfM7h3+g14T1tTFSpYUKAoRDhHKyMTx3ELawikM3L4UHm3/0CZ+PEUbak07sOP -9BSzoUMGqylN9+gpJIhrVcLgt7s6lSpVQl+nv875XQopB7vgjLIZpQaWb8VUE0z/Cgu7rRWJC1QY -hIezW8jzLZ+VTp27SZ93B2iLD0x5m6TKeOnyFVkw73cdhn+SN4F8mYpI3UKP6kpuOrNMzoWe0Kuh -pAvOIGVyVtc+NLDaSVpaaCTvC4G1IwESIAES8JoAlRpeo2LA+CCAufu3boVJerVaSVyKTlOl7Ums -pvEIi6kN0z79WEaNHiffqkE1BF9e+/Tupb+Y4rc3YRAOAieA+FL7+Zdf6d/44tq/Xx89aMOBd9Tq -H7dvh2knh9PUYBJ59ev7joz4YLQOjz+Y8jLhwzHy/rAR2s8AFBoYJGFpUzhfdBZmydLl+qtuB+Vc -FCurQLBkJHxmoF6mbhhAYbDvjTyvFDBYDQKKEwgcInbt3Ekw6Xu2GpRhVRcIBm0D+vfVihQ9AFX1 -+WjSx7ZlQqHgwMoSxuwfvg9eebm1UiZ9pxQvn2sfHHCeOfWTj2W0cqqKYxB8pcYqK7AkgQSpwWlS -FaO4qhPtLDOh6mGu92HDP4iRJZY9hWIBlgwfjB6rFEr9dBhcs5MnTtBOXnEACiZPYRAO7QzfKf0H -DMJP/RvtblVIwYkoLH5geQSLI6s0eqCBVggYfxo4B+Uc0nh/2EgZP2GiVpIgHziUtV0XQVGpmKkc -Jk1T96BUUQEef+wR2b1nj3bKC+uroWpFnyFK2QClIATX27t9ets5ofVUJ6w4dOjwEW0dhTSw6k/L -Z5+xKUhQ/jGjRsrwkR/oewLKHOTT/90+SqHUCFF0G0BB89nnX8kbSlkIgYJn3NhRflkp6QT4J8kR -KJi5WJRiQ0072nR6iZp2clVK56giTYu2VIqNapKKPjSSXJuywCRAAiRAAvFHIEjNeVZuqCgk4BuB -XXv3S7GiRX2L5CQ0ll09c/asFMh7d5UOJ8Hk/DfTfLLUOHX2vOTLm9e2goOzND0dwxfS22oFFWdz -301cV2GOHj0mzZ9sIS2eelIGDxqgl5dFWsaM3sQ3W0zXwAAHX6jdCczkr6ipKu58XSDMRTVlIJdS -fJiBnDXNsLAwuar8eORU/jIcB37WcK72ER/OTx3jwt9AJvVF3tX0kCtqBZTg1ME2XyKO6aPcsLDB -FBOr4BrBf/gNcVYfa9hA7h86fFjKlynlsQiX1Rf3++o11OGGKr8JL7R8xmMca4Dtew5J6WKFrYfi -ZR/M8XiAUs6VuAoDBdf6DRtk7pxf9PQOXLPGWsFVWr4ex7SR68qvjKd7xtd0b6nr+4by/WFW5THx -fakTHJaCnav7HWmi/PCn45iPyQ9bTNmBUtNdG1jDcz/5ETgVclg2nlqinYdiWgpWRIkL2XfouFQp -WywukmIaJEACJEACJBBwArTUCHgTpOwCwFIDg9hrakCfxc188YxVa8md0KglF4PSubfAQFpI07qC -gz+UMTh3NUA36XkTBmFRFnflgZLAm8EZFAnuFBrIC2EwJ9+VwO+Au/Ou4pnjrvwWeBq0eqofyu2o -0ECentiZciWV7Xblu8FI1UTkT8OUyWzdXa++hIF1gqdrw6TnyxbperqmfEnPhMU16Ow6NOex9VQn -d4pQkw7ScKfQQLisWd0rOU1a3CZfAgUyFdXWGTfViifwt0EhARIgARIgARKISYBKjZhMeCSBCeDF -/tTp05JeDSbSpHF+SWasVMWrUt2+Ha6sEK5Lgfz5vQofX4EyZEivp1GU9uLLfXyVgekmTgLbtt9V -apQqWSJxFjKWpSqnliw1yyrHMqlEEz051inRwGVB3BLImDqL4D+FBEiABEiABEjAOQHnI0jnYXmU -BOKFAL4I51CKjYtqekJutXyn08GQmlfsSbDiCdJAWt58ZfaUXmzOw1cAljKlkIAjAaz2AWmoVrXA -1/rkKGaFm+RUt+RYp+TUPqwLCZAACZAACZBAyiWQdD3tpdw2S5Y1h7VGRjV3//yly8qPRbjPdUQc -xEUanky6fU6cEUggjgjAH4lZjrRGjapxlCqTIQESIAESIAESIAESIIGUS4BKjZTb9omu5rmUH4gs -agnVsxcuah8b3hYQPjQQB3GRBoUEEiuBPXv32YpWTS27SyEBEiABEiABEiABEiABEogdAU4/iR0/ -xo5jArCywNSRy5cvC1YwyQhHomq51zTKkaaZloJpJlglA8u2hqoVGuDUDz40Aj3lJI5RMLlkSABO -Vnt0jVqGt3KlCn7VMLVaQSY8PEKtQJM8p674BYWRSIAEvCbA/sNrVAxIAiRAAiSQRAhQqZFEGiol -FRPKifxKSYHlIkNCQuSaWrYxTC2HapW0aplDhIvtsq3WNLlPAvFNoGyZ0oL/sZHMGdPL9dAbkj1r -5tgkw7gkQAIplAD6D/QjFBIgARIgARJILgSo1EguLZnA9YCDQygd4tM6Amlb04+IiNC1TK7OFRO4 -CZldHBLAvZBQ12Wu7Fnl6KlzkjVLJknlhQPdOKwmkyIBEkjiBO5ERsqlq9elSIE8SbwmLD4JkAAJ -kAAJ3CVAnxp3WXDPBwIZ0qfTSg0fosQ6KAaNCTVwjHVhmUCKIgClBu6JhBB8Yc2uFBqnz10UDFAo -JEACJOANAfQX6DfQf9BSwxtiDEMCJEACJJBUCFCpkVRaKpGVM1vWLHJJ+b3AYI5CAimdAO4F3BMJ -JQXz5pQMytfMkRNn5LL66oo58hQSIAEScEYA/QP6CfQX6DfQf1BIgARIgARIIDkRCIpUkpwqxLok -DAFMBTl95qzydRGu/V8kTK7MhQQSFwEo9eDUNm2a1JI/X94EtyS6HnpTLly+qnxs3KRiI3FdGiwN -CSQaAnAqDMsMTF2jhUaiaRYWhARIgARIIA4JUKkRhzBTWlJhYWFy7vwFuXLtuuSIXrXE6gMjpfFg -fVMOASgz8F9baGTJLHly5xKsbEIhARIgARIgARIgARIgARJIWAJUaiQs72SXGxQbISGhck2tUnLj -5i0xzjyTXUVZIRKwEIBvF/jQyJIpk2TKlJEKDQsb7pIACZAACZAACZAACZBAQhKgUiMhaSfTvKDI -CA8Plzt37iTTGrJaJBCTQKpUqSR16tQJPuUkZkl4hARIgARIgARIgARIgARSLgEqNVJu28dLzemi -JV6wMtFERiCIS6kmshZhcUiABEiABEiABEiABFIqgdQpteKsd/wQ4GAvfrgyVRIgARIgARIgARIg -ARIgARIggZgEuKRrTCY8QgIkQAIkQAIkQAIkQAIkQAIkQAIkkAQIUKmRBBqJRSQBEiABEiABEiAB -EiABEiABEiABEohJgEqNmEx4hARIgARIgARIgARIgARIgARIgARIIAkQoFIjCTQSi0gCJEACJEAC -JEACJEACJEACJEACJBCTAJUaMZnwCAmQAAmQAAmQAAmQAAmQAAmQAAmQQBIgQKVGEmgkFpEESIAE -SIAESIAESIAESIAESIAESCAmASo1YjLhERIgARIgARIgARIgARIgARIgARIggSRAgEqNJNBILCIJ -kAAJkAAJkAAJkAAJkAAJkAAJkEBMAlRqxGTCIyRAAiRAAiRAAiRAAiRAAiRAAiRAAkmAAJUaSaCR -WEQSIAESIAESIAESIAESIAESIAESIIGYBKjUiMmER3wgcOPmTbl585bcvn1b/4+MjPQhtm9Bt23/ -R6Z99qVvkVRoxJsy9TP5buaPPsd1FWHO73/IwsVLXZ326Xhcle/YseOaz8WLl3zKn4F9J3D27DnN -+vSZMz5FjsvrxqeMU1DgiIgI3Tb/7todq1qvWLlKJn8yLVZpMHLSIvDFV9/K/AWLEl2h8VzFMzYi -4o7TsoWHhwv+UxI3gUD1KXzuxP918dkXX8uWrdt1RgcPHpJRY8fL5ctX/M44LtLwN3Nf+kG+d/pL -mfHigwCVGvFBNYWkuWfvPqlcvY5Uql5byle5T/+vVqu+vNquk+z/70CcU8ADY8yHH4kvihMoDJ5r -1Ua++XamnDp9Os7K9MOsn+XPeX/Z0vtn57+ycNES229vd+KyfMeOn9B8Lly86G32DOcngdNnz2rW -J0+6vqaWLf/b9pJjsnG8bsxxbv0jAIXqH+o+PHL0mC2BMDX4Qz+xQ92TsZGvVZ8xYdIUuXL1amyS -ibe4zq6veMssBSQcFhYmI0ePk6nTv7DV1t9+3ZZAHO2cO3deP1+79ugVI8Wjx45Juco1pXffATHO -8YBnAgnZxgnRpzjrF/jcEYnvdoYSY+OmzfqCW7x0uUDJgfc7b+TEyVP6OXb9eogtuK9p2CLGcsdZ -P+guSb53uqPDcwlNIHVCZ8j8kh+Bp/7XXJo99KD6ihQuW7f9Iz/+NFsrEtauXCIZ0qcPaIXXrt+g -818wb45ky5o13soy57e5MnvOXM3Bl0wSqny+lIlh44YABkiVK1WU6tWqxE2CTCUGgWvXrknPt/vK -iKGD5N4i98Q4H5sDo0cOlfPnL8RrvxGb8vH6ig29mHHTpk0r8+fOlsyZM9lO+tuv2xKIo528efNI -vz5vy4hRY2X5ipXSqGEDW8pDR4zW++++85btGHe8J5CQbZwQfQr7Bedtn5Dt3Kb1i1KzRnWpUrmS -88I4HN2xc6d+ji38c46t//E1DYck/f7prB/0OzFGJIEEJkClRgIDT47ZPf7ow7aXrEeaPSQFC+SX -YSPHyE71pbR06VKye/deKVe2tGTLls1WfZjvHzx0WHX6FSVDhgy249adGzduyAal+b6lvsbWrn2f -9ZRtH1Yb/x04KHv37ZeKFcpL0XuL2M5t2rJV550pUya9zZo1i5QvV1afx5fdPXv2SqrgYClftowU -KlTQFg9pwdQX6Rm5dOmyzqNG9aqSJk0ac1hvYUFy6lTUF/t16zdKjhzZpYyqtydxVz7kD/N5aPCr -qIFx4cKFbMnh3OYt26RkyeJy7eo1/QWibu1atvPWnRMnTgo06SVKFJM8uXNLSEiI+oK9S86eOyfF -ihZVdSwnQUFB1ih2+5hehHY8qep3T+HCml/69Ol0GFflwAs4BG28ees2KVSwgFQoX06CFWtXsv2f -HZI1SxbJmSunbFU8M2bMKDWqV1Nx7I3J3LWbSSN79uz6i0k6Vc7769aR1KlT62sEPFEWvGg4tqGn -smJKA778H1csK6tr1p3AegBfaK6qtkG6uCaKFi0i+fPls0XDFxmECVXXeFVVHsPMBIAp+fZ/dqpB -9XmpUaOa5M6Vy5xyukX5UL9Dh49Igfz5pVKlCnYKRdwnOI97DmlVKF/Wdj9a2zEkJFR27Nipr7eq -VSprq6jN6j7CdYhrumyZ0nb5u7v/7AJafrhrQwTz9hrF12vcQxD0AeBcWdU7KNXdawb8t2zbpq6t -rFrBZB2wIh7aYdPmLfoawb1t7YvAIjT0BoLp/sDZPefYbqGhofLPjn9j9Hf/KKZZMmeWYsWKCiyp -9u8/oJVdh48cld2qHypVsoRmm8pSduR7UJkx71Lns2TJLJUqVJCcOXPo6X6uri9zD2RW4dFuhQsV -svVj7uqKvDBtbce//8q1a9elZIniur1N32DKXKVKJfnvv4PqOkPfXUkrktBHrFfsscUx9P/OxHqd -Wfstw9DdPWjqlV+lvW7dBrmt7o/atWo6VTidOXNWtm7fLrly5pRKFSuK6a9MmXDd4F4Oux2m2qms -nTIM96MWdau669dx3R9QbYNnSEnVdqVKlrTrq0x5re2AtsX0kUoV7z5XkBeuK7Rv6VIlo/J28bdN -61ZKcf67DBw8TBbO/03f3/iaCyXHkPf62foQT2XD1+R8+fJKkXvuKgFxT166dElwz7sS9Ek7/90l -x9UzBdcr/luvV2+fFbduhal7ZKeOj+vMk7jL19u6uGrzuGhjX5431j4FUxNg7epMaqo+H88tiLfP -grh47vjSn1vvZ3dtijQD/exx185g7KnPQBhHOaSepTvU/YB3Tny8sMpN1RfC4gGMgoOj3pdcPdfQ -j+xTzwMIPgqev3BB7qtZQ/Xz9mmYPsXTO5L1XaWSKhf6Qdy35dUzH+9Y3rzfWvtBlMvT+wXCmGsH -feI99xTW73zmGsZ5CgkkCAF1IVJIwC8C6mU8smS5KpHK3NEu/vTPv9LH1UAjUr2o6v1Ppn5mF0a9 -mEVWqVkvUnX8dsfND/WyouMhffxH2O49e+v9O3fu6GDq5TvyyWdesAv3Wvs3ItWDRJ+v36iZ3bl2 -nbrq4xM//sTuONL//sefTdaR3d58O/L5l16x/cbO3D/n6zhKGaCP4zzKA3no0f/Zpdezd1993NMf -V+UDV9TX1B3bDp272+p1+vQZfa5Tlx62MCtXrYlcvWad/r1v/386a5MO6n3jxs1IHDd5mvSRrnpp -clpUNeCKbNzscVseKEfzp56LVA9dHd5VOXAS7Wstf+37G0eq6T9O88FB5IO2QzgTD2VFHYx4ajek -8UrbjnbsXmj9WqQyJ7elibTs2Pz1AABAAElEQVTbduhiV2dPZT13/ryNmynbuwMG6zTVgMQUz7ZV -L0h2+SGOub5w3eC/I9e16zbY4quXDrs6IP6kyZ/azjvu4D54+dX2Ok/DD9ekUkTooOrlSNfZlB1b -tL8aGOvzph3N/WXCjR43IbJzt552dfl02ue27D3df7aAlh1PbejLNTrvr4V2ZUO5wU69kOnjjvXB -9YS6Gvn1t7kx4uMeMjL8gzG63fHbMHK850xYs1WDFJ3m6rV308E5tPf7wz7QwdR0GR3mvSHD7fJH -X6aUIiapSPXFVZ839yq2KJ+76wv5vPRKW9v18+FHH+v0PNUVfbhpd7N9590B6j6JsCuzI9Offvk1 -xrWslEu2Olh33DH0dA+iXujHTP9lyjj3j3m2LPBcMPelOY+ttTzzF0RdM4YpzqN/MPJI86d1Gvjt -ql9X05F0P2jNA+VCuxhx1g7vDx+lGeP6NHLy1Cl97OvvZppDbre4Z5HvR+oZhmsF+bZ47kVbO3lT -NtQd8a0C/qivKzHPEmudcS+Y69XbZwWejdY0UHY8m1yJp3y9qYu7No9tG/v6vLH2KbgurSys+5ev -XNFIfHkWuOsXvHnu+Nqfm/vZXZsmlmePq3b2ps9wvDbxvoT3Jmt79e0/SP82z8dFS5bp38rfhI7u -7rmG54I1LVzTEMc00Kd4ekdCm5h3AJPmgEHv6/TNu4o377fWftDT+4V573y7T3+7eqC/dvV+ryvI -PyQQDwSgXaOQgF8E8MKBjhMPtQULF0f+Mvs3PZhFp6zMZG1ponNDJ2kESgeEGTZytDlkt8UDHecR -By9LeDDO+P5HW4dplBronBEOnTUeNEuXrdBh1Hx6W3ofjPlQd/LmgOn0x42fpF+mMEDHIBf1MIN7 -bzp9q1IDaQ8ZNlKXxeTj7daxfNevX9flNXXHQ8EoVDDIhJiXCTy88GKEl0KlSbdTamBwBTZderwV -eevWLR3vnX4DddoXLlzUv/GyhzSsAzl9IvoPBlV4kOKBDDZm4PPl19/pEK7KoRyyap4//vSLfqhB -uWVevq3pW/eRD9oAA1VcH5s2b9W/1TxVW14oq7t2M2koZ2z6JX/mD7N0Goh3QJUBdUB85AM+EG/K -ihcJxIHiAWlYFW7mRUEn5vAHL1JvvdPP7iiuG6QFNqjn9h07dTvhOMQMVDDAhVICAyAoNBBn+d8r -dRjHP7jvcH7rtu361MGDh3S7GUUI7k1cC9hikIrz+I0XM4hpR7TRkaNH9fViXlDw0o77EeUyg2Vf -7j+dQfQfb+49X69RozSd9fNsW1ZGqYE6gon1HjKDOfXlUDPDCx8GgspKQQ+aEQdpQqwDEMPI8Z6z -ZRq944tSA2mhD8V18NeCRbbyICn0e2hTM+BGv4DrEMorI86uL3MPgIeyFNLXqzd1xeAS/eDly5f1 -Nad8iej8lUWDzs4oYnDN4CUX/aYZKEBxgj7m6NFj+rpC/+lMXDH05h409Ro7fmIkWGAAh2sTjMAK -gn4Jv7/57nvdJ0KJCqUm2hR5o48Ec9QBzE1/gGOoN8T6Mo/fzvp1M6BB34s0wAh54J41YsprbQfc -6yifcjBtgkV+O+MHfcwoy20n3OygTEjnzbf66C3a14g3ZUNZzX1g4rlTaphnEtpbWYJptkZJ9vmX -3+gkfHlW4JrHM8v0z44fRUyZvMnXU128afPYtrEvzxtrn2LqabYYAKM+5t3Jn2cB0nLWL3h67iCe -N+9TCGfEej+7atPE8uxBmZ21s6c+w9TVujUfSaCIxHWMfg8fe3BPulJqeHquGcXbwYOHbFk5U2og -D1fvSIiIdsY1ZN6JscVvxDPvKt6831r7QU/vF0apgf4P1wSep0Yh76jct1WOOyQQTwTu2ukmiF0I -M0mOBOb+MV/U4Fn69H9Pvv/xJ0mfLp3ky5tX1OBHV7fFU//T5uEHlZkdBFNKYIr3RPPH9G/HP7t2 -79Hn3x/UX5sGp1PpvfhCS7HOI1YDFe2lvmvnDtqMG1MbGjd6QJ575mlZokxyXQnMbtetWiq93uyq -zZJhmvdMiyd18BMnT7qKlmDHUXeYeg8dPEDXHdMkmj/2iMBviaNX/navv6JNsGFebTUDhnnh8y+9 -Kk0aPyAfjRslmCMJua7MyiFmxQ5MFQKLenVr6+OOf/r27iVLF/yhzYTBF/xhVrh77167oI7lUC8y -0rBBfWn5bAs9zaNE8WLydq/uepqMOyemmELz6MMP2aYCNG3SSP5SaUG8bbcmjRvKA/Xv16bgTz35 -hI77wvPPSnFVBtThf09EXXOYkgPxVFaYVCsrGOnZvYvUUVOgkAbmyoKNv4IpHGAD08zKFSvIY480 -0yboSO9f1f5oH5iTw4wfPmm6du6op66sWr3WaZYhasoD5NTpM9q8vVixorrdEA8CfzfbNq7WW0zn -KVasqLqeHpft23fgtE1ef/VlbZKO6+XpaHYd2r6mTfwxLaP5Y4/q+xJm0/7cf960oa/XqK3wTnae -f66FNqc39xCm/6gBoA6JVQgggwa8q01yMWVsUP++un5b3Th3c7zWdSJ+/hnYv4+ecoLr4OFmTeWF -ls/IosXLdGroHyGXLl/W0zowhe6LaVPkmy89r8aCew/9IKY04Hr1pq6/zJohn039WE9JwjXXquWz -On9Hh89d3+io53yj33xc9UuQju1e030M+obGqo9wjKMDWf44MvR0D5qoxYreq+9DsMCUlRFDB+tT -mIIAWbx0maAPefmlF3TfjvYeOWywbtMt27arDzgiN2/d0r8xnRBs8BxAH2idGqkTc/FHKW9EKc+l -Z4+uuu9FGpimOLDfO/rawhQaI47tgHsddVADGBNEOQecr/tVTA30Vt5UfRH4w0EuWJoplb6Uzdu8 -EO7uM2mgNrXH8wbPI1wvZiqet8+KV9q8qK95pIE+EG25VDlUdibe5OssnvWYP23uC0dfnzfWsln3 -8Zx5o1tPNR2qjPTu1UOf8udZYE3Tcd/dc8ef/tyk765NE8uzx5TVceupz3AMj99Ll6/Q936bl1rp -fgb93vD333MW1HYsrp5r7t6RlDJBv0d079LJ9k4Mf1593n7TVg5/djy9X5g0u3XpqN/TMMXl5Rdf -0If37fvPnOaWBBKEAH1qJAjm5J3J9E8m6RczpXjT8wEx+B46fJSeT9ix/ev6HF5esARqpw5t1UBy -iX65w0ueM9mnBuWQsmXK2J2GbwnMH4ZgDj1k1Jjx8tnnX+t9/DGDZswvdZxLbQKtWbteOTP9Rc9l -h98DEwcvQIGW3dFzbMuUtvddAN8XWJZNfSW1FdHqB8R2UO3AcSKk7att9Iu7/qH+dFTs27zWQZRG -XSsnGj1QX55t8ZTtpdiEM1sMrKYrD95KEy9KAy/Xrl/XA4LqVauYIHprLQcUWcb5aZ36TWzhDGNl -9aEHHrYTlp3ixYtafolSppRUaW20HfOm3eAzw0jaNFHKnOwWXy7GcS2uVW/Kigc0xAwcTNrwEeKv -YGBjFTOvHGWC/xnIK207aeWgCQd+W9Tce2cCpdcvv/4mamqAHiQ0bHC/HnRAyQdBPWf9/Ku6/5aI -+qqtfSeYQbM1vfz5lSOBaEmbLood/NAYyZAhyukvyunv/eepDX29Rk3ZnG0dHYeWVX59MGCBLF0W -NZBS1ikxou5V92CzpnevXWsA67VuPe7PPnz5WKVC+fLyw6xfRE13Uv4sSut7Ex708f/+enWUwq+Z -VsqZa9ga17pfpEhh60+v6gqfCuqru5rTvV3gf8Dcr5F37DvFfNH+cpBB2rRRvoXg/8aI1SeJOea4 -tTL05h40/oLgr8OqvIXSD88V3DNIZ/2GTdJBKVisUkQNOCCYUw6FKZxpKuscqdewqZ7z/dCDjbUC -yPj1sMZ1tn/g4CF92LHtjK8ZKHxNWo7tgIgYyGOVhOHvD5IrV67oQcikCWOcZeXyGPqk115pLcpq -Rdq//qotnC9ls0XyYgfKBYhjHwiljRFvnxVF773b90EhVKJYUbkecveZZtLD1pt8reGd7UOJ62ub -+8LRl+eNs/KZY4OHjtD33RfTp9h8afjzLDDpOdu6e+74258jH3dtmpiePY5MvO0zrPEQR1k8xOhn -Spdy70Mtrp5r7t6RDh06rIvq6JvH8V3SWh9v9j29X5g04L/JiOnjzfPWHOeWBOKbAJUa8U04BaUP -p3L44gQN9m+//aGXOIVSAy/h/1NWGb/N/VPat31Vb7u+0cElGfOSDEeh+NpoxGiM8du82GNQ/rD6 -Em0EXzxwLnXqYHPIbosXX2W2rAfW+DKNr3kYhGNdbqvcDrtt/akdJdkdiKcfmaIHCDHrfkPnmE4N -NpVZqtvc8RUP0qnLmzL311mSPXs2/RtKpA2rlwkGlus2bNQDKGX+LD/O+NrpCh0du/RQg4Hd8lKr -ltq5XVa1eswrr3d061jUDDpQhg+GD9H54g8c++H6gHM5V2LiOjvvbbs5i+vqmMnPXVnh0BCC68oq -aB9/xThfNPGtv43iYNCAvpJDOTw1gvzz5HbuLBRWBr/+NFM5Ft2hr+Vf58wVZaKqrUnavtZGlD8b -vTQp7pUnn3hcf+XFgMhYLZg8fNn6c/9504a+XqPuymza14Sx/saAGM42rdcowoGzu2vUpOVpe0c5 -hLSKY3+Cc47XlLmvMyqrGAzGRg4brJXAsNBZtGSpHozjyyKUyL6Ip7pevXZNKzrz5smtFSmwaopQ -92vXN9/2JRu/wpo2cXcPmoQNH/MbTjcxmIZiA+kgDcf7Eg7uIMZBLKx3Hmn2oLJeWa0tsLBkL/pA -b1fHsj2bXPQHKIs7efyxh7VSA22qptBEKSEfuLuSibu41nNGYY/ngRFfyhZ+O9xE01s1jcbut/VH -lsxRis2Q0BC757E1jD/PCmt8Z/ve5It4nuria5v7wtFZuX09BuvW2b/+rp/DVosdf54F7vK2PmcQ -zvrbn/7cXV7mXGJ59pjyWLfe9hmOcXCPO/Yzt8KilOXWsNb9uHqumf7SmrbZL1Qwytk9HPla5djx -49afet/xeWT6yRgB1QFP7xcmjruymTDckkB8E6BSI74Jp8D0YQaHNcGt00VgroqH94wfZukXUbzc -uZIy0SssrFm3Xn9xRjg1B9pmpYHfRYoUwUavkmHNx3yJhkm3M9mwcZM+POmjsTbP+fCEbxV4M4e1 -idXaQ80ZtQaJsR8kQbpeeNF2XLEjRmA3B2B+CoGiBQNQCNLEFAg8GM1UEn3CxZ+vv5iqlTCwyHjz -7T7y+dTJ+gUGHufx0gRe+I8Bb70HmsqqNWtjKDUwgMAgFObNxhzWfN1PlSrIRc5Rh5s2aaQ95Deo -X89mKYKVFfA1yNNLv6uEvWk3V3HdHfdUVqNY+FsNgvCl14gx6Te/XW0NM1fnHY+br6FQblmva7Sd -edl2jAPrF3xBwsoF+N+x3evy+JPP6oEw2nj536u0yTcGyUYmfzpdDwLNb1+3/tx/ntoQdfDlGtVl -jr4UHQe8nuqDFWWg+AFv82UdAzt4yTfWOZ7ScHY+W7aoZaOxikj9++vqIJjqYKZ8WePgnjbtDeuX -v1etFnxNxT2i/EHoQW8ldc9DqYj/sH77Zsb3WhliBiHeXF+e6grlFtJ5d8xIPYUPZTTWVtbyxte+ -p3vQ5LtaKWPxbDFLc2OFE0i5clF9JlavgbIAXwcxZRGycdMWvYVlFazcDhw8qKdfQcmO/8gbyhsw -qFentg5r/ePYr8PyA+2DtrP2B6uUNRukrLKwcSdYmQhWN5iCclKtKIQymLaMsh6L9Pv54W3ZsIIO -FHpGkK/jM9CcwxarJkDQB8LSBIJn0oRJk9V0tcKC1c/8fVboxFz88ZQvplh5qos3bR7XbeyiOk4P -ox2Uw2AZPLBfjGew6Rt8eRaYTLzpF0xYbP3pz63xXe0nlmcPyufYzjjmqc9AGEe5r2b1GP0MPhS5 -Em+eaygbRPmDcpWMx+N5lFIaU2EmfzJNmigrTTzXYPWn/OfYxfX1/dbT+4Vd4vxBAgEm4HzkF+BC -MfukRQDLzMGKAi9HmE+9cNESXQG87BipVrWy7nDxYo6XOrzcuRKY9uJh07vvAK0RL6imFChnRTaT -d8SD4qBbl06inCHqr3B4IYVCQzkoUj4V6sV4QTB53Ru95Cu+IDRp1FC/zE1UaVgFy8xCATNo6HCt -WNi//z9tmm0N47hfMXqZvk+mTtfz4/G1Fy8ssACBSbR1eVjHuNbfWDYTfJSjRm2RATO+P+cv0MtO -jh/7gTWoy31ozJHOuNEjRDmqlHETJsk7b70pyimpWkJuv4we8b6Ag2kn1NdRMICGFcsC1Zb31agu -qdOklilqIOyNvNTqeVFODfU0mGefeUoNMsLkQ1UGDO6WL57vTRIxwnjTbjEieXHAU1lhIo32m/bZ -l/oFGqbwG9USoDO+n+Ux9WpqPiu+wGHaEK5PM3h2FxHthjze6feeXFS8ShQvqpRO6zR7+NkwU1Ws -aUAB9/GUqdKvz9tSt04tteTmAX2vGFP8MqVLqulWs+Xn2XP00sXzoq8nfNn2V/y5/zy1Ia5bX65R -lB11wHX6s+ofCqovVUaR4KlemF4y5ZPp0rZjF+ncqb3yqZBVvv3ue+WXYbm2bvKmrZzlgbKgTDO/ -/0lvYZI7RfUJzgTWMsHKogwD4QWLFutpXvDxATl06Ii2KMPArdXzz2kT/ZWr1+gpE2YQ7O315amu -ZmlPXNOYPoIlBYeNGO2syPFyzNM9aDLFQK1L917yapvWaine6/LB6A/1M8X4BEI6sMJ7860+8vxz -z+hpVsq5slbooQ8Lu31bnmvVRiv+3nqzm7Y6wL0JqaCUW87EWb/eTikKMVDAF0wsGQ1FHAYSaCdj -EeIsLXPs2aeflJ69o9q5d6+o+e54drZ88RU9JWX+3Nk2ZbCJ480W9483ZatRraruk1BmLB05768F -emlRx+kJJk88yzDVpP977ytfOre1Xw08k9CfTJ74oVa2+vusMHk423rKF3E81eVO5B2PbR4fbeys -Po7HMMUL1pSYulSmTCmbXyWEw9LU/jwLENfbfgFhjfjTn5u47raJ5dmDMjprZ099hrO6vaT8u7V/ -o5utnzmtLK7w3HIl3jzXykZ/zFJOSJUC+3nts8NVeu6OfzxhrLa6u7/RQ1pBrhz76vcJ5YTWFs3X -91tP7xe2hLlDAomAAJUaiaARknoR0OnhPwRfsapWqSTdu75h9yULpo54mRs/cbLNCaGresPKYtL4 -saKW59NfMRAOX63h+BCDNyPd1G+Ynv6o5qFP+TRq4NDiqSeU07a+JoidiSUO4uuaWllDKykwhxwv -crBEUCum2OLAqgRh8NKGQSnCwBeI8mxtC4MdDEiMNGncUD+I8LILzfbE8WP0V19wGTQw6gXWhLVu -rSagOI5BNOr+3pBhykx5gv6CivzhOBRzGyEmTirF1E6if+IhCsFXQHyBnP75VwJ/JKNGDFUvpkO0 -U1ecR1u917+vdqyJ347y0YejpUevdwSmxRAM/mC9YsRVOTCwhAIGD2i1ooIODueaH380zqWfEwQy -XytM+tatN+3mKo1USgFmJCiajbE28aasvXp01e2AQR+UG2iPEUMHSb+BQ5TZu0MbmIzUFi8/W9WX -fyjnoJCAs1uI9brRByx/0P4fTxwnAwcN1S9KGMihnd7u2V0PmixBbbsYyJw7d06U13zbMQywzBSv -Hl07qy/Uh/X9hAC4VnHeKLVctaMtseidYBu7KJ7e3H/WNLxpQ1+vUVzrb3bvLEPVIFwtPyt/zPlJ -fXW8R2cbFHS33a3lwD4GYV99/qmoFZi0LxIcw1euaVMm6kEGfhsu1v0Y9xxOOsinkydItzd760Eg -TuG+OXnqtEMokbGjhsvYDydqKw4oQrqoKXmtX3xeh4Nyqn/f3nrakFo2NeqYUnZZrW1cXV+O95E3 -dUX/8oHyTwQLJFxvA97tbbtekLnpU4LcXO8Ih8GRKys5w9ORoTf3INKGgifiToS80TVKEYA+BfeV -sdyAcgP9Lp4FGHRAcK0PGzxQK2ugsPn686kyYPBQefm19vo87uVvv5xucxSKslvvacSvXaumVmKY -fh3tFK6mtUDRjv4AbQfnpGgvqzi2gzmHNI3AkZ+RO9FTZcxvd1vTjzmG8aZsfd/ppT8AYOoNBAqL -J5o/Kjt37nJMTv9Gn/TRh6Nk0PsjtB8P0yfBusD4nvH3WeE0w+iD3uTrqS64Njy1eVy3sbvnjbkH -UEX4zIBiA/9btX7NDsWaFYsFX959fRYgEVf9grvnDuL52p+bujjez0jLSGJ59qA8ztrZU59h6mHd -4l0UTuynfPqZUoJ30/0l+mX4tLL1k9GvBeY+9fRcg/8nvB+oFYGUxd4a7djbvN6ZNFAGV32KKR+s -e1YtW6gV5HB8X035P4OiFcpcI96831r7QU/vF9FGJra6m3y4JYFAEAhSXwjsPYEFohTMM0UQwMAD -Dg3XrFjk0pTeEQTmnUNxYfWt4RgGv/FigBcYVy/UjnHg7fv69RD99d3xnPltwuCLnHmAm3OutoiD -lzH8H6henneoF8U5P3/vKrjb45jniC+S3nrmd5uY5STMs0NDb+gvjZbDLnfBNlPGTG4VEq4iw1w8 -bZo0elDhKowvx02bwOw4rsVTWdEecCyL68FbQfcKSxU4VTQvPN7GRX5Y/SJnjhxexYVJ+KXLl5Qv -jhx6cOmYD0yxI9W/2EyvcEzT/Pbl/vOmDX29RlF3TFEzvgZMubzZoo9Bmczg2Js43oSBZRIG0o5l -wlduWBOsXr5ID1xgGYGBsavrA1O38GLqbOqZr9eXu7rCTFot96z7RPRfgRBX92CTh5sLHBtDCYs6 -oK3dXcfwEwLfJK6eB7gX0Kd7Y1kBDtZ+3coFbQyfRd4+HxAXvjTqN26mFZXwOWUE/CGurgMTztut -p7L50x946gNj86xwVy9P+XpTF09tHpdt7K4u/pzz9Vnga7/gWCZf+nPHuM5+e9M+zuJ5c8zXsrpq -Z099hrOyIO/s2bI7fd46C+/puYYpkGg7rNjlj6glatXUu7S2DyhIAx87cHzjmhU2/2o4Dg54B/b2 -/dbT+wXSpJBAoAnQUiPQLZAC8sfA/q+Fi+Sb72bKm906e63QABptap3eMyQMCnwRDBBy5kzrNoo3 -YRwTsA48MBXHrEDhGM6b3xhYxLVCA/livrmZc+5NOXxla00zrgeK/rSJtTzu9j2VFe3hi0IDeWGw -4ziodVcG6znklzuXc+eg1nBmH1/J3YX3pBg06fiz9eUa8aYNfb1GUffg4Cg/Cr6WH32MmdLha1x3 -4b25VnB9WJ0DOkvPnQLP1+vLXV0xmMbX4UCKp3sQZXNXB1N2dwoPhPH1XrD26yYPbL1pY2t4WHvN -Vop9WMNgqWmrxJUyw6TpqWy+MkC6nvpAX/oBU05vtp7y9aYunsLEVRt7Ux9fw/j6LPC1X3AsT1y3 -oyf2jvn78tvXsrpqZ099hrMy+Zq3p+eaKyWss7ydHYNvKSgxMI0SVhtYqWWTmi4L6wwoX63izXPY -Gt7T+4U1LPdJIFAEqNQIFPkUlO/efftU57pVeqgpKZjGkVIkb548Ar8dFBIgARIwBOBP6OFmTfUX -NXOMW/cEGqsVQkqVKuk+UCI/iy+wmEqEZUCHDhkY55ZBibz6LB4JkEA8E8BUx8KFC8kSpdSA02RM -a8FUGfgYopBASiDA6ScpoZVZRxIgARIgARIgARIgARIgARIgARJIhgRce1JLhpVllUiABEiABEiA -BEiABEiABEiABEiABJIPASo1kk9bsiYkQAIkQAIkQAIkQAIkQAIkQAIkkKIIUKmRopqblSUBEiAB -EiABEiABEiABEiABEiCB5EOASo3k05asCQmQAAmQAAmQAAmQAAmQAAmQAAmkKAJUaqSo5mZlSYAE -SIAESIAESIAESIAESIAESCD5EKBSI/m0JWtCAiRAAiRAAiRAAiRAAiRAAiRAAimKAJUaKaq5WVkS -IAESIAESIAESIAESIAESIAESSD4EqNRIPm3JmpAACZAACZAACZAACZAACZAACZBAiiJApUaKau64 -rezBg4dk1NjxcvnyFZ8T3rb9H5ky9TP5buaPPsf1JsKGjZvlq29meBOUYUiABEiABEiABEiABEiA -BEiABJIoASo1kmjDJYZiL166XD774muBggJy4uQp+WPeX3L9eojb4iH8c63ayDffzpRTp0+7DevN -yX92/isLFy2xC7p2/QaZMGmK3TH+IAESIAESIAESIAESIAESIAESSF4EUiev6rA2CUmgTesXpWaN -6lKlciWd7Y6dO6Xn231l4Z9zJHPmTC6LAoUDZMG8OZIta1aX4bw9Mee3uTJ7zlxp9tCD3kZhOBIg -ARIgARIgARIgARIgARIggWRAgJYayaARA1WFmzdvSlhYmNy+fVsOqKko+/Yf0EXZuu0f2bhps9Ni -bdqyVXbv3iuZMmXS21279+hwCH/02DG7OEeOHrNZgSCPdes3yvkLF+TQocPy29w/5ezZc7Jl63Y5 -dSrK2gPn9+7bb5dGeHi4TgMWJCijo0RGRsr+/w5oC5PDR47anXaVp10g/iABEiABEiABEiABEiAB -EiABEggYgSA1qIsMWO7MOEkTwPSTN7q+KcsW/ilffv2dfDPje1t9oLTYtnG17bfZadD4YTl95oz5 -KY0aNpDpn0ySqvfdL6+/+rJ079LJdu69IcOVImODLJz3m5w5c1bqN24mTZs0EuQL+XL6J/L+8A/k -0OEj+jf+PNH8Uflw9Ej56ONPdJnq1r7PFh7n33qzm3Tq0Ba7eppM61fbyb+7duvf+NOgfj2ZNmWi -pE6d2mWe9e+vawvPHRIgARIgARIgARIgARIgARIggcARoKVG4Ngnq5wH9u8jkyaM0XXC9BNnCg2c -XLlsgbR7/RXJlTOn7N+1TSs0fAEBK5DvvvpMdmxZL/Xq1tYKj5dfekFbfiA9KDSMhISESK5cOWX7 -pjWyfNE8qVu7loybMEluKAsTSL+BgwXWGT/O+Fr27NislRkrV62J4YvDMU+TPrckQAIkQAIkQAIk -QAIkQAIkQAKBJUClRmD5M3cfCUAhUrtWTUmfPp2kSuX58n3rze6SMWNGKVSooDzT4kmd24EDB/W0 -mfkLFknXzh2kerUqEhwcLI0bPSDPPfO0LIm2BDFF8zVPE49bEiABEiABEiABEiABEiABEiCB+CVA -R6Hxy5epxzEBKCe8FUyByZEjuy148WLF9H5Y2G35Tyk2IKPGjJfPPv9a7+PPhYsX9f7Nm7dsx3zJ -0xaJOyRAAiRAAiRAAiRAAiRAAiRAAvFOgEqNeEfMDLwlEH473C4onHzGl2RIn14n/WyLp+Rhy6op -mJqCc6lTB8dX1kyXBEiABEiABEiABEiABEiABEggjghQqRFHIJmMSJD6Bwm9ccNnHDlz5rCtdILI -8F+7Y+e/XqWDfOE/IyLijppG4nlKChItUqSIThtTU+Cs1Ah8bFy8eEk7CjXHHLcRERF6uorjcf4m -ARIgARIgARIgARIgARIgARJIWALejQATtkzMLYkSKFu2jC751OlfyPoNm3yqRY1qVWWtWulk8ifT -ZMPGzTJk2EjZs3efV2lUrFheh/tk6nS9PKs3kaD86KZWWvnmu5kyfuJkXd4ff5otTz3bSr765juX -SWAZ2Rp1HhCszEIhARIgARIgARIgARIgARIgARIILAFaagSWf5LOPSjKMEOCoh123lvkHnnxhZYy -84dZ8rdaRcTVCihBJqKl9n3f6aVXIpkwaYo+2rBBfb08686du/RvEyeVk7hNGjfUzkOxjOu+/f/J -xPFjxIS3ZBFjt1vnjoIpLz/O+kWmfDpdn2/x1BMysF9fl3maFZDv3ImIkR4PkAAJkAAJkAAJkAAJ -kAAJkAAJJCyBIDVIi0zYLJlbcicAXxi4rNKkSeNzVa9duy6R6l/WLFl8jhsWFqanhWAlE18FDkKz -Zc3qdtqJSZPTTwwJbkmABEiABEiABEiABEiABEggsASo1Agsf+ZOAiRAAiRAAiRAAiRAAiRAAiRA -AiTgJwH61PATHKORAAmQAAmQAAmQAAmQAAmQAAmQAAkElgCVGoHlz9xJgARIgARIgARIgARIgARI -gARIgAT8JEClhp/gGI0ESIAESIAESIAESIAESIAESIAESCCwBKjUCCx/5k4CJEACJEACJEACJEAC -JEACJEACJOAnASo1/ATHaCRAAiRAAiRAAiRAAiRAAiRAAiRAAoElQKVGYPkzdxIgARIgARIgARIg -ARIgARIgARIgAT8JUKnhJzhGIwESIAESIAESIAESIAESIAESIAESCCwBKjUCy5+5kwAJkAAJkAAJ -kAAJkAAJkAAJkAAJ+EmASg0/wTEaCZAACZAACZAACZAACZAACZAACZBAYAlQqRFY/sydBEiABEiA -BEiABEiABEiABEiABEjATwJUavgJjtFIgARIgARIgARIgARIgARIgARIgAQCS4BKjcDyZ+4kQAIk -QAIkQAIkQAIkQAIkQAIkQAJ+EqBSw09wjEYCJEACJEACJEACJEACJEACJEACJBBYAlRqBJY/cycB -EiABEiABEiABEiABEiABEiABEvCTAJUafoJjNBIgARIgARIgARIgARIgARIgARIggcASoFIjsPyZ -OwmQAAmQAAmQAAmQAAmQAAmQAAmQgJ8EqNTwExyjkQAJkAAJkAAJkAAJkAAJkAAJkAAJBJYAlRqB -5c/cSYAESIAESIAESIAESIAESIAESIAE/CRApYaf4BiNBEiABEiABEiABEiABEiABEiABEggsASo -1Agsf+ZOAiRAAiRAAiRAAiRAAiRAAiRAAiTgJwEqNfwEx2gkQAIkQAIkQAIkQAIkQAIkQAIkQAKB -JUClRmD5M3cSIAESIAESIAESIAESIAESIAESIAE/CVCp4Sc4RiMBEiABEiABEiABEiABEiABEiAB -EggsASo1AsufuZMACZAACZAACZAACZAACZAACZAACfhJgEoNP8ExGgmQAAmQAAmQAAmQAAmQAAmQ -AAmQQGAJUKkRWP5JPvfbt2+L9X9irdC58+el2WNPSq933o2TIn72xddSp34T2bJ1e5ykx0RIgARI -gARIgARIgARIgARIgAR8J5Da9yiMQQJRBLZt/0eea9XGDkeunDmlbp1a+v+zLZ6SVKkSh97sxImT -cujwETl77rxERERIcHCwXbnd/Vi4eKlcu3ZNmjZpJNmyZdNB16xbLxcuXpTde/ZK9WpV3EVPMuci -IyPl0JFjcm+RwhKcSNotycBjQUmABEiABEiABEiABEiABAJCIHiwkoDkzEyTPIHTZ87IT7/8qutR -s0Z1yZ0rpxw+clT27f9Pli5bIdevX5cH6t+fKOqZP38+qX1fTWn76suSUylefJH2b3ST2b/+Lk80 -f0xy586lo9a/v67UqX2fPPzQgz4pSHzJ1xp2z77/pMc7gyRz5kxSsnhR66k421+yYrWM+ehTgXKj -YrkycZaus4Ruh4dLm/Y9ZP/Bw1K/7n3y05w/5YMPp0jNqpWU4iirsyg8RgIkQAIkQAIkQAIkQAIk -QAIxCNBSIwYSHvCVQLGi98r3336ho926dUvm/jlf3h0wWL76ZoaUKF5MXmj5rC3J8xcuyMZNW+To -0WNSpXIlqVKlkmRIn952/saNG7JqzTrZ/98ByZE9mw5TvlxZ23nsnD17TrZs2yYH1YAY6d9Xs4ZS -VOTQYQ4ePCQ7/t0lJUsUl7Rp08qateukVMmSUqliBYESJjQ0VIoVKypXrl6V5StWSnaVR+377pOF -i5fI+fMXpGbN6lKhXDmlqEglISEhsnjpcrl48ZJOe/GSZbrczZQi49Chw3L58hVtrVEgf359HhYg -u3bvVVNStuq8q1WtIqVLlbRZq1jLliVLZlm5aq2uO9KDssKVQMnw8bSvJZWyLnmwYdwoiS5fuSpd -evVXViaV5K2uHXTWZUuXkLKlS0qVSuVdFSXujqs6Rdy5oyxgrus0mz/yoMyZ+5eq51cyemj/uMuH -KZEACZAACZAACZAACZAACSRrAlRqJOvmTfjKpUuXTjDt5NjxEzLl0+my4u9VNqXG2vUbpM1rUQNo -UzIoH36Y8ZVky5pVKytav9pOTxMx57Ht3auHdGj3mj60YuUqadexq/W0YMrL59MmS4Xy5WTdho0y -6P0RUlkpMf7Z+a8O1+alVpI/X155u09/ueeewtK40QNy+vQZ/Tt/vnxasbFn7z5bmk8+8biMHTVc -KywQx8hHH38imTJlEighZv74k8z9Y75MGDdKHn80v/Yr0rl7L60oMeGxfe6Zp2X4++9JUFCQrWy1 -a9WUnf/u1koThOnT/z354buvpEb1qvgZQ/bsOyDnL1zUCo3Uqe/eslB2HD95SiljLkrpksVV2TLa -4h5T020ghQsWkL37D2hrElh4oBy3boXJwcNHtVLh7Nnzev+eQgUkh5pa06bVM5In2hrFJHbx0mUd -pqialgJrHCMo01WllLj3nkJy4tQZZZkTIuXKlNR5mDCwyDisprRAiVKkcCHJlze3OWW3hWILCpaN -m7cLyn5PoYJ25/mDBEiABEiABEiABEiABEiABJwRuDtCcnaWx0jATwKYdgKlxtr1G3UK55QvC6PQ -GDlssLbA+PLr7/T0lYGDhsrE8WPk9z/naYXGE80flUED3pX9ahpLu07dZMrUz+Tl1q2UZcRlm0Kj -Z/cuUq9ubZnz+x8y4/tZMmzkGJu1CDKEQgPpNGvaRAoWKKDL4OwPrDdyqYH65I/GyanTp3U6v839 -Uxo1bCAPPdhYZs+aKe07ddUKjvFjRkpxZRniTMZPnKwVGrBaGTywn1Ic3NLWKpieA0uT1i8+b4u2 -fsMm6dmjq7KKKCXTlcPRTZu3yJ/z/3Kp1Fi3cYuOW7VyBVsaUDT0eW+EXFOKBCOPNWuilRL4PXT0 -RAlR5woVzC9Hj0cpODJmyCAfjnxPK0hGT/hERzty7IT0GzJKxg4bIEeUImrSp19K6+efluaPNNW+ -R4aPmSS79u43WUiJYqp+/XpJGqVc+f7n32X1uo1SplRxpTg5qMMgjxGD+0j+vHm0wmXIyPF2ZWzc -oK50fL21LT3rTrXKFbVSY93GrVRqWMFwnwRIgARIgARIgARIgARIwCWBxOHF0WXxeCKpErhHfZWH -YAoHvuBvVU5FIU0aN9SWDvlgOdGzuz42f8EiNYC+o8KG6t/nz12QY8eOC6ZvbNu4Wv/Hl/xt23fo -8w0b1JfOndpL1SqVZcC77+h0GigfF1iFxQjOfTh6pDzS7CGpXKmiOex0O2XSeF2mV15+Sbp36aTD -bNi4WWB1UqlieckYbQFRsmQJraBwlgimpkBGDhuilS2wBhnQ7x19DNYlVrm/Xh3p3LGdZtG9a1R+ -ixZHxbeGM/tQPECgUDAyYtzHWlnwfIsnZPC7PaVA/rwyb+FS2bB5mwmiLTHSpEkjb3fvKLVrVpVQ -NbVnymffaEeg77z5hg5XvGgRGTGoj1MLihmz5miFxn3Vq8j7/d+SurVqyIFDR+SrGT/Z8sDOjRs3 -pW/PzoJwyOPv1ev1+WV/r5Ug5XD0jXYvy7CBvbWVx7KVa+WSmrbjTEpG1+9odH2dheExEiABEiAB -EiABEiABEiABErASoFLDSoP7cUbg6LFjOi1MDYG/iF279+jfcCBao3YD/b92/ca2/I6fOCEtnnxC -TyXBNJWnn3tRylaqIT3f7muLu1v5q4BUVIoGI5iO0bH961rJgQG8EUw/8UZQvoIFonxiIDwUKZB/ -lV8ObwV+OrCyCqRc2dK2aOXLRjnbhA8Rq5Qodtfaw+xfU05VXQl8d0CMA01MHzl+4pQUVlNGnn7i -Ee0Ho+NrL+kwW/+JmnKjf6g/fZSyoWa1ytLjjbYCPrv3/qetLDCVBJIpY0aBYsPKTp9Qf7btiEqr -e6fX9PSWrh1f1ae277Bn8+pLLQVWJK+8GOU75Z+du3W4l19oIZPGvC/58uQWWJaEht7Qx0+dOau3 -jn/g3wTiSunhGJ6/SYAESIAESIAESIAESIAESIDTT3gNxAuB5X9HWSfUuq+GTj9rlix6C58W77zV -w5YnBuwYzObMkUPgPHPZ4nnyt4q7fuMmmTd/ofwx7y/9f+3KJZIjR3Yd79rVa7b4LneU7whvBMuy -wjcFfE1AjHIhhyqPtwKLDiOwSsmoFAWQ68pKBZJXDertxMuymThh0RYoZpnVc8rZKsTq+8Lsnzp9 -V2GA8FkVUwiW1s2l+J0+e05PK9EHPfw5p3x1QNlhFB5IL4tSUF1SCgqrZM0alUf26FVLwBOy7O81 -MvXLGXofceEY1J1gSgvEanHjLjzPkQAJkAAJkAAJkAAJkAAJkAAtNXgNxCkBrF7yw6yfZer0qNVQ -MA0DUrFClHUFnFE2bdJYTwt56MEmkjZNWrmqlBQZMqQXTNNYoqZxYEWU9/r3ldUrFikHn/l0/AMH -DmlHoPixcPFS26oZ8IPR7LEn5YmnW+opLDqwj3/+WrhYx8AUGLNEbTknS5qaVVAckw9Wq5LA+ScE -ZTOCaTWQGtWrmUN+bY2yANM8IAXU1B3IkaPHtUIG+4eUM05I0XujLDCwDyXCiZOnsauniJxTq7vA -5wXKawSOPF0JnIdCwXAlWomE6UHw4ZEvXx5XUeyOfz3zZ4Ey4+OxQ2XG55Pkgftr2513/GGUQMYi -xfE8f5MACZAACZAACZAACZAACZCAIwFaajgS4W+fCWDqxTMtXxJYFFhXEenUoa08raaUQKooJ5BY -3WPzlm3S6uXXtd+J9WqlEvyGj4mWz7ZQDjO3yqfTPtcrlLRSy8Bi+Vc48oRUVvFTKQsHk8Yzz78k -dWrXkmXL/9ZhXn7pBb0Mqw7s45/uPXtLg/r15LhylGmmkTzx+KO2VOrXqyvfq9VOevV+V6108rAM -7N/Hds7stH21jcAB6JBhI2WDsjK5FRYmmGoDafV81LQME9bXba5cOfTqI8fUlJPSJYtppQSWXcU0 -kLGTpkkZtfLJnD8W6GTr3FfdLvkhoyZIo/p1ZdPW7VrJUbN6ZX0eVjFQOOz/76D8NOdPefShRnbx -8KN+3Vo63yEfjJemjerLcuUPwxzXOx7+pEmTWm4qh6kb1Iom2BpfG66ioX6QPJYVVlyF5XESIAES -IAESIAESIAESIAESAAFaavA6iBMCWG0ECg1YVmBJVyyJ2kut8GEEUzSmTpkojz3STA2kD+iVUaDQ -eOp/zeWjcaN0MDjPhHICTkJHj5sgX3z1rbbOwAokcBRq0nj04Yfk7LnzWtEApcdLrVpK3969dBpm -GonJ12xdHcdqJQPe7S0rV63RCg0sMfvp5AlSulRJE1WvXILlYjFV5Zc5v+vjqYLsbx1YpIwf+4GU -LVNaYKEBhQb8enz9+VSbo1JXZbBl5GKnRtVK+syeffttIXp1aa/SLyebt/4jM3+aoxU6ndu1kbKl -StjCYNoI4v4+b6GcVEuuli9TStq2eUGfx1SPp//3qFZ0/PLbPL3kapDYT9l5rFljeeLRpoJpKN98 -/4ucOnNOHmnaSFooPx4QT7NoOig/H1CcfPP9z/LH/MVSoVyUvxEop5zJrj1R9atWxb1jV2dxeYwE -SIAESIAESIAESIAESCBlEghS89+jJsCnzPqz1gEggGkeF5QVBnxkGH8N1mLcUdMmLly4KJmVNQGU -Gc4EaVxUSoacytFncLC9gsFZeMdje5WCoPlTzwmUGgvn/ab9TFy7dl3793AMa35HRESo3SCP+V29 -dk0P5jNlymSixmqLaRntur6jHJrmkw9HvGeXFqaYYFqI8Z1hTnbo0VdPOfl22gS1vGyYpFKMjM8K -EwZb3P7gbZ2SYj1v9i9fuSpmGow55s0W6YMrLEM8KXU69ewn8Jfy1dTxTsvqTX4MQwIkQAIkQAIk -QAIkQAIkkLII+D4aTFl8WNt4IAAlRN68eZwqNJAdnFrmUc41XSk0EAZpIIw/Cg3EdxQM6s3qG47n -zG+E8SY/OEWNK4UG8s6slCPPPPmYtrbA6iVWgSWEo0LDeh776dKldakkgKLBk0IDafij0EA8pJ81 -axaPCo2NW7YLnMa+3OoZl2VFehQSIAESIAESIAESIAESIAESsBKgTw0rDe6nGAJYyrRRwwbK+qFA -kqjz080f1g5CoaDwRrDEa7gbJ6DepJGQYaAI6qaWjq1XK2q1nITMm3mRAAmQAAmQAAmQAAmQAAkk -XQKcfpJ0244lJwESIAESIAESIAESIAESIAESIIEUTYDTT1J087PyJEACJEACJEACJEACJEACJEAC -JJB0CVCpkXTbjiUnARIgARIgARIgARIgARIgARIggRRNgEqNFN38rDwJkAAJkAAJkAAJkAAJkAAJ -kAAJJF0CVGok3bZjyUmABEiABEiABEiABEiABEiABEggRROgUiNFNz8rTwIkQAIkQAIkQAIkQAIk -QAIkQAJJlwCVGkm37VhyEiABEiABEiABEiABEiABEiABEkjRBKjUSNHNz8qTAAmQAAmQAAmQAAmQ -AAmQAAmQQNIlQKVG0m07lpwESIAESIAESIAESIAESIAESIAEUjQBKjVSdPOz8iRAAiRAAiRAAiRA -AiRAAiRAAiSQdAmkTrpFZ8kTC4HroTflwuWrgm14eERiKRbLQQIkQAIkQAIkQAIkQAIkkAgJpE4d -LJkzppdc2bPqbSIsIouUhAgERSpJQuVlURMZgZNnL8rlqyGSLUsmSZ8ujQQHK+MfXlGJrJVYHBIg -ARIgARIgARIgARJIJASCRCLu3JGbN2/LlWshkj1rJimYN2ciKRyLkRQJUKmRFFstkZQZCo3Qm7ck -t9KwBitta6pUqUT1URQSIAESIAESIAESIAESIAEScEkA30DvKMVGRESEnL90VTKmT0fFhktaPOGJ -AKefeCLE804JYKoJLDQK588lqVOnlqAgqjOcguJBEiABEiABEiABEiABEiABOwIYOaQKDpZg9VE0 -T85scuL0BcmaOSOnothR4g9vCdBRqLekGM6OAHxoZFOmYlRo2GHhDxIgARIgARIgARIgARIgAS8J -4MNoGvWBFOMKjC8oJOAPASo1/KHGONopaKYM6WmhwWuBBEiABEiABEiABEiABEjAbwJQbGBcAUtw -Cgn4Q4BKDX+oMY5e5SRtGs5e4qVAAiRAAiRAAiRAAiRAAiQQOwIYV3AVxdgxTMmxqdRIya0fy7rT -j0YsATI6CZAACZAACZAACZAACZAArb95DcSKAJUascLHyCRAAiRAAiRAAiRAAiRAAiRAAiRAAoEi -QKVGoMgzXxIgARIgARIgARIgARIgARIgARIggVgRoFIjVvgYmQRIgARIgARIgARIgARIgARIgARI -IFAEqNQIFHnmSwIkQAIkQAIkQAIkQAIkQAIkQAIkECsCVGrECh8jkwAJkAAJkAAJkAAJkAAJkAAJ -kAAJBIoAlRqBIs98SYAESIAESIAESIAESIAESIAESIAEYkWASo1Y4WNkEiABEiABEiABEiABEiAB -EiABEiCBQBGgUiNQ5JkvCZAACZAACZAACZAACZAACZAACZBArAhQqRErfIxMAiRAAiRAAiRAAiRA -AiRAAiRAAiQQKAJUagSKPPMlARIgARIgARIgARIgARIgARIgARKIFQEqNWKFj5FJgARIgARIgARI -gARIgARIgARIgAQCRYBKjUCRZ74kQAIkQAIkQAIkQAIkQAIkQAIkQAKxIkClRqzwMTIJkAAJkAAJ -kAAJkAAJkAAJkAAJkECgCFCpESjyzJcESIAESIAESIAESIAESIAESIAESCBWBKjUiBU+RiYBEiAB -EiABEiABEiABEiABEiABEggUASo1AkWe+ZIACZAACZAACZAACZAACZAACZAACcSKAJUascLHyCRA -AiRAAiRAAiRAAiRAAiRAAiRAAoEiQKVGoMgzXxIgARIgARIgARIgARIgARIgARIggVgRoFIjVvgY -mQRIgARIgARIgARIgARIgARIgARIIFAEqNQIFHnmSwIkQAIkQAIkQAIkQAIkQAIkQAIkECsCVGrE -Ch8jkwAJkAAJkAAJkAAJkAAJkAAJkAAJBIoAlRqBIp/E802dOljCwyOSeC1YfBIgARIgARIgARIg -ARIggUATwLgC4wsKCfhDgEoNf6gxjmTOmF6uh94gCRIgARIgARIgARIgARIgARKIFQGMKzC+oJCA -PwSo1PCHGuNIruxZ5dLV63InMpI0SIAESIAESIAESIAESIAESMAvAhhPYFyB8QWFBPwhQKWGP9QY -R2tSs2fJJKfPXaRig9cDCZAACZAACZAACZAACZCAzwSg0MB4AuMKWmr4jI8RogkERSohDRLwl8DJ -sxfl8rX/s3cWcFYVXxw/xAJLd3c3SAsWIKAYqNio2PUHVEAsQkI6lQYFBAMQFBQFBBQB6W7p7u7+ -n9/szuO+t6+2YON3+Ly9NTN35jtzH2/OPefMOcmUPq1+EYXSFy6qIJmPBEiABEiABEiABEiABBIJ -AcTQgMsJLDSg0MidPXMiaTmbGRsEqNSIDaqJrMyz5y/KsZOn9YvpIoOHJrK+Z3NJgARIgARIgARI -gARIILIEEBQUlhlwOaGFRmTpMb0nASo1PInwmARIgARIgARIgARIgARIgARIgARIIF4QYEyNeNFN -rCQJkAAJkAAJkAAJkAAJkAAJkAAJkIAnASo1PInwmARIgARIgARIgARIgARIgARIgARIIF4QoFIj -XnQTK0kCJEACJEACJEACJEACJEACJEACJOBJgEoNTyI8JgESIAESIAESIAESIAESIAESIAESiBcE -qNSIF93ESpIACZAACZAACZAACZAACZAACZAACXgSoFLDkwiPSYAESIAESIAESIAESIAESIAESIAE -4gUBKjXiRTexkiRAAiRAAiRAAiRAAiRAAiRAAiRAAp4EqNTwJMJjEiABEiABEiABEiABEiABEiAB -EiCBeEGASo140U2sJAmQAAmQAAmQAAmQAAmQAAmQAAmQgCcBKjU8ifCYBEiABEiABEiABEiABEiA -BEiABEggXhCgUiNedBMrSQIkQAIkQAIkQAIkQAIkQAIkQAIk4EmASg1PIjwmARIgARIgARIgARIg -ARIgARIgARKIFwSo1IgX3cRKkgAJkAAJkAAJkAAJkAAJkAAJkAAJeBKgUsOTCI9JgARIgARIgARI -gARIgARIgARIgATiBQEqNeJFN7GSJEACJEACJEACJEACJEACJEACJEACngSo1PAkwmMSIAESIAES -IAESIAESIAESIAESIIF4QSB5vKglKxnnCGzesS/O1YkVIgESIAESIAESIAESIAESiL8EShTKE38r -z5rfNgJJbqjctrvzxiRAAiRAAiRAAiRAAiRAAiRAAiRAAiQQRQJ0P4kiOGYjARIgARIgARIgARIg -ARIgARIgARK4vQSo1Li9/Hl3EiABEiABEiABEiABEiABEiABEiCBKBKgUiOK4JiNBEiABEiABEiA -BEiABEiABEiABEjg9hKgUuP28ufdSYAESIAESIAESIAESIAESIAESIAEokiAq59EEVyiznb9usj1 -a/rBVj8m1qyNN5tEJIl+kqq+zHyShW0TNTA2ngRIgARIgARIgARIgARIgARIIDYIUKkRG1QTYplQ -XFy9EvbZuUVkxQKRzWtEtm8QOazLu549ocoNbXjaDCJZc4kUKiVSvLxI5VoihUuKpEgpklyHWxIa -ByXE4cE2kQAJkAAJkAAJkAAJkAAJkMDtIMAlXW8H9fh0TygzrlwWOaiKi99/FPlllMiurWqhEYlG -5M0n8khT/TQRyVswTMEBaw4KCZAACZAACZAACZAACZAACZAACUSDAJUa0YCX4LPCMuPwfpEx/UUm -DBI5r8fRkeSqyHjidZHXWovkKSgSkiI6pTEvCZAACZAACZAACZAACZAACZBAIidApUYiHwBek89n -AAAAQABJREFUm2+tM6aME+nfRuTY8TDXEq+Jo3AyXSqRFt1FGr8mkjpNWAyOKBTDLCRAAiRAAiRA -AiRAAiRAAiRAAombAJUaibv/I7YeCo0TR0V6tBL5TZUaV/U4tqT+4yKfDhDJkYfBRGOLMcslARIg -ARIgARIgARIgARIggQRMgEqNBNy5kW4aFBqH9op88IzIqoX+42bAlSS5Bv1MFr66SQq1voBcvhi2 -Iso1XR3lmgbegFLEn16kZFm1BpkkUqAoFRthBPmXBEiABEiABEiABEiABEiABEggSAJUagQJKlEk -QzDQdx4S2bTau0IDsT1DVJGRLr3IfU+I1LxfpFRFkdwFREJThyG6pEqNA3vCylg0W2SOKixOqvvK -ZVVy+FJuFCosMnS6SP4iVGwkioHGRpIACZAACZAACZAACZAACZBAzBCgUiNmOMb/Uk7rkqzN1R1k -6Vy1sPDSHFhmZMsp8mJLjYXxikiGzMHFwjh3WmTKdxpstJfIvp26kooPzUa5O0QG/6b30OVguTKK -lw7gKRIgARIgARIgARIgARIgARIgAU8CVGp4EkmMx9euinRuIfLTUO9Kh5RqndHwBXVL6SqSPXfU -lA4nj4l82V6XhB0pck6XiPUmjfQen2sdEDyUQgIkQAIkQAIkQAIkQAIkQAIkQAIBCFCpEQBQgr+M -OBozJ4u00TgaF72YaIQmF2nVV+S5tzWGRkj0cUwaJdJTFSgnz3ovq9tokUefj5l7eb8Dz5IACZAA -CZAACZAACZAACZAACSQQAlRqJJCOjHIzTqnbyTPVRHZujRjzIoVaaHQZLfLQc6pkUOVGTMmfP4t8 -plYZp85HLDF7VpGJq3RFlChahEQskWdIgARIgARIgARIgARIgARIgAQSKAGdtVISLQFYafwwRGNd -bI+o0EimMTTe665uJ8/GrEIDsOtp7I4P+qibiRfLj8O6nOx3A9UNxoeLSqLtLDacBEiABEiABEiA -BEiABEiABEjAkwAtNTyJJKbj0ydFGpXW1UoORFRq3N9IpM8PIqlCY4cIFCofvSQyTYOIYtlXp6TX -e/62JerxO5xlcZ8ESIAESIAESIAESIAESIAESCDBEohBn4IEyyjhNmyGLrd67HBEhUbalBpHo4dI -ylQR2p76XVU2xJCcb99NZNFMkcMedTh9QWT6RJEm/2NsDR+sL2j4kzNXRbC95qET8pElWqdhuBOa -TFfz1W8MbCkkQAIkQAIkQAIkQAIkQAIkEBcI0P0kLvTC7agDLCX++FGtJLwEB33uPZF8haK2yklk -2pIzr8izzURCvAzD39VK5MqVyJSWaNIeU8+cAxdFzqpS41YoNAAW98H9cF/cn0ICJEACJEACJEAC -JEACJEACcYEALTXiQi/cjjocPSiyep7OVj1unlxfyT/5WkALifODi8mKFStk1qxZcuyYLtfqR1Kl -SiXVqlWThx56yKRys/ZorPca01PkssdqKKuWqAXHfpH8ReTo8eOye/deKVq0sKRPl87PneLGpU2b -/5Mpv06TkiWKS6NHwtocUzWDQuHUbdb12PtnSRGxVafPnJEhw0ZK6tBQaf6/tyMmiENnZv45W1au -XiMN6tWVihXK3/Kajfh6tBw/cUJee+UlyZolyy2/P29IAiRAAiRAAiRAAiRAAgmBAJUaCaEXo9KG -VYtVoaGv3j2lel2RXPkCWmkc0Dgc48ePlyZNmkjBggU9S3E7PqMT3UmTJsk///wj99xzj9s1s8pJ -9fois3RFFA+zg5UjBkqndXtl3X9bXXnKlC4lfXp2lSKF1ZIkDsgqnRRv275DypcrK8WKFjE1wvHI -b8bIIw8/GKNKDbiaWIVCME0/sG+fZNbJckpVKsW0oB6pk0V0Rblw/oJpe5o0aeK8UmPBwsXy/Y8T -pFDBArdFqfHDhJ9kz5698tQTj1GpEdMDlOWRAAmQAAmQAAmQAAkkGgJe7P4TTdsTd0M3LFclwvWI -DO56QCRpYF3Xtm3bpFy5clK+fHlJnz6930+ePHmkVq1asnnz5oj3w5laDdQyRC1EPGTXT6Nk63// -SdEiheWpxo+byef6DRul8TMvyIaNmzxS357Dyb/8Kh9/1kEWL1kW6xVADI1g5fKlS/JVt66yTfnF -lkSmPrFVB5ZLAiRAAiRAAiRAAiRAAiSQuAkEnr0mbj4Jt/U7NeCnF52GlK0ikiywruv69euSLJm+ -qg9SkBZ5vEqZynpPlOV+Pd+Ni9Ki2TvyxrvvmGxXNMZGm0/ayW+/T5dRY8ZJr+5dXMXt3LVb3WFW -GXP+ihXLS7kypSVlSg14qnLq9Gn5e+48yZgxg1SvWlVmzpotR48ekypVKkmZUqX01kkFFhe7du+R -fHnzSqU7KrjKXbpsuew/cFDKanme1iEzZs6S7Tt2mLTLV6yUdOnSSr26tV15sXPg4EH5Z96/cv78 -eamq90M5Trlw4YKsXLVGVq9dq8qbIlKl0h2SKVNGZxLXPiw14pIEqs/Vq1dl1py/ZO++/XJHhQpS -oXxZSZ487CtnydLlhk31alVk1649snrNWsOuUKGCcu3aNZk3/1/Zum27GWMlSxaXGtWqSpIkYYov -mxfnwHfpshVSvHhRuavmnRHGJKxmVq5aLcePnxCUU71qFde4cLKEkmzhoiWmD2tpOXly53JejrAf -7HirWL6czJ23wNy/Qf26kitnzghl4URUxp/XgniSBEiABEiABEiABEiABBIZASo1ElmHu5q7Xyfj -1zX6o6fkK6yuJ4GVGp7ZonWMoKRJI94zT4hIxaYvuooOCQmR1h+0kPOqCLiklgjX1NIECokhw0dK -3/4DXemwAzeVb0cNNzE4Dh48JK0/+kxy5shhFBuIeWEFMS969/jCTLyRBlYhf/w62V6Wlh9+KgcP -HZLvxnwdQanRoVNXOabxPiBQtODz+1RdUSZc9uzZJw8+0ljOnTtnT8lX/XvJA/XrmePDh48YqxOU -75Qpk36U0qVKOk+ZfQ/vnAjXz5w6JSuXLpGrqvwpVS5ijIgLqlhZs2K5HDtyRHLlziMVNc4JFAUX -ledajY9SomxZSZ8hg6vc9atWSTo9zl9I+8eLBKrPy6+/7WbBcu/dd8mwwQOM4mHc9z/KHzP+lCqV -K8my5StM6QXy55OsWbPKy6+9JWvWrXe7I/oJSizU1+atU/temfPXXFe6LJkzy6zpv0ratGnMuf5f -DZZBQ4a7rmMHsTOGD/7STXH05+y/5LP2nVzp4Drz84TvpFChgq5zzp2ojrcvuveST9q0kldfvjmm -bblQ/ER2/Nm83JIACZAACZAACZAACZBAYiYQcSaZmGkkprafPRVxKVeMhvSZAsbTiHFMuKcXqw8s -H5rMQ9mRJ09uGTZogHzZr5dRaMACwyo0+vXqJj+M/Ubw9h9uKp+oW4hToDyAxcigAX2k7ScfmksI -6AllRJ377jHHsA7Yu3ef2d+ydZtRaGCyXFktKDxl9NdDpf79dczp119tKpMnfC958+ZxJcPb9ybP -PS0jhw0UTOghI0aONlv8eafZ+6b8l19qYhQpHdp+Yq49/9JruvBL5KKBXrp4Ufp06ijTf/lFli5Y -IIN66pK8Djl+9Kj06tBefp0wQbZt2iQTx34rowcPMilSqEXLrz9NlAV/zXHlOHf2rHw3coQc2q/B -WqMgUORAaYN+6vx5W1PC3HnzNYbFRLfSoNBo9u5bMvirfsaKBf0BhQZ4QbkDdhCc37Fjp9m3f+Dy -gz6HsgN9BAXT/H//NZdnzprjUmj079NDxo0eacYF+uS7H8bbIswWY6j7Fx2lX+/uki9fXqOEmjzl -V7c09iCy461YsSIyasQQ4z6FMn7UOBreJCrjz1s5PEcCJEACJEACJEACJEACiY0ALTUSW4/b9l68 -aT1gT0lKdQEJN/F3nbsVO7hnytR6p/Nudwu5AXcUL9YkjlTzFiw0R63eby4PP/Sg2cck9546D6ib -yRzjyuBIbibPuXOFuQCcPn1Gvhw0VODO8HDDB+SJxx4RxMj4Z/4Cef7Zp9VtZIHJ2viJRkaB4iwH -+1jdJEv4qhV5cueWcmXdXUtw/cOWujyuSja1QMCkHhP2GzduGDcZa42AST0sEB59pKH8/MtUkwYK -FW/WGqYwL3/+27hBEEejTafOklEn+L9OnCAL5960Ypgy/kfj/tOuZy8TOHTX9u0yrG8fOaEr12TS -NlSoUkVWLl4sDz72uCl9zfKwGCHlK6trUBQFygTbhitXrkqnL7rLosVL5MUmz7pKfPftN+Q9dTGy -8sLzzwg+Vi5evGSsK6CMgMKpsCNA7DtvvubqcwTcRF/C1QeWMLgP5KPWH8hDD2rMFpW8eTvLlKm/ -Sfbs2cyx/QOFVOPHG5nDEydOmno6rXlsOmwjO966d+koKVKkMC5NEyf9LDt27pJ9apUB5ZxTUqdO -Henx58zPfRIgARIgARIgARIgARJIrARoqZFYez40bcSWX9SgDUaREPFSrJ5BrI2L7goN3O9yEsTZ -UIWHH1mzdp256oxVgbgFcCGAIPaBFbzNtwoNnLujYljsjPXrN5gkjzzU0Gzn/PWP2c6a87fZNnxA -V2eJguAtvZXCDhcOKDW2bNlmL0mVGvdI5ep3m49VdGzadNNFxpXQz84mjcmRMVNmo9BAsjIV3S1L -toUHaR0zZIgM79dPZkyZYkpboYoMSNU7a8pZXaVm3+4wXsvU4qF4aY1LkirqK6dAqWOlQoVyZnej -w/UHJ0qXLGGTmO3ly5dl4OBh6rbzhBQrXVHKVapu4k3gIrg5pWCB/K7DouErzyBGCWT16rVma5Uq -OECcDChRntTVRpxSsEAB12GRIoXMvi9LmciMN6yqAoUGBEoLHEMuqFWNN4np8eftHjxHAiRAAiRA -AiRAAiRAAgmNAC01ElqPBtuedJnC9AXOeSL2TxzTGZgqPG6lxcZJjUtxXRUqHnL66g0JVYUHVBtW -4GIwfOQoE3AS8TUyZ9Z2qJxRdwkriLVh41ikT5fOWEXgGvJiYmwDTto8mTKFlXFnjWpGGQKLCrz5 -h2sEJqKIzxHTkjoNLFPCBHE2rJw8ecrE/ShVMmJMDZvG2/aIutbAQsNKJsc+ArTiU6BwYVV2VLRJ -NKZGVcmTL0wxkF+vpVZF0PJFiyStrmaD5WDrPBim5HFliOTOJVVQhIYrRc6G9w/6wym2L+y5Hr36 -ybff/WCsYGDlkjNnDmnV5lN72W3rmdd5MWu2rOYQywkHksgM9ciMt0D39bx+K8ef5715TAIkQAIk -QAIkQAIkQALxlQAtNeJrz0W33nkKa3BOL1YQu9WCQCfAt1R83HPvlSQyTBUYVrAqRp9+X8k3o8ca -pQMmtRXKlTWXp/0xwyZTF4T5Zh+WGdnCJ7f24nRdsQQCxQfcASClSoVZCyDextNPPm7Ode3R22wf -a/SI2fr6kzSc4VF144iMFC9a1JUcK4PAZQKfXOoaA7eYFCk0SmokpFjJUrJ/7x5Xjr27drn2k2pc -klShoZI+Y0apVusut0+e/DetHSrXuFNWaaDRFYsXadzWpFIynK2roEjuTJk6zZXjp8m/mH1PFx1X -gvCdeQvCYmJ89vGH8ubrr0iDenVNnAvPdIGOy5ctY5L8qvFSrPz19z9Sp8HD0r7jF/ZUpLeRHW+R -uUFUxl9kymdaEiABEiABEiABEiABEkiIBGipkRB7NZg2FVTXADMhd5pqaMa1Goug6t1eA3c6i/X3 -ltyZLqj9dUuhZYiQdHeSVDJk2Aj56fcZUvmOimbZT8QkgNgVJB7ROBrfjvtBsLzqCy+/bpbM/EXj -JkCa/+9ts3X+afHBh3L3XTVNMFBbFsqwgrgcWC42WNcTrN7x3Q8TTFDKHTt2SttP29ii/G5TpUpp -Ju2wOnny2RflkYcfNLEWfp8+M8xapP79fvN7XsTKJX/NmC5/z5whJcro/vQ/3JLUuPse+WfWn5Ij -Vy65o1p1E38DrieImZFNV4WBVKlZU+bNniWzp00z55Mli97XQ7vPO8vvqmw6cfKk2BgVNnaFW+Uc -B7CKQb907NJN6ta5T+ZrzBRYzURWwHPEN2Nc4wIxLGbMnG0seGreWS2yxbnSR3a8uTIGuRPZ8Rdk -sUxGAiRAAiRAAiRAAiRAAgmWQPRmLQkWSyJoWFkNAKnLoapZhntj5+lk+CUNbhkSFgvA/eLNo9wa -GHP27NlySN0ecoRPim9edd+D68NajfmQL18+9ws4UncQma9v06961EMvFWvytpRas1tWaswLO7HF -pBcrVdh4DVitAquQdOnW07V8KM691OQ5s/KI84ZwJcFqJF26hbl7YPnW1i1bSPFiRV3JypUpbSwD -cD/cyxm3wZXIsVO39r1yf537jBIECokWGvQSVg7BCIKbIu3En36WEV+PNlkqV6oon7f7VDKoC4in -JFPDGl/LqOYrWFDKqmvJzKlTzQfHTqnTsKGcOXNafp882XxwDe4mFRyBQKHcyJItm1nytUrNWs7s -XvdRH0+xyi7ENPns49byabuOJgnYgw2WVIXYdObA8eejDz8wy+vawKAPNqhnYmEg6GuScK6+8jqK -kfw61r4bM9L0NVZJgcBy56PW77uW1I2M24ktO5jxFkz9bHme28iOP8/8PCYBEiABEiABEiABEiCB -xEYgicYY8HhVn9gQJNL2Hj8i8kBBkVMeAToxUZ26RqSomu97mZynfneLAXZ+cDGZMWOGzJkzR9J7 -mYA7qSJ4Y5EiRaRp06ZmEu8sQ/buEGmkMSvOXnJmUYWLHs7Ua3kKyCmNi4BlVqFgsAFA3ROHHWGl -DNwrU6aMbpc3/7dFHn7sKcHEeubvU8yKKGfOnDWxK9wS6gHO13vwURN/A8qTQJYFNr+NW5E8edT0 -hHBfSa0uIggo6UsOK6KzV31dDTuPpVivXb1qXE28pbx27apRWoSGppZ0GTJ4SxL0ubTa1Owp/SeH -y9CpU6ddsU/8p755Ff0A1x5//X0ztf89BOa8cP5CpOvgv1SNbetjvAXK5+96VMefvzJ5jQRIgARI -gARIgARIgAQSMoGozcASMpHE0rbMuqxl5Toic9VVw+n5ARXXj8N0LUyNKZHS/8oXDRo0kJrqsnD6 -9Gm/1EJCQnQZzewR00CfNn64yKXLEa9VuVckq7pF6Ot0WC1kKB3RcsEzE1w68AkkiF2QMWPECT3i -aExQqwkEGcUb+UaPPBSoKNd1WFwEa6HhyuTYyRq+NKzjVITddPq0BlJqpEmbNkI+5wm4lGTPmct5 -Ksr7qE8gAWsbXDNQWuf1dOn8t8OZNtA+gpXagKWB0kbmerDjLdgyozP+gr0H05EACZAACZAACZAA -CZBAQiMQxLQkoTWZ7XERaPicyEJ1/bjg8fr/pyEiT70uUkJdBbxYayC/tbZwlRVw51TEFAgQOnGw -yBVoUhwCaxHULYpWD46SzG4atX647967dTlX/5P5Q4cOG2uQ8hog8/3m75oVVjzLup3HoWq9kkHj -h566cjtrEXZv1AP1ocQcgbg+/mKupSyJBEiABEiABEiABEiABGKOAN1PYo5l/Cvp/DmRx8uJ7Nqh -sS08ql+zrsiXk0R9FNwuRF6Z4ZbddRB6/YocC2krMltXxfAMFJFVl1idukkE1iRRCXzgukvC3Dmm -hi23U7EBhUYW/yFXEiZ4tooESIAESIAESIAESIAESCDOEaBSI851yS2u0JgBIn1baYAApw9KeB3+ -117kjY/0lbzvOA9Rqq3GfJAx/UT6fyxy2SNAKKw03uss8nqbgMFKo3TvBJLpgnbXGcWIradOKDaa -iKCgsMyAywktNGKDMMskARIgARIgARIgARIgARKICgEqNaJCLSHlgbXG8zVFNmtwUA/9gmlmB3UP -eaKpSKoYUmxcVd+JaT+KtH/FuyIlXwGRCUtFMmWllUZCGmdsCwmQAAmQAAmQAAmQAAmQAAnEAoHg -1p6MhRuzyDhCIHUakZbdRdKEeq9Qp3dFRqs1x7kzYcuvek8V+CyCgl6+JPLDUN8KjRA1B2jVSwNH -qPsJ3U4CM2UKEiABEiABEiABEiABEiABEkjkBKjUSOQDwDT/ngdFnmmu1hheIj8i1ka/T0U+VmuN -XbqcKxQTkVkFGGmvqHXGwT0ibd8Q6f6edwsN3PrJt0XqPqrLuTJ+LYclCZAACZAACZAACZAACZAA -CZBAYAJ0PwnMKHGkuHhe5INnROZNi7gaiSWQXq05XvpQpPFrGilSg3hC+ZBUtRFJEQgDn3C5rn4s -5qMBH04dF5kyVmRUD5Fjug8liadAtVb1Hg1M+rNIxsyeV3lMAiRAAiRAAiRAAiRAAiRAAiRAAl4J -UKnhFUsiPXlSlQ7NGomsWuBbsQE0KVULUfsJkVr1RUpWFMlTUKNHwn1FFRuXLooc2C2yabUuFztb -VzcZr64rftYghUKjlJYx+FeRHHnodqI4KCRAAiRAAiRAAiRAAiRAAiRAAsERwJSSQgJhBGAlMVCX -WK2hygooLnzJJbXEmP6TSLs3RZ6qJlIzu0j19GGfGhrg8/FKIp+8osuyjvOv0EiuSpA7NEipD4XG -nn375ZdpM6TPwOEyeeofcuDgYV81irXzLT/tJCPH/GDKnzl7rnTq3j/W7hWo4AFDvpEJk1X5Ewvy -bsvPZM26jbFQcsQiV6xeJ0uWr4p44RacmT7rb9m+U5VuDvlnwWL5bfos9aq6Yer14pvvy1FYFfmR -36bPlm59B8mFCxdl8q/T5fSZs35Sx/ylrdt3yrQZqjR0yL79B01dLlxUxWK4nD13zpw7dvyEPRWp -7a0cF5GqWBCJd+3ZJ280byMXL6nL3C2W2XMXSPsvevu8q/P6iZOnBGNu4ZLlPtPzQvAE4tKYnRHN -/zOG/H1SVuy6+TwHT4EpSYAESIAESCBxEfAzc01cINjacAIZs6gbiCosnnxHJG1KN68Sv4wuq1+J -5/KsvjLAUyWluq088qLIoKleLTQWLF4mH7b9Qn6f+ZcpZeZf86T1Z51l2co1vkqN1PnTp8+YiYTn -BNezkEoVykqxooXM6dNnz8nho8c8kwR9vHjZSnn13dZBp/dMeETvfSqWJs/HT5wMevI3+ruJ0rP/ -EM/qBX08S/vyzznzgk4fkwl//GmqbNiksWHC5feZc2TwyG8lc6ZMGps2ieTMnk0qli8tadKErfbj -q62Llq6Q7FmzyMlTp42i6aROTG+lnNFxMPbHyYJ+szJjzj+mLqvXbrCnVFG1yZxLlVKf5ShIZMZF -FIqP1SyXVJlxRp/ZG9e9+bzF6q0F/XP0mG9FkvN6arVyw5jLmUOVw5RoE4hLYxbjLzr/Z3SYckzm -bbkQbSYsgARIgARIgAQSOgEqNRJ6D0elfanT6golA0U6jxEpoBP6FDpMoIiICcEKJzlyaPnDRbqM -1KVbVYnisdIJ3jh/NXSU3FOrugwf0F1aNXtTBvXpIhXKlZaBw0bLNcTrcMjBw0fM5NJxSq5duyZ4 -AwrBW2rnpBP58cP3igYwxbUzZ8PesuMHKN7qXrp0WfAmHNLooQZSrXJFs+/8s//AIbcJJa5dvXrV -7T44hzflKBOfY8dPyvkLF0y9PN8e7z94yKRFnkCC++zcvVecb+RtHlgbHD5yTPbuO6BhTdw5IQ3O -7dY32OfOnbdZvG5heeDN+gDtATN8wBd1sWLL9mybvR6ZLZROYOJLvPU50qKfUSfUE2/qwcOX/Lt4 -uXz7wyR59YWnpWb1yiZZntw59fgZCU2VypThra1o5w619ihXpqSvoiOc91VfJPTFDRwxNtEG9Ocp -ZWKldKniZnfdhs32lKxYtdbsLw/f4mDt+o2SK2d2l5IG57zVxfm8wCLKqSxBHiue4wK8wfmKYxw4 -y4LFiy8LK/Txjl175NLly7Z4ty3q6ctiBmxgyeWvf52FoT34XrGCfJ7j155ztsWmxxbX/T1b+D7Z -6ac9vq6nTJlCXtMxly9PLnM7+z2Ecbx7r/c2oi54jtEftt7Yegquez6POAcLIyv4vkMfen6vYuw5 -8+K6/U5FXvusYVxifPoSb+MbjKEQtIK2Osu290Kb3J6D/QfM97PN52977vwF8z3p2S5f9cZ9MB7B -3ynB3t/feEV5+D8D945p+e/QZTlxTuNXeQiGw85jV2TjgcvatzcvXrl2Qw6cCvve3nL4suw/GbZ/ -UM9dvnpDTl24LjjvT86qteaxs9cE+sJ1+y7J8fD7o+y1ey/J4dMR64Pyth25Ioc8rvmqD9LjPhv2 -X9YxjiMKCZAACZAACfgmwGUmfLPhlYbPiNxZV2TslyIT9M38aTXJv6K/jhw/kIKCBNVZcv2TWt9+ -P64uK6+0FMmeO4Iyw5a1cs16SZY0qbz58vP2lOv4NzW5xw/DLJkzGTeCLj2/NIoCJMRb9k6ftZL0 -6dPJanWlgDXBHWppsVLdHSAlihWW9h9/IPv0B/jHn+sytip9vhouRQoVkC/atzHm4nhrum3HLnPt -+6+/ks49+kvZ0iXlpecam3OXdeLyUfuuZhKAEwUL5JOOn7aUlClSCCbJw74ZJ99pPittO/WSGtUq -Sbq0acybdZx/54NP5fFHHpBnnnjE/Iju3GOAqw1lS5eQT1r+T5IlU0sWL7Jn7z55s8XHrvT1at8t -r730rEmJCeDn3fq5JoIhISHS9sMWpt1IMOvv+TJq7HjX5AVWKB80e0NCkrt/DcxdsEiGjBwrzd9+ -RWpVr+JWiy9V2WTdVNCO9h+/L6VLFJOZaiUwRi047ASiaqUK0lLLhvVDZATKlg7d+romSWjDZ62b -ScniRU0xsKzx1eeYNL6tdbpTeS9cssKkxzhq1eItQVudsn7jZvly6Dfy1GMPSf2697oubdi8Rb7o -9ZXpQ19txfhAO0uXLKZv5N0nQK6Cwnf81RdJ/HGDVcmK1WvNWLCKAbD+rE0LM94KF8wva1RpAeUf -ngn0P/bteEf5eA6swsZfXezzAs6b/tsqDzWoKy8++wSKcIlzXFS5o7x06zPIpAVjCMYSztuy7rqz -qsxfuNRcwzPZrcNH5rkFux79BrvGERK83OQpeeD++0xaTCydz0TWLJnl808+EGwhg0aMkXn/LjH7 -GB8YZ3eUL2OOvf0Z+e2PsmBRWD3wfHdp96Fky5pZmrVqK02eeVwa1q9jsm3ess08P/26dTCKIGdZ -gZ4tuCBZ1zDUCd81TvF3HRN3jFs891Dcwm0lfbq0snXbTjPOYGXz1qsvmHGNMlfp92OfgSOMUhbH -d1arbFxXRnzVQ79nVCHtEHwHpk4dKp+2ambO4hl55/1PpKnyxncHWNo+Qj8+0/hRebRhPZO21Wdd -5NEH75eHH7jfHGNc9f5ymPw4apC5N+psx0teVcj07tLWceewXV/je6NaS3XtM1BGD+0raN9Mtdz6 -9oefxLJfrhZ5fbWNY0cMEDwHcFe7rpwwzlHPB+vXlheecR+fzpvPVZcy5Icg/btvvCS1alT1We+f -tf/GO1z7qlbW76//hX1/Bbp/oPEKi6H3P/rcKBNRn8r6jLRu/makvxuR1ymr9lySB/rvldOqhIDU -LpFafmmWW0KSJZHdx69Kvb57ZI9uIan0ZcK0FnnkziKhMmvDeWk8ZL/UKhoqC7ZekBZ1M8nnj2aR -wp/skHqlU8ufeh2SL3Nymdosj5TImcIcO//AguS3NWfl3KUbLoVG36ezSZdpx13H79+fSbo+kdVk -gwtNwy9VCRde1yLZQmRO63ySLV0yr/Xp3jirvD7moHy/+IzJj/r/8EYuaVA2jbMa3CcBEiABEiAB -F4GwX6OuQ+6QgAeBTPqjpEUnkV9UMdBa40mU1UluulRhy7/C6gJzb4wizF3xwT7O4RpcTNLoD6Li -OqFs0U3LULP4j3p7dTfRHC7Zsm2H5MuXR5J7TLYzZsxgfshCoYE3ex269pXiOnn4emAvY8lxVa0z -uutkySlZNe3Y4f3Nj/rNW7bLuvWbJL+WPbRfV5Os46etjELD5sGb0Q6q+BgzrJ8kDZ+s2WvY4u1y -sSKFzI/xrjpJ26NvOOGiEEgwSXz39ZdMMkwKoNBAGzqqEqJM6eIyakgf6dXlM0Edf/hpis/i/tu6 -w0wAx+mP/bdfe0H+VFcOuEJAsMXED9YtI77qKbn1Df13Eyaba5jQIjbIE48+aHi0/+h9nTCvE7iC -OAUTHCg0MFH0VGggHSZHmKwWLVzQTG4wyUbZ36iy5KknHjaTkM9VyQOrgQk//+YsOqj9foNHmrfP -X/bsJKMG99FJcjkzwYVVSrB9vnK1Tvq+aBeWv1J56aMTMby1tbJ95y7prMqw7NmySONGDe3pCFtv -bUWitWodAc5p0/j/gR2ovsFwg2UAFAUYj5jYY+I9ftJUU9fKFcvJuo3/mX0oAjE5fPrxh82bZrw1 -hrUKLBQqabpAdTGF6B8oBjE5fu7JR+0ps/UcF8tWrDYKDVhQYeL50AN1ZY7GkXAK3KWGf9nDPJvJ -VUlnXZa2bN0uuIbnB3kbqFJprFrM4I0+6tn+iz5G0ThyYE8Z0KOjOQ/FBATuaP8uWmaeUTzXde6p -Kb0HDPVreQRF4ND+3cwznzFjejOZhuKhetU7ZO78Ra4qQ1GSO1eOCAoNJPD3bOGZhEIDzzTagwmr -04Im0HVXBRw723fukW4dPzF9UbRIQZk09XdzFc9BL20v3FW+HtRb8JxsVCWUL6lX526jPII1BgTP -PJRKd99ZTX79Y5ZRaHz2YXPB98mLqrj9fuIvbu5Zvsq15zHG0EfdP//YnnJt/Y1vKAQhUG5AMJ4g -UOJBoDiFYsgqXDGOoWTDc9DoofoaA2e2V0s1kzk8P+oEpQkUfV8NG+1mfeSsNywx5i1cIm+oEh0K -6ffffU2WLl/tstZDmb7uH2i8Ii8sPx5W5RDGKxQxUNhAERIdgUVF/b575T5VZBzqW0SWtS0gC7df -kPaqbIBMXnFG8mcOkV09CsveXoWlWI4U8unPR91uCcXCnp6FpVOjLK7z+09eM+lXdShgFBbfzPdt -WQKFyYiXcsjJL4sahUrLCUek82NZ5MzAYkZR0n/WCR1r6pWqdb1f61qjcKjs711E/vuikFxWi47H -Bu1z3Rc7zvoMnHNSJiw9KzNb5pXjA4rKy7UyyFNDD8jJ85F9o+J2Cx6QAAmQAAkkYAKYglJIIDCB -rOoy8lJztdjQN6ST9Idnx29EXmwpcrdOCkvdIZK/kH4K6mooFXRVlAYiz7XQQKJDRSZqQMif9fNG -G5Fc+XxaZzgrcOLkScmgb3b9Cdwv8NbxrVeaGNN6KDpgTYEf0vihaeVpnWhjAlO+bCkzEcXkz5/g -B3CpEkXNm3Bf6V598RkzgcSb8of0LaYzhoGvPN7Oow34QV377prGNB4Tj0IF8sp8nbT5EigTUEco -fO67605jKWLvjzeqHdRy4rxOfPBmP1WqlLJt+y5T1CqNswBrEUziwQOTCkyInK41f81bKAOHj5aP -PnjX7byvutjzKBtv4h9TVx1MQkoWKyK1dbJp3SFsukBbvLHGJKfJ048ZhUNoaCq11mliJmFoR7B9 -/qxOyOFGYvK/8kJ4/p2u28OiBnJMYx5AaRBZwYSrnFrUBJJA9Q2GG/qqydOPm/GIt+L3KVe8qYdA -WYE311C0LVMlUhVV4EDZkjlTRsMesUPwlrqE9keguti2NH3+SfO236lQ9DYuUqhlEmTG7H+Mm9Dz -Tz0mbd7XODwOeUvZw+IAzyYsMaybCtqBN/IZM6SXPapERH0x0YY7gq3nO6+/aJRGObJnle46uX8x -/K383PkLJbueCwlJbsqDVQ7yQhHqS15v+py5F5Sir734rLFogWtFvdr3mDJwX4y9Bfrc1a9zj9di -/D1bsJbBswXrK4x/WFvAesJKoOs2nXMLhWL+vLlNX8CiAu4dcNPZHm4lhOcijVpgQDHXNNyKzJnf -7teoWsmMgWWr1phTUOJUVKsWPBvL9RysF8qpJRr6G5YyKG/lGlVgBylQoqGPnOPFZvU3vpEe42C1 -soO7EpR1YL90RVg9waxqpZtufxgjYAKLuIYN6phbbNrsW5kDxQes6KDoQ/9DcA8rznojTd+u7aVG -lTvMeEyfLuz/Hqf7m6/7BxqvuB/Kv/++u8z3boP7w6zC4DoVHVmjLh5wzWh6Z3rZfPCynNd4VhXy -pZTxS8+YYmElMfODvHL6oj4bh65oeKyksnznJbdb9nwqm2RJm0xSIGB3uLR5IJNkTpNMiqsSpFHF -tDJ93Xl7KcK2YJYQebBcGpO/ceW0aoyZRF5R5UMy/VX5+B1pTXq4paCuF6/ckCEvZJeMqZNK3kzJ -peeT2WTl7ktG4WELdtZn7KLTUihriKTSusG9pXGltHJVfV2W7LipnLb5uCUBEiABEiABEHC3OycT -EghEAO4EBdQVAJ9YksIFCwRcHQP+yZBMOlGxkkPfMkOOHD1uT5lJgT2AogQ/oP1JGrjI+BFMjJwW -HDlzZHN7A+gna4RLtg1D1WXFCiaoUBD4EsRHcEqObFldsScQRBUrpEDZg0mW0zd8/4GDOmHJ6sxq -JjDOE9ZtwakUcl73tY+ys4W7Btg04GLN2u25QNtTOrnEBBVtsoLJFybmuEcqjXMB8dXnWbNkMtft -OMABJn7If/DQYaPYwjkcfz24t7z/cUfp0muA9NEJjX0jjOv+BJNfWBr4mvw689r+9VXfYLjBTcIp -YLMg3KWjYP68ZqK0Vl1poGhp/tbLJikUVct0cgjFDhQaYfyCe17A21O8jQu4F0GR8fuff8nU32ea -8QY3KEyirWCCbMWOvaPhz+YXvb8yygW4gyDOjBVvzKAYwQcCxQikp1orOOXUmbDJnPOc3XeOB0zA -IYcOHzXKSzwnUHIVLpTfKBhhweBN/D1bGFu2fTYvxr+dRAe6bvM4t87vgAyq/IFg7J3U7wcIXEqs -2Em4PXZuoQSoVqWiYIUfjAsoQFuqJQnkwKEjUqZkcWdy0w5n7BG3i14O/H1fBhrfsECa888C2Vhx -q6TRfoA123sfdTCWWlA2VqpY1nVHJw9rIQXLPF8CiyMrcOXDOEN7rTjrDWUR3BDxDEGJiDHhKb7u -H2i8opy0jvLwPYN7XHcGufC8WRDHmzWOBuTtcWHPNfaPnLlm3Dmw/9uac/LS1weMMgFKChvzAtes -pE8V8Z1W9vTJ7WXJmSGZIN6FL8mgCgorqs+Q5MnskRpqOvZtXXNluFl2YVVYQHYdv+LK5KwP4nJA -4CbjlMPaRgoJkAAJkAAJeCNw838Zb1d5jgRuAwFYI9ilN2ENYQXBO0eM/t68EcZbTAgmJ3aisleD -yEHwJveATjSCkRs3ImfOijfjCHJnJ8F79Y2bnbzh7SMm5bC+wNs5yLnzvt905QtvQw99E+2c+Pqr -N4IDOgVv/OACAoGJPixSWmgsDExmYEr+1z//mmuYAGOii4mRjXOBt4xIZxUliC0As+z+g0aqK0xb -Y4pvMnv5g3KsoC9WrFrnVvaevQf85rd5nVsojDAB36sBHfEWF4KghmCaL28eDd4ZxtRXn18Pn+Tg -7b+NsXBKJ4HInzdP2HhBmc/pZBz9A/eSNu2+MHFQmr35Mi55FWdbdykzlFc2PFCn1wzhJwON0WC4 -QUEHtwyrSEN/5wxXbKEfYTEy5bcZRpGFvodg8vqnxjjBqgsP1rvPnAtUF3/Pi69xgdgL+CCY6rBR -35ngvtX1bbcV9CPGHcQGksSzibgziE0D1xQoKxDfBO5AkALh6VGf3DnVOkwF8SxgTYHvBYz1TPrW -3ipwTIIAf/CMZkhfwqSy9ciTK6c5rn1PLXVBWSj7VGkGfnbVG88i/T1beXPnijD+4cZmJdB1my6Y -bdFCBU0yuGtY1vPVdcKf3H/f3cp3gCxU5U1SneDbZwOBSfeEf2fa/Oiz2nffaQ7hMuRcwQXPYmQk -0PiG+9S48ZNNvJNqqiTD9zi+Ayaq2xoUC7b/I3NPm3a3uhyJVDWHsICD4iyvKvm8CVhCodFN3VUK -qXUHlMJYYjcYCTRegykjKmnK5A77Llz0aX5xKgtsWS1+OCx1S6WWMa/mktQpkkhbdT0Z/e9pe/mW -bsuG13W7BgktrC4vkI1qXQKBNcZWtSTxlLuLhUrujMll1Cve+8wzPY9JgARIgARI4KaqnSxIII4Q -qKG+7vhBjICQCBCHH9P40Ym3s5hQwpwdMTfwwxfBHjFRgd/66HETjCk1JsaBxE5e8JYWE9/ISP/B -X5ugb3h7Cx9/68KRL28uU8ykKb8b640p02a6WUtkDX/rjnti9QHE9kAb+g0aYdxP0A4EIbWxB7zV -CW+qf9FJLGISTJ76h4mob++fVCe5CLSJD3z6//jzb1cRlSqUM8qW4Tr5RN6FS5bLxx26ySaHSXbJ -4kWMO08ujSvQSSdB3lZXQYFwccCkDX7hUPCgbEwaRil/lI3leBFUsmb1Kq77e+5A2QNXIecHkwm4 -UIzTpUo3qmk53hhDwQIFBN6kB9vnE3+ZpnEvNhk2/TQ/3owiv6dgjME0HRYlVvnjmcazrWs0Jgsm -Xs43t8gDHs62QPESqL7BcAMTLDmL8sAVcR9gJm8FQQdxbwS7tYq0EtqPECgDECgXEqguJpGPP97G -Bcb4G83bmNU+8CYariQpwxV5thg8mxiveDbHfD/RKKrwbOJzWSeaWNYUfTzKEZMGE22wHaDPGBQ4 -cCtp066rTNMAwZCaNaqYSTAsD6BgnDl7rjR5rblhYO/ruR3y9TgzVtE/w1Upin63Fil1761l6jhb -g+jCzcOX+Hu2wNiOf1gYzFFFIuImWAl03aYLZouJf3W1vPhSLbJ6aawYBBW1QXF95YerGSwVMI7u -u6uGS0GG5xOxI/5WpQ6e23HjfzZMYYUDQfDPf/V7Av2HvvhJn6vISKDxDWUqvv/g3mS/w6qoogNx -guy4jcz9nGmnacwNrAIEN7z+Q742Y84qSp3psG8Vhlh9BbEzRo4Ji9/imc7bcaDx6i2P8xy+e/B9 -71ScOq9jf5fGrkCgTfuBFUPZPCmMm8jzIw7IJlUQYIWT6l13uywbNFaoiT9x4vw1+WvzeRn890nP -Ym/ZcZnwujb95qCp5+LtF6Xl+CNSp2Rq47LirSJPV0lnXGm+W3xasCrLsLknJX2zrbJ+f5gFR+uJ -R6Tr7zctMr2VwXMkQAIkQAKJiwAtNRJXf8eL1sLiod1H76lJ8AhXBHtUHG9pP2j2umkDJkaddRUD -rKLQum0Xcw7XW7V40+zf9BI2hxH+YKKLt8yY+P+nEydvge6QCW/DrWUDjuFbfUMVK4hmD8GkEm/+ -IfnUGgBuCQjAhw98upHeSim1PsA5TPYQfwKxHzrqai0I/Nfqs84mGa4jYJ0vgT88TLZ/1GCRaAOC -E9o39G/oBL2vTuLfbfmZmeAimKD1O0cAxNa6CggmdZhEQODnfa/G53AKTLXbtm5uXDNgko3VUzzl -Pn2Ti0ngJ7qCDAKOYtKEwKJ4m43VDlAv+Oc/rMEjvUkS7TtMMD/t2MPtMoJ7wmKit963Y/d+5hrM -yDu3a20sSnDCX5/bwvCmubuuzAEFGBQQaIOd8Ns0dgsGq9dtMJYGxYoWsqddW8+2rlWlhtNKIwns -rlUQi8Qp6KePNTaJv/pi0hiIG/oNb8thlg9BkFbEC7Bi37rbt/Y4j2ejnFod/KdBZ+3b7ug+L57j -4r13XjUrr9hVhDA5RVuczwrcC6Ckg2Bct2r+htl/7OEHzAopdsxDsWAtKDDB7PxZa+nRf7B82PYL -k7649ssruuQpBP11SIOgjtCgt1D4oF1NNN4GFBW+BJN3jFUIeH6sq4xYgZIAiisogBCjxJf4e7YK -qHISsX3GfP+TGf9ggVgfCPoLCXTd3tPJzp7ztm3x9qsad2epbNi4RQpouxs/2lC69R3kLak5h3Lr -3FvTBNesq/ysgDuUZV9/O97lsva/N5uKtY5r+tyTuhpMX6M4AWcoHBcvWxWWXcsMJMGMbygv4E5l -A4dCuYFVmjB2oiOIPQPlM8YI+gNxgmAV5G25XtwLcUWsMhmrBeE7LBgJNF4DlfGfurIh8DBcYHx9 -Rw1VhQQ+VrASCIJnzmmdV54ackAqddplLiGmxsDnw9wTv9ItFB7FPt1h4mnUL5NG5m8Jc/Py1nXe -ztn7RWdr3FL0z9w2+eSJQfulcuewusIS48e3wl4CeLv3a3dnkO1Hr0jz7w8bFxrE68BKKtZCZca6 -c0ap82nDzNGpHvOSAAmQAAkkIAJJ9A3BTTvyBNQwNiVhEMCP0AMaPyOH+qjDVcKbwN0DptLegtV5 -S+88h+EP835fS6g60zr3YcWAe3r78Ys6Yxk/6/vtzId9/NBGXZ2TGLQB4uuHrbno+INAhyjfWQYu -oz14A55Of8B7XrPZ4WICn3Jf1226QFuYdadM6d4nMVU2Yp/ARSE0PI6GZ1289Tm4wmy8XZv3TLwE -WIN4LnHpWU6wx7atKP/1ps+qMqhGsFlNOm/1dRbgjRtW1YElDRRuWL0lRYoQl9uTM29k9wPVJTLl -gfnly1fc3DawwgYmiHbpz6tXr7ksI5xlI+YLXIp8PbeoJybT3p6xYMa5816IE3PlytUI9cCz/64u -7Qr3BwQA9ifB3BNWZZg8+5JA133ls+fRDsTggRLLWlTAJe8fteD5VlcG8fVMQ+mGJWL79/jcFuW2 -xfjz9X2F7xpYekT2O9J5A2/j23k9NvbRX7hvsN8BGG/I4+s7J1Ad/Y1Xf3nxXRctthowFIJgoE7R -psjRs9dMMNBw3avz8m3ZR3DTFGpG4gxO6q8itg1ZNaCpU/mB8xDnubAz/EsCJEACJJBYCdBSI7H2 -fDxpN2JXwE3DnwSrCPBWBiYBUflB6e+HrwkGp/X2Jd4maZFtg68f6miPp2uEZz18TV480wU69lRo -IH1MlY0+CdWPLwnEC29QfTHyVaa/82grrAkwicdb3chKoPoG4oaApzElgeoSmftgLHsbz7YMf9fx -Bt2f+KtnMOPcWTYUJ57KEwRA/VqXIoa71hO6ckkgCeae/hQaKD/Q9UB1QBvw3QMrKsTyOX36rHEr -e/WFp70qNGCB0nfgCGMZ9ZHH6jTOe/kbfzHxHPkr31mPmNxHf0Wm7v7GWzD1imr+qPz/46yPpzLD -XsOEP1s639+hNt2t3Pqqq686+GoDzlNIgARIgARIwEmAlhpOGtwnARKItwTwlnXxspVSRoN4RmYy -E2yDEXsFK1pY//9g80U1HeIYwJrBBoKNajm3Oh9W8Fmvy8nCBSMuy04N+rpt+06zxCni9MQnQdBk -LO+aUi1dShYr6gqW7NkGWFlgqdriRQu73Eo80/CYBEiABEiABEiABOI7ASo14nsPsv4kQAIkQAIk -QAIkQAIkQAIkQAIkkEgJuDthJlIIbDYJkAAJkAAJkAAJkAAJkAAJkAAJkED8I0ClRvzrM9aYBEiA -BEiABEiABEiABEiABEiABEhACVCpwWFAAiRAAiRAAiRAAiRAAiRAAiRAAiQQLwlQqREvu42VJgES -IAESIAESIAESIAESIAESIAESoFKDY4AESIAESIAESIAESIAESIAESIAESCBeEqBSI152GytNAiRA -AiRAAiRAAiRAAiRAAiRAAiRApQbHAAmQAAmQAAmQAAmQAAmQAAmQAAmQQLwkQKVGvOw2VpoESIAE -SIAESIAESIAESIAESIAESIBKDY4BEiABEiABEiABEiABEiABEiABEiCBeEmASo142W2sNAmQAAmQ -AAmQAAmQAAmQAAmQAAmQAJUaHAMkQAIkQAIkQAIkQAIkQAIkQAIkQALxkgCVGvGy21hpEiABEiAB -EiABEiABEiABEiABEiABKjU4BkiABEiABEiABEiABEiABEiABEiABOIlASo14mW3sdIkQAIkQAIk -QAIkQAIkQAIkQAIkQAJUanAMkAAJkAAJkAAJkAAJkAAJkAAJkAAJxEsCVGrEy25jpUmABEiABEiA -BEiABEiABEiABEiABKjU4BggARIgARIgARIgARIgARIgARIgARKIlwSo1IiX3cZKkwAJkAAJkAAJ -kAAJkAAJkAAJkAAJUKnBMUACJEACJEACJEACJEACJEACJEACJBAvCVCpES+7jZUmARIgARIgARIg -ARIgARIgARIgARJITgQkEBUCm3fsi0o25iEBEiABEiABEiABEiABEiABrwRKFMrj9TxPkoA/Aklu -qPhLwGskQAIkQAIkQAIkQAIkQAIkQAIkQAIkEBcJ0P0kLvYK60QCJEACJEACJEACJEACJEACJEAC -JBCQAJUaARExAQmQAAmQAAmQAAmQAAmQAAmQAAmQQFwkQKVGXOwV1okESIAESIAESIAESIAESIAE -SIAESCAgASo1AiJiAhIgARIgARIgARIgARIgARIgARIggbhIgEqNuNgrrBMJkAAJkAAJkAAJkAAJ -kAAJkAAJkEBAAlRqBETEBCRAAiRAAiRAAiRAAiRAAiRAAiRAAnGRAJUacbFXWCcSIAESIAESIAES -IAESIAESIAESIIGABKjUCIiICUiABEiABEiABEiABEiABEiABEiABOIiASo14mKvsE4kQAIkQAIk -QAIkQAIkQAIkQAIkQAIBCVCpERARE5AACZAACZAACZAACZAACZAACZAACcRFAlRqxMVeYZ1IgARI -gARIgARIgARIgARIgARIgAQCEqBSIyAiJiABEiABEiABEiABEiABEiABEiABEoiLBKjUiIu9wjqR -AAmQAAmQAAmQAAmQAAmQAAmQAAkEJEClRkBETEACJEACJEACJEACJEACJEACJEACJBAXCVCpERd7 -hXUiARIgARIgARIgARIgARIgARIgARIISIBKjYCImIAESIAESIAESIAESIAESIAESIAESCAuEqBS -Iy72CutEAiRAAiRAAiRAAiRAAiRAAiRAAiQQkACVGgERMQEJkAAJkAAJkAAJkAAJkAAJkAAJkEBc -JJA8LlaKdYqfBH76ZZqp+E9Tfnc1oHTJYmb/yUYPid13XeQOCZAACZAACZAACZAACZAACZAACUSD -QJIbKtHIz6wkIBs2bZFOPfq7kXiyUUPZsHmLOYfrECg1qNwwKPiHBEiABEiABEiABEiABEiABEgg -BghQqREDEBNzEbDOsJYZUGQ8+dhDXnEEmw6Zr169KkmSJJFkyZJFKOva9etyXT/J9RrSUGKOwPjJ -v0r2rFmk9j01Y67QGCrpwoWLMnvuAtl34KA8WK+25M+bO8olT5/1t4SGppJ7a9UIqoyFS1bI5q3b -5OXnnwoqPRPdfgLXrl2THydNlSp3VJASxQrf/gqxBiRAAiRAAiRAAiRAArFGgDE1Yg1twi8YFhhQ -aMACo/1H7/tUaIAElB1IA0Ee66piTjj+wHCoRZsO8vI7reTc+QuOKyJXVNnx9nsfyxvN2sily5fd -rvEgcgQWLF4mazdscmW6cuWK/PzrdJkY7kLkuhBHdrr0+lLGjZ8sm7dsk4sXL0arVtP//FvmzlsU -dBm//DZdkOf0mbNB52HC20sA3xW//jFLNv239fZW5Bbe3fOZvoW35q1IgARIgARIgARI4LYSoFLj -tuKP3zf/aUpYDA1vLiXGMsNjghzmftLQNNpad3gSgPVFs7deFkyyx/4wye3yJFWGnDl7Tt56tYmk -SpnS7RoPIkdg9LgJMnXan65MISEh0v3zj+XzT1q6zsWVHYyFbTt2Se2775S+XdtL8aK39s37Rx+8 -K53btpb06dLGFSSsBwlEIOD5TEdIwBMkQAIkQAIkQAIkkEAJJPtcJYG2jc2KRQLWSgMuJ/feFdGM -v1OPASamhqc7SumSxU2tbLwNe+ysajZ1gdh34JDMX7hEKlUsJ5kyZpBDh49K/8EjpWTxovLis0+Y -5LDq2LV7ryxduca4pCCd0yVl1Zr1cu3adbfJ6N59B2SPfrJny+K8pdv+yZOnZNXaDbJJrQLg6uIs -d/fe/bJ3335JpxPclavXyc49e12uEHCbWbdhs2zUt8Pp07cYVQ4AACmPSURBVKUzLg5uBXs5OHfu -vKxYvVa27dwlqVKllLRp0rhSgTHcLuBys2jZSmOdkjVLZnMd+ZZpuw8cOiyZM2eUkOTuMX99teHS -pcuyZv1GZbtUkiVPJigPbj5p0qTWso6IKNOMyvGEMti4eatkzpRRdu7eY9qaMUN6r23atWefLFm+ -SlA2+g5cIOnS3myLOeH4s3f/AW33Otm9Z7+kSJHCZ9ojR4/JqnUbZOny1VIwfz5JmiyppNVyU2oe -CK4v0WunTp3WfsooybVNVnz1lcv9JHzcYhyhv48dO6HjIqvN7toeO35Czp47JznCr9l+SZI0qSxf -tVaO6nVcc449V2bd2X/wkGzZtlNyZHdPs2PXHm3/PsmZI5tJDuuCTRqHZq2OIYyFdGlvKlEwDmBZ -kyZ1qKR0KPTwHOFaBu0b22eZMmWQ/7bukKUr1kjhgvklqdbTKTZd1iyZBH23VPvu2vUbpq892+Bv -TPvii3uh3OU6PvHcptOxlSpVKmcVjNWVr7aCw2rtj5QpU8ipM2dM/8LRDOPSKei3zVu3m3F0/MRJ -vY+Oi3A2V9X95JffZki50iX1O6OIM5vbfqBxaL5jwsc3LIQypE/vNsZQmL9nGNej+z0ViIe/Zxr3 -p5AACZAACZAACZBAQifgPhNK6K1l+2KMgMtKw0cMDetq4u2GUHT4stSw6V976Rkzaf9q2Cjzdn7I -12PNpWZvNjVbWGx82O4LweTdCqw3en/R1kzUca7XgKFSt/bd8uoLT9skMv7nX3XiuFVGfNXTdc65 -8+/i5fLl0G+cp6RCudLy0fvvmMnhJLVOWbF6vZmEYyIF5Uit6lVk+87d0q5zL6OAsJkfuP8+ebmJ -7zgMmFyP/m6iTW62D9TTPOGxG3p/OUwncunlkCoboNi4/767pGSxIuItX6vmb0rVShVMGf7acObs -WenZf4hJBwUP9p9/qpE82rC+9FOlUdFCBaSNthUKhxGjv5fyZUvJmnUbXXW8s1olee+d18wxJryf -deppJrA2QeU7ypvJ7MMP3C8vPPO4Pe22HaVWIjNmz3U7Z+vgdlIPoDSwjP6ev1DwadfmPePyhP5F -PZ2CfrqjQllzyldfOdNjwtl30AijNGnZ7A3nJdf+L9NmyDJVEIwe2tecQ79ky5pZlRWHjUURTmLs -tW3TQooWLmjSOP9s2bZDhowcK5+2amZ42mudVfGXO1cOM762bt8pHb7o4zZ+imhfdPy0pU6ikxvl -FfqqdYu3NE5EeVuE9B4wzOR/751XXX2GOqA8SO177pRQj9g0tm+rV6koi5etMunwBwqsPl3bSWi4 -AiLQmPbFd/DIb+WfBYslmSpTMG6xff9/r7vGZ6C24plGW8uWLmGUhLaCUMD1+aKdUXbA/axD176y -UxVDVnCfzz5sEfQqS4HGIRRZbdp1FTznVqCo6/DxB5I3Ty5zytuz6HyGY+J7KhAPf8+0rTe3JEAC -JEACJEACJJCQCbi/wkvILWXbYpQA3lb7WqIV1zZs+i/g/fwpNmCx8OqLz8gBnTh26zvI+MY/88Qj -LoVFdz2HH/uYxH739VfyuU7+4KbQXieG0ZHvJ/4iBQvkk+EDuptJbP0695i3xv/pxNQK7oPgg4P6 -dDEKlwv6BrdT9/7mbfmAHh1NPig0MOFZtHSFzea2hRUEJutlShWXof26yjC9X83qlU3sBlyzsl8t -Vp576jEZObCnvKLKmf/0zTTyQYEBxczQ/t3M2/j+g0YKLAog/tqAieGPowYZpQzeYmMfCg1fcvTY -cVM/3KeSKgsQNPPU6TMm+bfqHoQ38lBejBnWT/p162AsZ3yVhfOwrJjzz79SVxU0Y4b2kyHadvD+ -fuIUtwm9LQMch3/Zwxw2ff5JU18wQ+wPTM6fUgUZyvmyZyfJlTO7QOGAe1jx7Ct7HlsoNGD9AysQ -uJhUq1zRednvPtqN/hg3YoBRVly8dElm/TXfa54aVSuZif0//y52XYei4/yFC1Kvzt0mdkxHHT9p -dMIMpdxYLfP1ps8Zl5uvv/3RlSfYnbOq8OvZ6VMZO7y/S0HhLS+Uc13afWja8PZrL5jJ++AR35qk -wY5pT76wfIBC45EH7zfP5deDehsFAILQQhAnJ9i2bt6y3dQP/fvsk48KxiKUXBA8V3u0D955/UX5 -Xp//np0/M+e/m/Cz2Qb6E8w47N53sGECRRL6GYra81p/KG0gwTzDMfk95YtHZJ/pQGx4nQRIgARI -gARIgATiGwEqNeJbj8WD+kKhAYWF5zKvzqr7Uog40yCGAsznYSmAH+6PPhQ2+cZbWsRYaFi/jnkr -jze0sGBoopNrvFXF5CeqMrB3ZxNbIn36dObt+6MN65minG+EceLdN5pKlsyZzFv0LWrqj0ltszdf -Ni4GeGsPCw1s4QLgTZauCHtDjgkTzOoz6P3eee1FeePl540riM2DCf/DD9Q1bilwE7Fv1vFmHm+N -4RKCGCR4I75u42aTLdg22Hv428JqBPXDfR57uIFJumzF6rCtuhegf2CVAXcQKBV8WTvYe8A9BZPt -N3TSDvcCuPY0UMUR5KAqsIIVTGrxtryxuj+hHFjM4N7gAPcNpzj7yp6/rgoNWOTAAqOdWljcUb6M -vRTUFveuo6vEwIoC1iywjoALjjcBm2rhVhFwZ4LMg/uPjlsoPLaoogrKgf+9/pLkzZ3LuBLBKgfl -2v72Vq6vcxhD+fPlkRCNk+JPMEZRb7ThvrvuNIoyuOFAIjOmnXzPnw8L4nr69FnzTMBdpocqWHp3 -aRtebvBthUIR9UP/PqJjDLwWLl1uysHKNVBmYgv3GqyGU0UVfXCJCUYCjUN8x8CiBEo1WMaAkQmI -rFYa9euGjddAz3BMf0/54xFMm5mGBEiABEiABEiABBIqAbqfJNSevQXtgkWGN7FxNPxZYnjL5+3c -c+oa8UWvr+Tpxx82kxqkQRwNSLEiBc3W/ilSKOx4i8YvgBIkKgKXDLiooAz4ymOyCbmuMQesQJng -jGGBt+6QL3SFjqQOU3/kxWod3gQxD2Dub039kQaT0Lr31nJLnis83oI9aSdSr7zb2p5ybbfv2G0m -ecG0wZUpwA7cI6zky5Pb7OJtO6wcoECyrh42TYH8ee2uz+1SVYr8MfMvjW2yXye+l12MUWYwgnSw -YIHSyylQCECgJIDCAeLZV+ak/rGrYkDxVKZUCXs66G2eXDnd0qLdO9QFyZfcf9/dxsoFMVegrJj/ -7xKj6IDCY6sq6CBFChdwy16sSCGj0IMbRGQEsTuCEZTvFDxP6Bv0a7Bj2pNvUW0DxsTcBYvMB8qG -u+6sZhQBYB2ZtubJfZMxFHqZ9HlB/BAIxsCvf/wpCxYtU8uc4xrP5ZJXSx9n+zz3/Y3DnbvCvmM8 -l4PFsT0X6BmGVRUkpr6n/PHwbBuPSYAESIAESIAESCAxEaBSIzH1dgy2FQFCo6O08Oe+4qxmipAU -5hBva62EhoYFHbx48ZI9ZbZ2qU+8HbZyTQMGOuXaVfdj5zX4v3/Uvquk1vz36YQZb7uRf+jX45zJ -IuwjqCPkxecaG4sLm+CC1i+LTsS8CYJdYmIeWcmaObMcPnJM3lWze6eARSG16ohqG5xlBbOPgJKY -0B7UQKVOOayBIf0Jgoj2+Wq4sbKAhQcsLOBGMk8n+cEK7g0FEKxjnILgkJDUqVM7T/vchxvL+o3/ -yYSffzNKM58JvVxImhShK4MXvOVPHRoqcEHB+ILrCRQdkNSO8ewMFGsn8DYoKtJaSw/sQzyPw84G -99fz+cF4hSDYZlTGNPLCagIuYXBDgVvPwiXLjTsULGu6dvgoqLbadvsjPOaHn4yrFhQoUATCmghu -Wc74F6iPLwk0DtOkCfsOgbuJLwn0DMf095Q/Hr7qyPMkQAIkQAIkQAIkkBgIJE0MjWQbY48Alm71 -FLOcq7qfQLy5oNg8WAo2KoI38jBFx5tWp2A1EAgCLEIwOXNaSuDt7nZHYEGTyPEHb1bhvvCyxkpo -8vTjcre+YXauQOFI6rZr33hjEnNntcquD1a1gFuJN8GypJjY7gy3OkEaTMj6adBKrPzgS0rrRByC -e9p7Ib4GJnWYZEWmDYibEB0pWaKoUQpglRkIVmkY+s1Yv0Va9wbEJ2ik7kRoAyb7kZVCBfKaIJIw -8bdi61G8qLsFgr3u3CJNWw0qiWCUk6f+ESHgqDNtTOxDEVNHJ99wJ/l73kLTZuuCVbRwWH1tvAjc -D8qKlWvWGYsjKHCssgNxFayc1BVfPBU79lowW6e7DJ4NrFYCRRWUglEZ07gnVjtZr25QuXJkl8cf -ecDEukAfI+go6hpMW4Op+wqNrYExDwVK/br3mngoUHyCVTASaBzCEifM3cU9Js60GbNN0FfcI9Az -HFvfU/7a5+2ZxncahQRIgARIgARIgAQSMgFaaiTk3o3FttkVTKy1hnU5sbe0E7bSJYrZU2YLCw3k -wXWbxi1BEAeYINZTf/vps/6WYd+MM8u+Qnnx51/zpGrlCq6YFEXVnB7xOEZ/P1EqlC1tJpMILoqJ -mzex5t2//jHLuIVAyTDm+5+8JXU7ByUKYiwM/+Y7s7Ro/rx5zMots/6eL882ftQEwnTLoAf31qou -U6fNNC4rz2iaFDoZw+T64OEjumRtY8/kruN7alaXKZqvbZfexrogvS4ti6Ur4f/fuW1rCbYNRTRW -AZQAYIiYAVFx13lTYzdgJZnu/QabSTqUNDmzZ3PV1duOrd+48ZONQgP95rkSird8nucQ3BRBQbGC -yEMN6uhypqflh5+mmIku3DsCSfJkyc0SrFg15oNPOkkfLau3rqyBuCCxJffXvkt+mz5LMC4QJwXj -GFKkUH4TEwKrcWBSCoXAX6r4QJBcBAyFwKIFE/bZmjdTxvS6DGx2YwFhLkbxD+qSXN06Cuv9YSmD -eBRw84JEZUwjH1yK0C8IKot4NHBVWqdL0cLVCu4nwbQV5QSSfPqMQQkDJQNYQFEEXsEqNQKNQ/TN -g/Vra3/NloHDR5vYJxir+G6oVaOqqV6gZzi2vqd8sfH2TI8Y84P8rYF5u33+sbE885WX50mABEiA -BEiABEggPhOgUiM+995trrt1QQlTUhR3KSk8FRy2mmEKjTDLjmCtNMLnfbYI1xYrYcA1BJMxTAAx -mcFyowjWaQWBNzt07WPM1Kf/+bdRLuDNvI3JYdPZLSbkzz3ZSCboSg1YUhJvap9/+jEZ++Nkm0S3 -EY3A4e+PZR77DRwh4yf9aqw9kBfuFbBG8CYIMtrhkw9k0IgxMlInHhAoWz5p+T8PBYP7/TC5bf/R -e4IlboeP+s7kg6VD87dfcb1dD9wGMRPObaoIgck+3BAQBBSuA0n0A7ETbpzzJbBi6d/9c7UoWG8s -RDBRvPeuGvLy2y19ZdElRmtqIM9NZoUMrJKBNmOlDEwWfYm3MQBFzJuvNDGuIwOGfGOyYiKOYKE3 -45S4s3OWnzRZWLuQtr0uEfth2y7SsUd/+apXJ7d4KchjWTjzexsH7tcjHmF84QPFVd1773IlwPhp -//H7aqUzUiZO/s2MH3BBPyJgqJWPP3hHlykeJuPGh63wgWsnVZljxdbTX5/ZtNhi9ZYfdNUZWFDg -+amnyx8/8eiDJklwYzoi38oVy5kypqiizS63C4Vfq2ZvusoN1FbbjiR+XHywTPP+Awddzyb6HgrN -VWvcrZxsWebmjj/BjMMXnnlCrqq7GhQm8zWwKwT3gDIPEswzHBPfU7YN/nigPlAieT7TsPiBpQYC -41JIgARIgARIgARIIKESSKJmx/y1k1B79xa0y+lqAiWHL4VGsOmiUmWY4cPNw/749ywDgRYxyn1Z -aHimxyMBKw2Yt0M5ERnBBOKU1gereviqj2d5mFQi1keaNMHFgrD5ke/y5SsCaw1PCaYNSIP8KVKE -BF1X533mLVyik6hdgqV2bfwAKCqw5GXzt152vdF25rH7CKKKQKxgHF1BHJFQjWuCFSrismCC+W6r -tpJeFRZ2CVLP+mL8nNP2YPUdX4LxDmWMM86Mr7Tezs+eu0BGjP5esEoOJuYn1HrJ33iNypjGfWEV -hTHty3oimLZ6q7/zXGSfbWde7Ac7DtEW9IkvhVEwz3BMf095tgXH3p5pKH+hpKKQAAmQAAmQAAmQ -QEIlQKVGQu3ZW9gua4GBLcS6lcD1xLqn2OogloK9bs9xGz8J4E08LFow2atUvqwcOHRIY5hsN8qj -/j06mtgM8bNlMV9rvOmfo8qEDZu3yEcfvBvpJWRjskZOpUZU3I5isi4siwRIgARIgARIgARIgASi -S4BKjegSZH4XAavcwAmr4MA+LDjM9rGoBQY1mfknThJAUMip6jqyb/9BE6gUwROf0n4O1iomTjYq -FiqFALCI+YCglk6Xkli4VcAi4f4Dyym4hPizCAlYEBOQAAmQAAmQAAmQAAmQQBwgQKVGHOgEVoEE -SIAESIAESIAESIAESIAESIAESCDyBCIXMCDy5TMHCZAACZAACZAACZAACZAACZAACZAACcQKASo1 -YgUrCyUBEiABEiABEiABEiABEiABEiABEohtAlRqxDZhlk8CJEACJEACJEACJEACJEACJEACJBAr -BKjUiBWsLJQESIAESIAESIAESIAESIAESIAESCC2CVCpEduEWT4JkAAJkAAJkAAJkAAJkAAJkAAJ -kECsEKBSI1awslASIAESIAESIAESIAESIAESIAESIIHYJkClRmwTZvkkQAIkQAIkQAIkQAIkQAIk -QAIkQAKxQoBKjVjBykJJgARIgARIgARIgARIgARIgARIgARimwCVGrFNmOWTAAmQAAmQAAmQAAmQ -AAmQAAmQAAnECgEqNWIFKwslARIgARIgARIgARIgARIgARIgARKIbQJUasQ2YZZPAiRAAiRAAiRA -AiRAAiRAAiRAAiQQKwSo1IgVrCyUBEiABEiABEiABEiABEiABEiABEggtglQqRHbhFk+CZAACZAA -CZAACZAACZAACZAACZBArBCgUiNWsLJQEiABEiABEiABEiABEiABEiABEiCB2CZApUZsE2b5JEAC -JEACJEACJEACJEACJEACJEACsUKASo1YwcpCSYAESIAESIAESIAESIAESIAESIAEYpsAlRqxTZjl -kwAJkAAJkAAJkAAJkAAJkAAJkAAJxAoBKjViBSsLJQESIAESIAESIAESIAESIAESIAESiG0CVGrE -NmGWTwIkQAIkQAIkQAIkQAIkQAIkQAIkECsEksdKqSw0wRPYvGNfgm8jG0gCJEACJEACJEACJEAC -JHDrCJQolOfW3Yx3SjAEktxQSTCtYUNIgARIgARIgARIgARIgARIgARIgAQSDQG6nySarmZDSYAE -SIAESIAESIAESIAESIAESCBhEaBSI2H1J1tDAiRAAiRAAiRAAiRAAiRAAiRAAomGAJUaiaar2VAS -IAESIAESIAESIAESIAESIAESSFgEqNRIWP3J1pAACZAACZAACZAACZAACZAACZBAoiHA1U8STVcH -2dCL50UYOzZIWEwWkUASkdBQPa1bCgmQAAmQAAmQAAmQAAmQAAnEMgGufhLLgONd8Q1LiBzaFe+q -zQrHEQJpMojM2KGKjdRxpEKsBgmQAAmQAAmQAAmQAAmQQEImQEuNhNy7UWnbudMi5y6ptUZUMjMP -CZxSBBw8HAckQAIkQAIkQAIkQAIkQAK3hgBjatwazrwLCZAACZAACZAACZAACZAACZAACZBADBOg -UiOGgbI4EiABEiABEiABEiABEiABEiABEiCBW0OA7ie3hnP8vwvjPsb/PozpFtDLJKaJsjwSIAES -IAESIAESIAESIIFIEqBSI5LAEmVyKDSyZ9cFLWjYkyj731ejDx8Uue7rIs+TAAmQAAmQAAmQAAmQ -AAmQQOwToFIj9hnH/zukSakrWmzXFS3SxP+2sAUxR+DeXLpSjio2aLERc0xZEgmQAAmQAAmQAAmQ -AAmQQKQI8NV7pHAxMQmQAAmQAAmQAAmQAAmQAAmQAAmQQFwhQKVGXOkJ1oMESIAESIAESIAESIAE -SIAESIAESCBSBKjUiBQuJiYBEiABEiABEiABEiABEiABEiABEogrBBhTI670RDyux+I9q2XS+umy -ZO8aOXLueDxuSeKqerY0maVa3vLSuMwDUj1fhcTVeLaWBEiABEiABEiABEiABEggQRCgUiNBdOPt -a0TPf4bL2FW/SLI0IZI0RVIJTZtGkug/StwmcEOje56+fEFm7vtX/vhvrrxY8TFpc8+bcbvSrB0J -kAAJkAAJkAAJkAAJkAAJeBCgUsMDCA+DJwCFxrj1UyUkY0q5kTyJXNP1Pa9duxp8AUx5ewno0580 -eTJJmTrE9CMqQ8XG7e0S3p0ESIAESIAESIAESIAESCByBKjUiBwvpg4nAJcTWGiEZAuVa9evyY0b -18kmvhHQpVivQRWlfZcsTXLTn/cWqk5XlPjWj6wvCZAACZAACZAACZAACSRiAgwUmog7PzpNn7j2 -D0mqb/iNQkNdGSjxlwBcUa4nU6sNdSFCv1JIgARIgARIgARIgARIgARIIL4QoFIjvvRUHKvn0n1r -REJEp8NUaMSxrolSdUw/qt2W6dcolcBMJEACJEACJEACJEACJEACJHDrCVCpceuZJ4g7Hj1/QkTj -aFASEAHtT9OvCahJbAoJkAAJkAAJkAAJkAAJkEDCJkClRsLu31htHa00YhXvLS+c/XnLkfOGJEAC -JEACJEACJEACJEAC0SRApUY0ATI7CZAACZAACZAACZAACZAACZAACZDA7SFApcbt4c67kgAJkAAJ -kAAJkAAJkAAJkAAJkAAJRJMAlRrRBMjsJEACJEACJEACJEACJEACJEACJEACt4cAlRq3hzvvSgIk -QAIkQAIkQAIkQAIkQAIkQAIkEE0CVGpEEyCzxzyBlMlSSMOC90i1nOUlaZL4vcLK08UekG/qfSET -G/aXjCnTRwvW2+WekTH1u0nRjAWiVQ4zkwAJkAAJkAAJkAAJkAAJkEBCIZA8oTSE7Yj/BAqlzysj -6naSbKkzSxL9B8GKHLN3L5SW83rckgamDUktH9zxsuw5c0BGb/w5WvdsXLS+tK32jinj0rXLEpI0 -WbTKq5OvhpTMVFiKqVJj68ld0SqLmUmABEiABEiABEiABEiABEggIRCgpUZC6MUE0Ib0KdLK9w/0 -luyps8ilq5dl4YFVsuLwBrlxQ+T+/DXluwa9bkkr86bNKU8VayBNSz8W7fs9WOBuU8aELX9I1R+f -kiMXTkS7TBZAAiRAAiRAAiRAAiRAAiRAAiRwkwAtNW6y4N5tJDC4dntJExIqJy+dkTqTm8rV69dM -bUpmKiTjG/aTclmLCxQOe88elNfLPmXsOKbtmCvPlmgo6UPSyueLB5r0qZKnlIcK3it35qooyw+v -l1+3/yVnr5x3a1n9/LWkZu47JFWylKo4WS8/bZ0p129clwpZS5rykDhN8lB5r+JLsvjgalmkHwgU -Lk8UuV8KZ8gnM3f/K3P2LDL5zEWPP++Ue1aKa90h2UOzmLK+Wj1W09+Q1MlTSYMCd0mt3JVk04kd -Mm3H33Lg3BFXCf7a50oUvvN0sQclV5psqgRaKUsOrfW8zGMSIAESIAESIAESIAESIAESSNAEqNRI -0N0bfxpn40S889fnLoUGao9J/zfrJxsFQNksRY1So1n5JoJQG2+UeUqgxIACBEoNuK9MeuhLSR7u -5gHlRZvKr8lzf7Qy5aC88Q/2lVKZi2DXCGJ3vFn2aXlo6tvySOHaRiGCCyj3tTKNpYgqMKDUeFyV -GR1rNA/LpH8fUCuM4xdPSYNfXhe4lnjK2+WfdbnQ3Je3muAzZM0Pki99To2vMcCtji0qvCBdlgyR -CVumm2J8tc/zHnBtQcwOKG3GbZrqeZnHJEACJEACJEACJEACJEACJJDgCdD9JMF3cdxvIBQIsF6A -FcP6Y1sjVHjAqm/l6d/fl+m75ruuIebGpetXpNfyr6XN/DDXlLENehhlwfRd8+TJae+pBcYMSZYk -mYyq183kg2UEFBqnL5+V12e3k//91UnOXblgLDBgOdF/5Rj59N9+Ji3SPPtHS+m8ZLCxEPm8RjMT -36PPilHm/KYT2yVzqgwyuHYHV52cO0/81lx2nd5vTg1c/Z3Jc1nrO7ZBT1NHWFU0nfmJfLNhkknz -WbW3jQLFluGtffYats1VEQKFBurf6Nd35djFk87L3CcBEiABEiABEiABEiABEiCBREGAlhqJopvj -diNLafBLyIWrFyNVUSg6rNtGDnUNQVwOWE+0md/blNNp8WC5J3cVo7SA68iC/Suk/HeN3O4xf/9y -4wpSOXsZmbp9jgbg3G2uX7l+VTYc32b23zDuLknk771LZMzGX8y556e3luXPTRJYj3iTbaf2yPmr -F8wluMygLLiJIBDpeW3n67Pammsrj2yQ8llLSJXsZaW+KlZgzWHF2T57DltYjdTIWcGU0+i3/zFW -hxMO90mABEiABEiABEiABEiABBIVASo1ElV3x83GWuVB6pBUQVcQVh1WoYFM9+apZvLCemJNkykR -yrk7d2WZpLEz3r/jJY2LUd8oQJzLxdrVViJk1BNQOEDgQuJZdqhamKRIGiKwwggk9+apapJgZRWn -rDy80dwDihUrnu2z57GFQgOySIOpHj5/zOzzDwmQAAmQAAmQAAmQAAmQAAkkRgJUaiTGXo9jbUZM -ClgvwAUFwTpXH93kVsNHC9eRajnKyW8aUNMG7bwh193SnLx02hxjCdiv14e5dOBEhhTp5NTlM7Lq -yEZ5u9wz8mrpxgIrjEUHVwmsKerpyio5U2d1K8vz4MyVc+bU/nOH5fed/7gu27Kve9TFlcBj52i4 -iwgUIU7JkDKtOTylQVKteLbPnnduscTr/fnulFl7FjpPc58ESIAESIAESIAESIAESIAEEg0BxtRI -NF0dtxu6WWNUQAbVbmcsH2xtseJJR41nAcUG4lz4kn/2LzOXoLD4RpUaX64aaz7rj22RkKTJ1S3l -tFpaVDdpRv+/vfuJsWuK4wB+ZtrOdLSmlFGqJZXQFqFlURUJTfxPiiCxIjUriYiEiIgNsRMbEX8W -EhtBREgE9SchFiQ2NESpSP2Plko7Uv03Zp57LjPmMW+8N0dz7p35nAUz8+6559zP6eZ9c+7vbH0p -3PL2fWU9jn/fszhDtmgTg4d4vGxsB4qjZsfuG/+/++BQGB4ZbipsWl7Y4j/xVZfY4jPF12XG2oZl -55U/xpNW2mn3f/Do+GswD15wV9O92unvGgIECBAgQIAAAQIECMwUATs1ZspK1vw5bn3ngfDGNU+W -r4W8f8Oz4eNd28LcrrllvYn4msj2oe/Ha1xM9qgHfj9Y7Mb4PKwZWFXe570fPyzDgzOPObXcmfHI -lqfDtuIkldOLQqE3rroqnLhwSVhZHLkaTzeZ2L7Y83UYaYyUu0biSSpPbX0xbC52Z9x5zs3FUa7L -witXPVHuJFm35KyyVkec1+OfPDfxFi1/jnP8qNgxsnZgdXh542PFcbJbw6lHnRwG+o4uTzCZuAuk -5U2KD+KulliwdN3xZ4VVRT2SZy5/KFzy0mBZaHWqfj4jQIAAAQIECBAgQIDATBOwU2OmrWhNnyce -S3pDcdrID3t3ljsrYh2LGFDEo1vjDodrX73tP59s01v3lIHDgqIYZzxyNQYa8bWUwbfuLWtexJNS -4okk8bSVeJTr8iOPL0KGreV9x14hibUsnv/i9TIgiIFDfD0lhgjxNJUd+3aVfTau2FAGGjEAuenN -u1vO6889H80f31zMMQYbPXPmlcfUDhyxuKyLEe8fDaZqjWJuE9um4vSUOLeBvsUh7tjQCBAgQIAA -AQIECBAgMNsEuoovSs3flGabgOdtFrjwhBB27ghFaYq/28LeIlkoClL2LRj/2xkPXxHmHNsz/vv/ -+UN3V3dYf8KasG/4QBFSfDatHQhxB8bP+3dP+spKPIEkFhT99h8FO//5DPE0lb1FPY0YdIy1WBT0 -pP6lIRb7jLVAUtqK/mXhu70/tv36SspY7fYd2XUofHr75vYub/PfSns3cxUBAgQIECBAgAABAgQ6 -F/D6SedmehxmgdHGaHn8asowsQhoqxZ3RPzXrojY99/1NkK54+PLPd+0unVHf//q1+87ut7FBAgQ -IECAAAECBAgQINAs4PWTZg+/ESBAgAABAgQIECBAgAABAjUREGrUZKFMkwABAgQIECBAgAABAgQI -EGgWEGo0e/iNAAECBAgQIECAAAECBAgQqImAUKMmC2WaBAgQIECAAAECBAgQIECAQLOAUKPZw29t -ChzTd1RoDI+2ebXL6iAQ1zOuq0aAAAECBAgQIECAAIG6CAg16rJSFZvnmiWrQxj++6jTik3PdKYj -UKxnua7T6asPAQIECBAgQIAAAQIEMggINTKgz4Qhr155cWjsG7VbYyYs5l/PENczrqtGgAABAgQI -ECBAgACBuggINeqyUhWb5wUrzg3Xrby0CDZGKjYz0+lUIL52Mjo0XK5nXFeNAAECBAgQIECAAAEC -dRGYW5eJmme1BHp7e8Od5w+Wk3ph2xuh+4g5IczrCl3z5GTVWqnWsylrohSvnIwWwdT1Ky8r1zOu -q0aAAAECBAgQIECAAIG6CAg16rJSFZxnf39/uGP9YFi/dG14bfu7YctPn4VfhvZUcKamNJlALAq6 -5rjV4cpTLgzrT14b4npqBAgQIECAAAECBAgQqJOAUKNOq1XBuS5a1B8uOm1dWLf87HDo0KEKztCU -phLo6ekJfX3zw/z586e6zGcECBAgQIAAAQIECBCopIBQo5LLUq9JxS/EY1+KR0cd81qX1evu9qpQ -XdbKPAkQIECAAAECBAgQmFxAqDG5i79OU8AX5WnC6UaAAAECBAgQIECAAAECHQsINTomm4UdGo0Q -9u+bhQ/ukacUaNiVM6WPDwkQIECAAAECBAgQOOwCQo3DTjwDBvitqJVx8bIQurpmwMN4hP9N4LeD -IRR5l0aAAAECBAgQIECAAIFcAkKNXPJ1GzcGGxoBAgQIECBAgAABAgQIEKiQgEqBFVoMUyFAgAAB -AgQIECBAgAABAgTaFxBqtG/lSgIECBAgQIAAAQIECBAgQKBCAl4/qdBiVGIqY3UzlM+oxHKYBAEC -BAgQIECAAAECBAi0FhBqtLaZnZ8MnPjnc8cTTzQCnQos6FdQtlMz1xMgQIAAAQIECBAgMG2BrkbR -pt1bRwIECBAgQIAAAQIECBAgQIBAJgE1NTLBG5YAAQIECBAgQIAAAQIECBBIExBqpPnpTYAAAQIE -CBAgQIAAAQIECGQSEGpkgjcsAQIECBAgQIAAAQIECBAgkCYg1Ejz05sAAQIECBAgQIAAAQIECBDI -JCDUyARvWAIECBAgQIAAAQIECBAgQCBNQKiR5qc3AQIECBAgQIAAAQIECBAgkElAqJEJ3rAECBAg -QIAAAQIECBAgQIBAmoBQI81PbwIECBAgQIAAAQIECBAgQCCTgFAjE7xhCRAgQIAAAQIECBAgQIAA -gTQBoUaan94ECBAgQIAAAQIECBAgQIBAJgGhRiZ4wxIgQIAAAQIECBAgQIAAAQJpAkKNND+9CRAg -QIAAAQIECBAgQIAAgUwCQo1M8IYlQIAAAQIECBAgQIAAAQIE0gSEGml+ehMgQIAAAQIECBAgQIAA -AQKZBIQameANS4AAAQIECBAgQIAAAQIECKQJCDXS/PQmQIAAAQIECBAgQIAAAQIEMgkINTLBG5YA -AQIECBAgQIAAAQIECBBIExBqpPnpTYAAAQIECBAgQIAAAQIECGQSEGpkgjcsAQIECBAgQIAAAQIE -CBAgkCYg1Ejz05sAAQIECBAgQIAAAQIECBDIJCDUyARvWAIECBAgQIAAAQIECBAgQCBNQKiR5qc3 -AQIECBAgQIAAAQIECBAgkElAqJEJ3rAECBAgQIAAAQIECBAgQIBAmoBQI81PbwIECBAgQIAAAQIE -CBAgQCCTgFAjE7xhCRAgQIAAAQIECBAgQIAAgTQBoUaan94ECBAgQIAAAQIECBAgQIBAJgGhRiZ4 -wxIgQIAAAQIECBAgQIAAAQJpAkKNND+9CRAgQIAAAQIECBAgQIAAgUwCQo1M8IYlQIAAAQIECBAg -QIAAAQIE0gSEGml+ehMgQIAAAQIECBAgQIAAAQKZBIQameANS4AAAQIECBAgQIAAAQIECKQJCDXS -/PQmQIAAAQIECBAgQIAAAQIEMgn8ATbyKkIruU3mAAAAAElFTkSuQmCC -" + xlink:href=" lgdQk9kWx+/3pTcCJEQ6oTdBOgGkhNBCUJAOohKSQEIJMRBU7MjiCqwFEREsK7oKouBaAFkrFqwI qGBfEFFR18WCDZX3AUPQffPem3dm7nd/c75z//ecO/fOHAAoeL5Mlg6rApAhzZaHB/oyY+Pimbgn gASIyNAAaL4gS8YOCwsBiE3MP9r7LgCNzjdsRrX+/f9/NTWhKEsAABSGcJIwS5CB8BFkPBbI5NkA oMoRv/GCbNkoH0eYLkcSRLh9lFPG+fEoJ43zx7GYyHAOAGgyAHgyny9PAYCsifiZOYIURIfMQthO KpRIERYj7JWRkSlEuBphCyRGhvCoPivpO52UHzSTlJp8foqSx2sZM7yfJEuWzl/0fx7H/7aMdMXE HmZgtAB5UPjojJzZ7bRMnpKlSTNDJ1giHIsfY7EiKGqCBVmc+AkW8v14yrXpM0MmOFkSwFXqZHMj J1iU5R8xwfLMcOVeyXIOe4L58sl9FWlRSr9YxFXq54ojYyY4RxI9c4Kz0iJ4kzEcpV+uCFfmL5IG +k7uG6CsPSPru3olXOXabHFkkLJ2/mT+Iil7UjMrVpmbUOTnPxkTpYyXZfsq95KlhynjRemBSn9W ToRybTZyISfXhinPMJUfHDbBIAjIABM4AFcQkC1amD1aACdTtkguSRFnM9nIyxIxuVKB7VSmg52D AwCj73T8GrwNH3t/EOPkpC9zN3J93yPvYcOkL6kUgMYCADTvTvpMtgNAzQegoUWgkOeM+9CjHwzy /qmADrSAPjAGFsAGycwFeAAf4A+CQSiIBHFgLhAAMcgAcrAALAErQQEoAuvBJlABdoBdoBocAIdA IzgOzoAL4ApoB7fAPdAD+sELMAjeg2EIgnAQBaJBWpABZApZQw4QC/KC/KEQKByKgxKhFEgKKaAl 0CqoCCqBKqCdUA30O3QMOgNdgjqgO1AvNAC9gT7DKJgM02E92AyeBrNgNsyDI+E5cAo8H86F8+G1 cDlcBe+HG+Az8BX4FtwDv4CHUABFQjFQhigbFAvFQYWi4lHJKDlqGaoQVYaqQtWhmlGtqBuoHtRL 1Cc0Fk1DM9E2aA90EDoKLUDPRy9DF6Mr0NXoBvQ59A10L3oQ/Q1DwehirDHuGC4mFpOCWYApwJRh 9mCOYs5jbmH6Me+xWCwDa451xQZh47Cp2MXYYuw2bD32NLYD24cdwuFwWjhrnCcuFMfHZeMKcFtw +3GncJ24ftxHPAlvgHfAB+Dj8VJ8Hr4Mvw9/Et+Jf4ofJqgSTAnuhFCCkLCIsI6wm9BMuE7oJwwT 1YjmRE9iJDGVuJJYTqwjnifeJ74lkUhGJDfSLJKEtIJUTjpIukjqJX0iq5OtyBxyAllBXkveSz5N vkN+S6FQzCg+lHhKNmUtpYZylvKQ8lGFpmKrwlURqixXqVRpUOlUeUUlUE2pbOpcai61jHqYep36 UpWgaqbKUeWrLlOtVD2m2q06pEZTs1cLVctQK1bbp3ZJ7Zk6Tt1M3V9dqJ6vvkv9rHofDUUzpnFo Atoq2m7aeVo/HUs3p3PpqfQi+gF6G31QQ13DSSNaY6FGpcYJjR4GimHG4DLSGesYhxhdjM9T9Kaw p4imrJlSN6VzygdNHU0fTZFmoWa95i3Nz1pMLX+tNK0NWo1aD7TR2lbas7QXaG/XPq/9Uoeu46Ej 0CnUOaRzVxfWtdIN112su0v3qu6Qnr5eoJ5Mb4veWb2X+gx9H/1U/VL9k/oDBjQDLwOJQanBKYPn TA0mm5nOLGeeYw4a6hoGGSoMdxq2GQ4bmRtFGeUZ1Rs9MCYas4yTjUuNW4wHTQxMZpgsMak1uWtK MGWZik03m7aafjAzN4sxW23WaPbMXNOca55rXmt+34Ji4W0x36LK4qYl1pJlmWa5zbLdCrZythJb VVpdt4atXawl1tusO6ZiprpNlU6tmtptQ7Zh2+TY1Nr02jJsQ2zzbBttX00zmRY/bcO01mnf7Jzt 0u12292zV7cPts+zb7Z/42DlIHCodLjpSHEMcFzu2OT42snaSeS03em2M815hvNq5xbnry6uLnKX OpcBVxPXRNetrt0sOiuMVcy66IZx83Vb7nbc7ZO7i3u2+yH3vz1sPNI89nk8m24+XTR99/Q+TyNP vudOzx4vplei169ePd6G3nzvKu9HPsY+Qp89Pk/ZluxU9n72K187X7nvUd8PHHfOUs5pP5RfoF+h X5u/un+Uf4X/wwCjgJSA2oDBQOfAxYGngzBBvKANQd1cPa6AW8MdDHYNXhp8jkfmRfAqeI9CrELk Ic0z4BnBMzbOuD/TdKZ0ZmMoCOWGbgx9EGYeNj/sj1nYWWGzKmc9CbcPXxLeGkGLmBexL+J9pG/k ush7URZRiqiWaGp0QnRN9IcYv5iSmJ7YabFLY6/EacdJ4pricfHR8Xvih2b7z940uz/BOaEgoWuO +ZyFcy7N1Z6bPvfEPOo8/rzDiZjEmMR9iV/4ofwq/lASN2lr0qCAI9gseCH0EZYKB0SeohLR02TP 5JLkZymeKRtTBsTe4jLxSwlHUiF5nRqUuiP1Q1po2t60kfSY9PoMfEZixjGpujRNei5TP3NhZofM WlYg65nvPn/T/EE5T74nC8qak9WUTUcaoqsKC8VPit4cr5zKnI8LohccXqi2ULrw6iKrRWsWPc0N yP1tMXqxYHHLEsMlK5f0LmUv3bkMWpa0rGW58fL85f0rAldUrySuTFt5Lc8uryTv3aqYVc35evkr 8vt+CvyptkClQF7Qvdpj9Y6f0T9Lfm5b47hmy5pvhcLCy0V2RWVFX4oFxZd/sf+l/JeRtclr29a5 rNu+Hrteur5rg/eG6hK1ktySvo0zNjaUMksLS99tmrfpUplT2Y7NxM2KzT3lIeVNW0y2rN/ypUJc cavSt7J+q+7WNVs/bBNu69zus71uh96Ooh2ff5X8entn4M6GKrOqsl3YXTm7nuyO3t36G+u3mj3a e4r2fN0r3dtTHV59rsa1pmaf7r51tXCtonZgf8L+9gN+B5rqbOp21jPqiw6Cg4qDz39P/L3rEO9Q y2HW4bojpke2HqUdLWyAGhY1DDaKG3ua4po6jgUfa2n2aD76h+0fe48bHq88oXFi3UniyfyTI6dy Tw2dlp1+eSblTF/LvJZ7Z2PP3jw361zbed75ixcCLpxtZbeeuuh58fgl90vHLrMuN15xudJw1fnq 0WvO1462ubQ1XHe93tTu1t7cMb3jZKd355kbfjcu3OTevHJr5q2Orqiu290J3T23hbef3Um/8/pu zt3heyvuY+4XPlB9UPZQ92HVn5Z/1ve49Jzo9eu9+iji0b0+Qd+Lx1mPv/TnP6E8KXtq8LTmmcOz 4wMBA+3PZz/vfyF7Mfyy4C+1v7a+snh15G+fv68Oxg72v5a/HnlT/Fbr7d53Tu9ahsKGHr7PeD/8 ofCj1sfqT6xPrZ9jPj8dXvAF96X8q+XX5m+8b/dHMkZGZHw5f6wVQCEDTk4G4M1eAChxANCQvpg4 e7yPHjNovPcfI/CfeLzXHjMXAHZ1AxC5GICQawBsqUDaWESfmgBAGBXxewDY0VE5Jnresf581IxU AHDmfaf+g4337t/l/c8ZjKo6gX/O/wLQ8gGznroGBwAAAGJlWElmTU0AKgAAAAgAAgESAAMAAAAB AAEAAIdpAAQAAAABAAAAJgAAAAAAA5KGAAcAAAASAAAAUKACAAQAAAABAAAENaADAAQAAAABAAAC 5wAAAABBU0NJSQAAAFNjcmVlbnNob3QDUX6FAAACP2lUWHRYTUw6Y29tLmFkb2JlLnhtcAAAAAAA PHg6eG1wbWV0YSB4bWxuczp4PSJhZG9iZTpuczptZXRhLyIgeDp4bXB0az0iWE1QIENvcmUgNi4w LjAiPgogICA8cmRmOlJERiB4bWxuczpyZGY9Imh0dHA6Ly93d3cudzMub3JnLzE5OTkvMDIvMjIt cmRmLXN5bnRheC1ucyMiPgogICAgICA8cmRmOkRlc2NyaXB0aW9uIHJkZjphYm91dD0iIgogICAg ICAgICAgICB4bWxuczpleGlmPSJodHRwOi8vbnMuYWRvYmUuY29tL2V4aWYvMS4wLyIKICAgICAg ICAgICAgeG1sbnM6dGlmZj0iaHR0cDovL25zLmFkb2JlLmNvbS90aWZmLzEuMC8iPgogICAgICAg ICA8ZXhpZjpQaXhlbFlEaW1lbnNpb24+MTEwODwvZXhpZjpQaXhlbFlEaW1lbnNpb24+CiAgICAg ICAgIDxleGlmOlVzZXJDb21tZW50PlNjcmVlbnNob3Q8L2V4aWY6VXNlckNvbW1lbnQ+CiAgICAg ICAgIDxleGlmOlBpeGVsWERpbWVuc2lvbj4xMjE0PC9leGlmOlBpeGVsWERpbWVuc2lvbj4KICAg ICAgICAgPHRpZmY6T3JpZW50YXRpb24+MTwvdGlmZjpPcmllbnRhdGlvbj4KICAgICAgPC9yZGY6 RGVzY3JpcHRpb24+CiAgIDwvcmRmOlJERj4KPC94OnhtcG1ldGE+Ctk11PcAAEAASURBVHgB7J0H nNVEF8Xv0nvvggJKtyKiYsMCgr2in4AoRVBREQvSBBERLFiwoCIKIhaKINgFRQUUkSpNlN57XWCX he+eeczbbHh9X7ZxLr/l5SWTyeSfSV7mzJ07CYkHk44KjQRIgARIgARIgARIgARIgARIgARIgASy GYFc2ay8LC4JkAAJkAAJkAAJkAAJkAAJkAAJkAAJGAJ5yIEESIAESIAESIAESIAETmgCSYck1/K/ RY6knNAYePLpIZAgUqCQHKlRLz2ZcF8SIIEYCFDUiAEadyEBEiABEiABEiABEsg5BBK2bZZ8na+R hMS9OeekeCYZSyAhlxyp21AODZ+ascfl0UiABISiBisBCZAACZAACZAACZDAiU3g6FFJOLBP5MDh E5sDzz52AhjUf+hg7PtzTxIggZgJMKZGzOi4IwmQAAmQAAmQAAmQAAmQAAmQAAmQQGYSoKiRmfR5 bBIgARIgARIgARIgARIgARIgARIggZgJcPhJzOi4IwmQAAmQAAmQAAmQQI4nkDvHnyFPMBYCjCkb CzXuQwKeEKCo4QlWZkoCJEACJEACJEACJJDtCRQtKCkNm2b70+AJxJdAwoH9kuuPH0UobMQXLHMj gRgJUNSIERx3IwESIAESIAESIAESyMEEdJD2kar1JOmVMTn4JHlqsRBIWL9aCtxaVyQxOZbduQ8J kECcCTCmRpyBMjsSIAESIAESIAESIAESIAESIAESIIGMIUBRI2M48ygkQAIkQAIkQAIkQAIkQAIk QAIkQAJxJkBRI85AmR0JkAAJkAAJkAAJkAAJkAAJkAAJkEDGEKCokTGceRQSIAESIAESIAESIAES IAESIAESIIE4E6CoEWegzI4ESIAESIAESIAESIAESIAESIAESCBjCFDUyBjOPAoJkAAJkAAJkAAJ kAAJkAAJkAAJkECcCXBK1zgDZXYkQAIkQAIkQAKZT+DgwYOyd+9eOaCfKSkpmV8gliBLEcidO7cU LFBAihYtKgX0M1ZjPYuVXPbeL9/mdVL9yFFJ0zt8VCTp0EFZuWqVJycXrzrrLhzrsJsIv8eLgFd1 NlD5KGoEosJ1JEACJEACJEAC2ZbAjh07ZM+ePVKyZEkpXqyYFCgYe6M120JgwUMSOHjgoBG8Nm3a JMW0jpQOmTrwRtSzA4mJUqxECSldqpTkycvX6sCkcsba/1aslFOrVzMnk5A/QXLlSkh7Yvo1vwpk Nk3ajen/5q6zpbTOpddYh9NLMGvv76yzmVFSL+pssPPg0zcYGa4nARIgARIgARLIdgTwkp6UnCSV KlY0DYyjR4/KEe1RpZGAk0C+/PlN/SipgsSGTRtl965dEo30hXp2+PBhqVy5skhCgrCeOenm3GX7 LEk4Evgc9XHj2fPGXWdRB9MjbLAOB76GOW2trbOZcV7xrrOhzoGiRig63EYCJJDtCaSkHJG9+xNl v/bKHUpK1pfQrOeGnidPbsmfL68U1t7kooULSe7caRxas/014AmQQEYRgBs1PDSqVatmGploaNJI IBgB1A/UkJIlSsr2Vf9KOV129b0H3BX1DB4aJ6mgYWoY61lATlwZfwLOOrtx40YpVKhQTMOnWIfj f22YY2AC8aqzgXNPXUtRI5UFl0iABHIYgW07d8uOXXulWJHCUlz/CuTPJxAQsppBaDl4KEn2JR6U Lds3SKkSRaVMyeJZrZgsDwlkeQJ7NIYGhpxQzPDmUoFrkj6rkg8nS4o+t46YxnykwpG666tHQ259 BufNk1fy6fM4Qb9nBcuvXhvFiuszN0JxAvUMQ05osRNIX10KdtysW8eClTjW9aizeNahLsYSEwbi L+twrPRT90t/PT4B66zWvVjqbCr1wEueixoTJn8rE/UvUrvxumZyk/7RwhOYvfqQbNmTIs1OL6Qv CuHTh0qxdv0G2akNwCqVK2mPBRtToVh5tW3RhiSZvy7JZH9h9fxSrUxerw6V4/NNSk6WTVt3Sr68 eaV6lYpZUshwXgQILUXyFJQihQuqmFFMtu3cI2s2bJEKZUuac3Cm5TIJkEBwAuh9LF6saPAE3BIz gQMHDsjBg4d0/0hFDPehdBiQigZHko9Isj6jEzW/AgXyS8GCBd0JM+V7fhVZoGlE8jqFela6VMlM KWdOOGj661IwClm7jgUrdazrcf/s1gZiLHbw0CEpXTr9MTliOXZO2Sc+9Zh1Nl71wVNRY+k///oF jdo1TwtbZqRfpn/R2sOfbpO5a5Lk8abF5cazC0e7e6an/3DGXnn/t71yZZ2C0vf6438kt+9Pkdbv b5G9B49KzfJ55f02ZWXltsNy9asbTdlfv7OMtDy/SLrO442hw2XL1m1yf4c20vDcc9LktfvAEblu yCazrmShXPJl5wpptmf1L3hJufKVDdqz5CvpyLblVDBIW/W/Xpgoz3+zyyS4+8Ii0uGSYmlO69Dh o9L0lY36QuZbPf7+8lK2aHx7/D/9c5+89bPvx+m5m0pJp8soaqS5CBF+gaCxbtM2KVW8qJQolr77 IsJDxjUZBA6IGbv27DPnUblCGQobcSXMzHIyAcxykj9/NJERcjKN+JwbmO7XIXwpKcd+ROOTreZy VEWSgypwHJbCZthdfH9Toy1mvnyR1xswyZ077XtEtMc7EdN7V5eC0cxadSxYKWNdj2cdmMZirMOx UPPt4209Zp2N9cp4+kS2HhofDH01ovLd26lLROncif5Sj4Wlm5Jl7c54/+C6j+TN9/+2JsvijUlS pujx4+gPJB2V5q9tEqTJnyfBCBooRV7Hb79zeei0PfKZNo6vP6uwdG0SmcfFIVVrIWjA6tSsYT6d /6FBj/LB8qTXJcSZcQYtw7s18dBRWb4l2Rzxl+UHVNRI25MHQcGeI0Qmt6gxd80h+Vs9KWC4DmWK OC6AWcv/sgoBeGhkJUHjkLpqow7my5cvKkRWkMH5nFwJI71pJEACJJCxBPDyvm/vPhX0g0RFjENx IJbgGEWKFlGhIOv/tnJoU2wXPSPqUrCSZbc6Fuw8ssN6eOjDcqrXfUbVY9bZ6Gu7p6JG9MXhHk4C Gt9Q7nh3sxE0ICZMfqiC8dRAmsol88j0bifJzsQUubB6au8CGuYL1idJ1SiGLixbvsIctkTxYjpf e/br2XYyC7Z8db1CKmrsNpt/XX5Q2lyYVtT4+Z+D/l0hkO0/dEQK508Vmab/m7q9ca2CppHq34EL WYYAYmhgyIkVBAIVbMwXk2T+wkVyfoP6JmJ9pQrlpXat06SwBtuKxCZ9/b189d0Uef3FZwMKFf/8 u0IGD3lHHu7UTurWqSlP9uonebVMLw3oE0n2adLgPA4eStbhKLsZYyMNGX4hARLICALw0PBS0LDn gGPgWMWywdCheMUBQeMP3sm11JMZ3sxuj2antzPSZPdGYkbVJVun3J/ZqY65y55dvjvrbHavr8GY Z2Q9Zp0NdhUCr6eoEZhLllj7wMdbZfp/vsb06A7lpP7J+dOUq3YFDE9I/xCFxUuXmXzr1DreSyPN AdPxZcOuw1KheJ6IY3/sU1EhWT3qMNwlGoNnS4qONyniECSwf9N6BeWNn3yixoxjTG2+8OCAiOG0 X1T4aK6xSqz95tjnas0rkEV7jsgD5d2fdCTdnh/JKUdls8ZXqVQicsY4/rZ9KREfO1HLuktFNBwj EsOwnw279boXyyORTOaBoT04h4rFY+upwywnCAqKGBqh7GsVJGCTvvnBjOvGMkSHvj0e0ykgK+Br SEvELCrq3RSst+6wulJjO8arwhpd0FCD4sV2TtgfMTZWrN0oJfVln7OigAiNBDKWAF7U7fDYYA3Q jC1RxhwN48VDDTmZNPlrM6WpszRVq54i55x9ln/VihUr5c/Zf8l2nXqyWtWqcnnjS4MGiMOxcMys EmPDfxIeLDjjzZmGoB7D7dU8aPAb/iMjTSDhw58giy+Eq0uIsfLLr7/J8n//k2JFi0r9+mdrZ0Ot NGc1Z+48+euvORqL5aCccXo9U5ecAtORI0fkp59/MbMfXX/dNRpL6/h3lROpjqWBl0FfrIc+Doc6 ntOEjXD1GOe9a9du+WPWLFn49yKd7vkkuerKK6RM6dLYZAxxhaZPnykLFiwwHWsXnN9Qzq2fdti/ TYtP1lknjdDLx9/xodPnmK2TFyTK94sT5adlB2XfwSOC3vcraxeU2xsUNsML3Cc6R4cfTJi7X6Ys PWDiWZxXNb80qVtQbqtfRBvrqQ0WeEk88sk2qVIqj7x3d1l58btdMl7327Q7RbDPDTos5M7zCqfx AnAfC9/7Td4pY+fsN5uGtipryuZOd8MbmzTOxhEZ2a6crNx6WPp8uUP+01gbsO8WJcrlL22QBNUE vupcUQrmU//3ILZ46XKzpW7tmkFSxLb689n75PPZ+wUiAoawwNsEDK49s5Dcf1namBU4AhgN/mGX TNVrsnKbb6gIGtCX1iggD11RXHwijq8sYPOwcoZ10rwu0TRdPtsu644NQapbMZ/cfE5h6XJVcSOk NNTj4viHteWMhvPOxCN+weTHJQd8mTr+/37xgTSixh8rfA1UJLlKY59Yi+YcGzy3XiB8wH56rJI8 pLFgMHQKBq+bYAbB4ta3NwsCw8IanVpAxnYqb5YRg+OdX/b4zxsrEWC0xzUl5BY9f2vOY8/tXVme +3qnDlPab3jAI6WJntMjVxaXMyunHSIBsaf7Fzvkm78TZcd+n/ADjojtMvDWUnKRlsVtH/2+19R5 MMN1h+HaYUjPPY3SeshgG4b+fKZ1Zca/h/zlufi0Apq+qFyu92WkhmlbMctJuNlNIGBUr3aKPNW1 s5ne9c+/5sq7H4ySUZ+OkycffVBfiPaal6YK5cv6D71x02YpWqSIFNH8nbZB1yNwXrVTqgSN4n/V 5Rc7dzHLSUlJsnLVGimu0fbLlysTdF8kxvngvHB+oTxQjjsIV5AACaSLABqSzoYlMrMNUCxHEtj8 n+XLZc6ceXJ106vMTAXYb70G5v71t+ly2WWXSMUKPiF12/bt8uOPU01jrmaN+HYwPNWjt+CZM/il QTh8RAbR1hcUNHDy5MOH5aXBr+p0kmmf0TfecL1f1Pj1txnS6+m+UrZsGalQvrx89vlYGTN2vLz1 5ms6E1XaThp7FBwTUfGdjVW7LSd92vhxEDKswGGFC5wnlmG2jmF4NhqMtfV3K1Lbt2+fTP7qm+OS l9IAp02bXHXc+khWfPrZGHn/gw9l8pdf6DTkad8Xgu0fri6hbnZ9vJtpBEKs2LR5s7zz3vvSs3s3 LeeVJtsx48bLG28OlZo1TpNcuXLL+C8myJy5c+Xxrr5h69u2bZPnnn9B180z6Zs3axpQ1MDGE6WO GRAZ+B/qrK3DEH9RX70QNdasXavi1TRZuWKVEQ0uvqiR1K6dVgDz4rTD1WMcEzPR3NO2g+zctcsI b1Om/iQjRo6S94a+ZcoK4e3Fl1+Rr7/5Tk6tXt08lz8fM046tG8rre66M2ixWWeDokmz4YQUNfpO 2ilDpvp67S2NL+fvF/yNm7tPxnWqkMajAI1eDANx2m86HAF/r03ZLTOfOsnf271de74hbKzaflia aSBPLFuz+4z5a598/XDFNMewafD5/vS9Jl8sI2Dk7eembUhhPeyPlb5G4B4N5Ikeceex0Ji039GQ DxbPG1NJrl233uRXJ46ixnu/7pGnxu8w+dr/UI6ZKw6av9XKZ+AtqVGX0WBuorxso9/ug+9o9H6h whAa/jbAZ6I2tm2DGUE+cR2chmE4+INnQb8bS2kMEp+gguPDftdP64kBcQuGxnrpIrmM6OEUOiCw 2GMhlsZJxzwVoj1H1A2bT0sN/GqFG3PwIP/B26HtiFSPHQw7GqZiGeyeD7fIpPm+sjt3R74dRm6V JXr+Pa8paTY5j93inc3++CDYCOFiwrz9RriY3fMkvycGhJ+GA9b5xQx7DFxHsIWoBuHOKZ68+uNu efarnTap/xNDeh4bs10W6Owug1ukKtYQZHqoaOI0lAeiHP6+uL+CXFrzeOHEmd4u79feG0zbGo1B MLjw/AYybuJX8q/+QMJGjP5cFi5aKu8OedF8h6thj77Py/XNm8gtN15r1uG/t4eNNMNYsAyhpE/3 rnJSpYr4msYGDX5TAxfmk2d7dzPr4SEyXo9nDeJJ98ceDul2XaRQAdm9bz9FDQuNnyTgMQHb0MRh uh1rSKKn3L6444Xd9kqGenHftXOXDBj4ggqYxaR5s6tNqb/6+ht5462hJkjmPW1am3UzZ/5u0o34 YJj5Huq/9h0fkPJly8pz/Z8Jlcy/befOnWZoh39FBAuYtjXULCd7dvuCWvfv1zdoL+MHH46UM884 XQa//IJ6q+WRKVN/ln79B8j8+Qvk/IbnBSmFb8rY/DqrQ042NPpQl1DPrMDhHn6C80cds9uxTzS2 Q6876h4MgVitnXnGGTGLGvsT98vmzVvkqDbOIrVwdQmePOjVfmHgc6ZewGuj/X0PyLjxE4yogRgG wz8YYZYhdMAGvvCSwFOoY4f2Zth063va6Ww0paXRhRfIDL2XQtuJUcdCM4j/Vvs8hBCHug2Lt7fG X3Pmyr3t7jP1GeLvdz/8IK+/8ZbWnQHS7Oom5pjRPh/NThH8F64eI4tXXxtiBI1PPh6hnr8V9V7Z LA8+/KiKi19Lp44dZPnyf42g0ebuVtL2nruNxy9EjveGDZcrLr/M7BO4KKyzgbmkXXvCiRoQDKyg AW8BzBpStEAu+Uobxmhc/aKxFbp8tk0wowgMjbCWw7aYZfQed2tWQmpprzPiMjwxdrtp8DXTQJ7T u1VK4+GxRz0oICq0R++0zqZRIG8uGT9nnwzQGTb+XHVIek7YIc/fnNqoNwfQ/9Aj/qTmC3tYvRPg hRCJ3abCRzONG4EywTOkqXqRvN2yrPZ2iDm/YHn8t3KV2VSwYIG4TU8GLxinoIF4FlfUKmA8Dcb8 td8cD4JA5ZK5pfPlxc2MIs1eSxU0ShXOZXr0CyqzETP3Gi8EiAFNX90gs3tWluIF0w5JsQFAL6tZ UOpUzGsYQjSBvameDI30uoENPGusqAGBCaIG9B54CMAu0nQ11ANhmJYNYgo8OsoXyy3Tj21HGnCF RXuOZifHfxAeIJDACwVDM3DOgazb+O0C0QaG9D8+WlFK6JCcLXtT/IIGxJi3W5Ux3hMQY55VLx/Y 61P2SNerShznpYOAp8jrxrMLyUb1jvl+0QHjIQHGN721WWb18HmNvP/bHr+gAY+ZBxoXk3waJPXj P/bK/LU+se6Fb3f5RY1x6j3jFDSuOaOQOT/cK7i/YLied55XRBpWyy/fqmjhFDTgjXNOlXwyTe9B pIPdrgLM790rGe8TsyLEf4eSkrX3L7KeI2c2UMC379ipPaY+7xfntlDLm7dskV7dusj27TtV4Bgh r7zxbti4GUuWLTeCxul1a0vLO26R/1RIGTZitHwx6Rtp07JF0MPhvLbs2BV0OzeQAAnEj4AVNNDI tIKGzd0OAYCQYdNhWzBh48wzzzC7ogfZihrTZ8w0637TTytq2B7m0+vVNdswK8iqVavV2zKXYEiH 7RWHl8fq1atNo3LtunVSrlw5/7Y9OrXjKt12cpUqUqJECZOP8z80DvFSXUgbuFUqVw7pDZF82Oct 6dzfubx7t68joaQeZ83adfo7lktOOqmSM4n07PGkThFfwgga2GCHldhzSZPY8QXHzq//crLZ+uJs CDrPF/UMjUNst73fdh9nukiWe/fsLrffdkvQpJvU43DHzh3qBVEjjXfDli1bzTtkMfUoXP7PclMP 3Zmgnm5VL4miOmSkhKYLZOHqUt06tWX4sKHqQVnN7J5bBbB8+fKaP6wwnhxdHtEYVbX92Z9yyilm GcMBEAvu2ubNpX37e2X06E8jEDVEZ8PL+XXMD8uDBSvuImuIblbEsM9HfMKcohy+p3f43siPPjaC xjeTJ5pnHK5/uw6dVNh404gaoZ6PqOfwAkLnU1kVha0FqudF1DPXbeHqMTw5INze9b87pFTJkspl uZRTL7Wxn432Z7V4yVKzfHWTq8wnPNIuvugi+errb41HX6Vrj+8YszuzzloSwT9POFEDPckwNKz6 qxeEtY6XFjM99U+O266Ntn3y4m2ljUiBxjd6pk8pnUc+71jeL1zcpFPHnlo2rzTWIR5ooGKIhdtV HsMfBjm8ER5rWkISk48KyjBcp3AdoMeH6GANjetf/vEJKFiHKV4jNTRsSxRK8DdgIaKg8RvOFi/9 xySJZzwNzB5i7a6GRWTI/3wCUftLMAxBe6yP9eQPV4EJosbSTUkmGCr2wXl83wWNWF/VvPciHVv5 7DqBSARvDjSQr9PhK257Qa9XO00L63dDKbni5Q1+bwQMs4CoAUECw3pgv2k+sHlrfd4uWL5WG+E1 yvlEDXzHUCOU/7d/D+CrMQg0sGjP0ezk+A/DNsbptLDwIAlmr6r3Cab6hRVT4W1KV30QH5tGFjE/ rF1Ru4BfWDi9Uj6NYZFb5qsYB0Mg2YL50t7mEGr+VOHCBkJ1eiJhlh3MIlRFPUIgHt19LKAqpku2 Hiq3ar0+tecak7+NR4K8Rh4TIrABgVitRwaGnQxU8QNDsWAQLCBqDPs1tZ44pyXGtMxF8icYQQr3 3iQVySDwhTN4HYUbeoI80AuEH+FRn46VvXv3y9wFf5usm155WbhDpNnerk1LObVaVfOH+2jabzPl gL7ghbKFi5aYzR3uaWk8MyqULycVNY5HuFgZOC+cH40ESMBbAlaosG7/zqPZxqVdZxuZtmFqv9vt +MRQikaNLpTf/5hlVmNIwNx58wXixaxZf/pjSPyhy5c3vsx4fSHto4894feuQC/7B8PeNS7Wt93x P7MeveXXXn+zjB41wjT2ej/9jEzS3kBrLf93pzzx+KPqqu97D9i9Z7fc8b/WguEwMAyHGfT8c/7t dj/7mRLmebNbBRTY4FdfN73sWIZQ8tILz0uFYwIx3Kvhbj3q40+00bxTvvn2O7nlphvlzLPORPKg Fu7YQXfMZhtQX1B3AtU1nAq22wajW1yLx6nuUmGq4/2dZcmxhhbyHPR8f7/49lCXruYwqGs7NCbK sHfeSnNYNCg7PfCQrF6zVkZ+OCyoqBHuepbUBiD+Fiz8W+aq+DdH7w+47w/o388cD2JYk6uu8B8b MQs+02EwGKqCoU2wzg928m+PZCFcmSLJ40RNg+ege1geRAwrWFguWLfsmLhhRQ98TtQEqM9W+LDp I/ncunWrmbLbxktB3Xh36JuSmOh7Tw/0fKxdSwO2P9VTfpwy1X+I2269WSD2QVQIVM8bBvAkC1dn tm3zdUhD8L35tjv8ZcLwmD69e5jA8pWOefMuWrzELwIvP/ZM3rBho798gRbCHT/QPifaurStnRx+ 9gh0aIc3oJHmtrbaKEbPMRpS6IlGwwtDPGAPauMbU3k67YyT8pmZR9D7D+8Lt6jRvfnxPSVdNcYD RA0cY4WKIRBGrGGd0zBMAPEP0Aj1yhYvWWayjmc8DRsnAhn3ud43/MGWH3EbnldvFZwrvCngHTDr GGOkuVU9Tqygge8IFIoefMSAgP2x8nhRA14EVtBAGng+vKxDHK7W4Syw+et817COxtlA4xvDG+Ct gDIgdoa1ZqcXlHIqGkBY8W1LNKLG9P98+yPdZceGQkR7ju66011jXoQSNIapmGGHp6A8P6qggaEn 1pzxRXAOGG5ye4Micr7WWQh2dwbz7NUMIOZZQQP5IUYIYp2gDsNQ9yFqOKe1xTAYDEfZpX+I4+K0 XTr8CfnNPea9gW29r0t73R/Veg8vDJitz06GEJMQt8ZaXRVnrP2usTkeTn2fsavT/Tlnvk/MqHFa NbnkwvPlgobnRpUnFHhr5TQuBmzb9rRDaex2+7lliy8OjDPCf/WqJ9vN/CQBEshEAuaFWxuZeNl2 CxR4ibcv5s4XctvwROMU+wV6Ub9IXeLhYrxLG2pouMF6PPWk3NX6HiNw1KhxmqzTYaBtWrcy28aN /0IuatRIHuv6iOzWBty97e+T4R+ONO7533z1pdzVqo0REDD8BL3jI0eNNoLGE489Kldp42/CxEny 9tB35ZJLLjLu+Mh09eo10qtHNx0qUl/efPsd+e77H8047mDxOxDMLpTt1GE1sLPUE6VP757GQ+Tp vv2kzzP95Z23h/h3Re/lnxrccf369eYlH14iSRpEGWJPMAt3bOw3dtwXMlY5BbPbbrlZ0HDJDmaF C6/KunrNGiMW2PwRvBA91b169zWCxtC3hhjvHtTRbt17Sc2aNXW8v89rAoJHl4c7yyUXX2RiAixc tMhkA++JJzUtBI0P33/X7G/zd39Gcj2xz8aNG01QWQxFwbClxP0+z15nfvsTE00ZDyUdkqeefDyk t5FzP/dypGVy75ee7/b5ESyPQM+OYGkzcz3Kab2IgglyKJ95HjpiwNhnKPaJ9VxvufkmM4StSbNr jXdOA53FDqJBuXI+z4tAz8d5Otxt/YYNRrA777wGZigThNaWd/0vaD0PxDdcndm+wydqwOuix1NP yNkaMBmxP94e+p58/Mlncq8ONcTzEmLvc88PkvkLFhovpN+mTzeHS072dUYGOjbWhTt+sP3Ssz67 1dnUVlJ6zjrMvrYih0nm+ea52itvrWrpVDHBroPXBDwy0FuNoIz1T8nn9yA4UwWMQHa6roeo4WyY 23TVA0yrisYfet3heYBGoFPUwH7wJnhWY0BcNGiDafBD2JiqQSXRUI+3oQdlxao1Jtt4xdPAkA2c GwwNeQxzcBoYI4iqbbDP1YYs4ltYg1DktrqVUq/VTG3gus0d3BLbESjUGsQTiBQQBxqrKGGHQsxT /jaeBoQR64lwQfX8Jl7K1KUHZTfilRwL7omGN4YqxXKOFzim3XWXz5bT+Wn5YB0C0brrST09Pwy3 mfaPT5TBkCP8wZC21QVFpP3FxaRQvrRCHLZbcQHL1s6ukipqwHvFesNM1FgbGMIDoQMMgxmCvEIs guG6u2etwTrr5YI0W3X4jK0n+N789eAKtVP8QNpgZr0ZwnlrOAOFBsorT+48xpvDF5gpv6A3K5Dh Ze6MenXMptWr15nPCvrDunfPvkDJzboqVU6Sv+YtUBfILRo4r5xZN3vOfKPgn3m6L69AO0fqhRJo X64jARKIjIB9gXP3isN7w25DTlh2vpTjJX2pih5G2HC8xNuj2l4/CBrwyKhTp7acrr3MaDjO+nO2 ia2BtOed5xNWXxz0vAoAibJGnzF71bMDcX3+PtaYhIiRO3du49FhI+rDswPiROtWd5lDduzQTi68 4Pw0MX7QkG1x+21m+//ubGF6LdesWWf2Myuj/O+iRhfIhHGf+YOfosf8f3feIe8P/1DgjWLdt1HW 1wb74hMhOGov9SjBWPNrr2kW5RHTJreCRSBhIzsJGrZxiPoTzJAmPQaXffxZe7pXD7npxuvNbCOo M4hDAXv8sS6mEQZvCStqoK62vbeN3dX/CUFjxoyZMvGLMYLhUfGwq5s2UQ+iJuZ+eFQDh/bt95yM G/OJqe/IHzOK9ejVR5YuWybvvv2GEVnicdyMygPPB+dzxHlctwDg3JYVl63oi3OC2e/BymqfoajL 4dIGywPrcd+XKVNaxmmg2M/HjjN/WP/sM33kxhuuMyKv+/nY4Nz68tnoj0wsmA0qbmCoFAxCa7h6 bhJG+J99HiM56jHszha3y5QpP5nnPEQNiLkI2IxAtxDvypQpY+KBdNa4G6eckvU6uLJbnc0QUcP9 AmCudID/gt3sAZLGtGr/IV+jDI1bNK4DWeFjjUBMKZrkC8tgkgVqHGJDYXWThzkbaPiORlywY2Am kj3ajreNQKS3NrJtOdOD/1bLMnLfR1uNRwHibziDatq06f1cs3a9cQ1FI69SlPEEgh07VMPX7pPH IdDoLJxm6tZA21LXpV6sFJ0JxG2BRnC4RSDb6dS0biG/qIFhFzY2RHPHNK1o0CPmBq6Pje2AY9pG eSzneFyZHQzc29zfMaMLyoEhHdZQtz7vWE7e/WWvYBiPUwSBKPeMBsMdrcOoMGTF6ZWB/XMFqJjO a3LYp03I0xN3GEHDHhOfqNcQdjAVrNOcCnKeQBfEmViXbcBUu9p6b9jv+LQxTcofG3Lj3BZoOX++ vPrSkyRF8kQ+bCtQPlUqV5JZOiPK+yNHy4UNG5hx84HSvTt8lNx+8/WyTd1ykb7qyVVMQyNQWruu /lmnywSNn/HaW+/pvjfISu09nayBQ6/TIKShRA2cF86PRgIk4B0B9JjDIn1nsSWxAkewQI41TjvV jAOfO3e+aUhee01zs+vllzeWn3762fwOlypVSqpVrWrWv6WeFEPfHWaWIUbAEOwzmK3Rnvgap53m 34whJ2e7hniUKpk63BbjvWFHjx572Pv3TF3A74TzuZ66xbeE4I6IDfKI9uLbmUwO64wosDz6ToHy vjbkLR3K0NQfFPQCFVpg6DkNJWoE+o0yO7r+CyRsZCdBA6fjbuBZrw0rZJjG7jEXftfpR/z10Uce kuuvTw1yXaRwYbGu8hCYrJXX+CywddrYs1ZWG12BDIIG7JDGpApn4erSxC8nmfgDj6unEdKi4Qfv pvfe/0C9NzYZ8SI5OVme7tNP5unQlLffeE1q6ZCC9FikdSw9x3DvC7E0UCcvrrFbSHXvmxW/27ob TtgINaQvlvNqfNmlgj88b36bPsN4PfTu84wZUoe64zbEJsIQE3ir4TmLoVRuC1bPnenC1eNSOm0r ZoM6+6yznLvpEMODUlFjC8EQi+3vvxfLDSrAWLFwytSfzbaTTw4tarDOGkwh/8sQUcPpqhmqNJiy ykurf7Kv9x6NUgRaxFADty3b7AuOde4p+U0vNxpbaFwt0uEK9Rwu8Xa/v4/NboIpQ52GRpttlDnX Y3pOrIed5Zo+E7M82CEJt9YvLD8vOyCjZ+0TxPVAkFLbe+7MLz3LNp4G3O/jZfB2QMMX548/DFdw x/ZYeWzaWRzzbB2SAM8IzL4Bw7AQt4G9tfNdHg9Yb+NH2DT4XKazbViDF4bl6pyO9XXHjCnNNZ6G tWYaQNQGOh2oQ2WsNT0mfMRyjjaPaD4hYlhRpevn23VoSYE009pCnEPwTvxBZMAwDUynamduQbwL DE1BbBenLdQ6C48kpyEgrjXUS9TTd1Qwsfby7aU1sGhhvwdG3T5r/fUYacDYXneIQfBwcQZ0hZMH hBeIS6gPGEpj0+M8FvXFlKj2aLF9FtZgt/sSD0qRwukTNa66/FL5Y/YcgQcF/i5udL5/hiBnyS69 6AL5YNSnZtVJlSpIl84dfJtd54ExmwmYW1mtijZQHrzvXvnokzEyZOj7Zl39s88wM6uYL0H+w3nh /GgkQALeEUBDMpDHBRodE48dFsv2Zd6WBA0VGLYFMogMVzRuLF9M/NK8UDfS4W6wizXWxjBtuO3U ISaNL71EnxMJgjHjEDQQE+PRLg8ZL65Wd7c1gQ2deR/WoJ/WatWsYRqF8L7EsTA0YOpP07ThV0Os UGLTRvqZW+P4HEkOLnqU1hd4TEuYlJQst958ozaEN5ipC9HrD5EDfytXrpLnB74oD3V+wATM++a7 783hz2sQeqgfjh2pOYWN7CZo2HN01ifUpUB1zKaN5RNeM85eZORRrpwOx9WhQP/+958/SwSZhZ16 anX/umAL7783VJ7o1sM0Fsd9/onGiAoe1D5cXUJDEy77qLsIoLhl6zYzvAjePwg+i3r9zLMDjJcT pqJdr7EH8Ac788zTdVp0nxgTrKyB1kdTxwLtH+s6t7CBa50dBQ17/qi7EOIgbDjrsd2OT2yLR53G cw2z3uD5gaDLiKsBcQMecHiO7tYZmayo4Xw+fvLZ50bQmPzleDNMCp5t93V60FnEiJbD1WOIDq1b 3mWmI/5IhwTC8+6776fo++M6DdTrGwqH5yJmgKpbt448eH9HgefIW2+/K/AmsUGigxWGdTYYmdT1 aVs2qevjsoReC9vjgU+3J0awGyAuBw+QCYZC2KEf43WmBvfMIhgGYXuQzz3ZJ1I0UHEDwxXG6qwd LTRmgdNs4EqsQ/wNt302e99xAQ7t0AekdcYNcO+L74gLMV0DkGL4RDud1vP37qlTmgZK71znjnvg 3GaXFy1dZhbrxXl+ZzBDuWGvaPyQZ27w9QrhO4JJWk8HNIThRYB4DtbGzN4vPZqX9MddQBwUTPtp DTEj3AZPBgy9sFOLouHcS71brDmHtGAohxWq7LVGoxozn1hDPIlAaZzCVbTnaPOO9BPxWB7VmUsQ 5wLTp8IwEwimXIUYgFlyIE7AMMsIAoRC9MLfvR9uNdMTY5udGQbL1jClMWaCQT4wxI2x1wvfMZxn ycZk/3Wys9FgGwzihBXmfGt8/9fXe8bOLjP4h7TXHTOpWKEIQXbfb1NWbHrUB9wXTtEOw1NePzbt MoLLYpaicFZUX9C2bN8gZUpq0N8QL8V2qtZg+RXQqQQx/SrG7uZR1+n8+iPU7u7/+ZPfcesNgj/Y zTc0NwE8sY81xKf5YOir9qsMeraXfxkLDeqfZf726RStmHUIrpKhDENP9mjasqUqhUrGbSRAAukk gBdvCBt4CUfvon1HwXrc0/Z9xnkYp1s10gWzC1TIQCBPNCTr1a1rkmFmFHxHz6H1YrAB8PAiDDf7 2SqwLli40AxZsXnD3X+2ekog8B1EhCuvuMJE3R/w/Atm2kscZ+KXk2X0Rx/aXaL+zJsnrxmGF2zH Ovre0O2Jx2TQiy/7A/A11PHqPbs/6d/lhYH9pf+AQeYlHivRi9npvvZpgj76EzsWcOxoDMKGFTei 2e9ETusTEJqYaVNraQwNeATBQwj1EQ2scIYgna/oVL1t7m0vvdWDAsvIM5CFq0uI1/HIQw8YzwxM 0wpD/ohLAKFvv8bWwNAl2Pc//Gj+zBf9r3+/PmlFDU0fiUVbxyLJM9I0VthA+uwsaDjPN9Szz5ku Pcv58uWTDeq5g7gvEDBq6zMIsYg++fQzM3Sj/LEhve7no32mLl681AxBeenl1PezaMoTrh4jL8wy tENn0xumw/DwB2vTuqXccP11Zrm4Dh8c/OJAefa5gfLgQ76OfNxviLEU7P4xO+p/rLOWRPBPT0UN e1graFgXJbseLwzWLcmu8/oTvdbo/caQDkzNaoN7ovHX4t0t5vCIn2G9CzBVKhpcmAnjpe93CQJd otcfgsad7202Iggah410Ngu3YQgAGmRNNBAjnrOIVdDxI1+gwAvV4yBfGDd9bB/XqYJc8Px608C8 degmmfmUr1HrPpb9Xqqwr4GE2VgwhKaIigbBbPm/K82maIKEogF6/8e+c3Dnq9qAmenkDg1UaRvJ b/y02wzjgGgAjwo7nS72bdHA50GAuCQQnOBtAKGhqQb4fOhy3/ShH+jQCtuABudLdArUQHb/qG3G QwFxL9Dgd8ZhuPGsVC8M7IthJM6ZOiCquK/FNeqt8YFjFheksd4eyCPac8Q+0RiuG4bQfHZfOWnw 3HrDBbE9Hvl0mwxtVdZMcztIZxSBva0xL967u6yco55IS1WMcM7Wgllf3AZR4pIXNgjq9jYVD0bp MBVrEHMQC+aAztJjDXUddRniCe4TK07Y7fbzjvMK+0UNe90b1ypohJmh01KFqbYX+4bRIKCpFUEg 2vXQ4Km4vmt3HJZeE3f6Y5k8rrMGRWKYQaRUiaKybeceqVA2VUiLZN9AaQoXOp6dOx1+LO0Ppntb uO9FiqT1oAmWHueD8wo3Q0qw/bmeBEggcgJWyLDvK/Y7cnC/uFtX8kjGiZ93rs87AR4bVsjEswNB 7hC0EwHvYJgFAsMFXnltiBmqgngc9eufY2ZJMQn0v1Ya4G7hwkXSVeMOYPaT665tLlvUrRkBQzHO HA3Tnt27mbgd2CchSGPT5hfoM1/+fJKos1voIJVAm826a5pfbVy+0WteulRJPW7aZ1r58uVlyGuD TSyEvXv2mrHwaKSGtgTBsU9EswIZzt0pqnnForsKUBjWMWDgC+YQiMvy5uuv6vTmFYIeUv0O/dvO 0UCIj3ftIi8NftXMcHO3Nt4CWSR1CQEg8bdNp4eFZ4ntcUd++D5tqs/LJ1D+znVt77lb8BfaMr+O 5RQxA5ydYi/qLQzeG3gu4pmJP3entkkUw38QsTAMydZZZAEPhxcGDvDn5n4+trzrTpmtwYqffKqH SYM4MpgFKpyI4M/w2EIk9RjD+TETz7333i1bNm+RKlUqH/eOeK6KGOM1HtFGfW7CwwlTEoc31tnw jPS3LvGgdoV7aLayBxIv0POB9XYcK4oB7w7nS0QkRbto0HqdFjR1uEGgfeARsGbgyUYcuG7IJv9M D2go48/GxEDjGsIBeqetDdAhCC+roAFDr37pIr5gkXb7d10qCnruYT/pkJHbhm426fLnVYVZhQXk jzgDNoYG8v6je2X/MXpr7IK3tGGK4Sdf3H/8j8kX6oXQXme3gMEbAQ1YWPnHVpvz+eWJSv6hMd8u SpSWw7aY7fivmjZQsd0dE2SDztfcs+/z5qYe9ubLRg337+RawFCdOk+vda0N/HXzy6eYc8e0rXb6 3EApr1eh4YM25YzYg+3rtcF+sQZHtdfBvQ+4//BoReNFgG0QJR7VIRkwDGWAt0Ygu10b7hABnAbR o9X7qYye09lA3F47ELEQpNXa0zqbBwQtp0V7jtW6r/Gf32qti27BydYDHMNZJnd5cT7X6EwtZz+7 zohrzjI5l8/SoT1Tu/p6953HxtATeP+4DYx/fbKS1Czv6yW7493N/qEsgdJaj5sFfSr7g6wGisPh 3BeC0uj2qa6ifb7cKRBAghlEKgTKddffYOmxfs2GLVKsSCEpUSySH4pQOWX+tl179qmXRqKcXCmV WeaXiiUggaxLYOWqVRLrkAvnWTnfWQK9nNshJ5EIGs58I11O0eElmDITDbpghjHlblEVgY2L64ty ePEgWK6p63H8g2GmqU5NHZ8lNGYxTWNmWML61ZLv5jqS66Dj91FfBY/UayCHPp6Rpkjxqmc2U1vf 0ADEezBENTR83UKaTR/Pz0jqWnqPlxl1KViZ01PHnNcd9aXArXVFEh3tjyD1JVhZ4rHeWaZo8ot1 P+cx0MbDsxDPQZgVg20aW3+RLp71GfUJXhvlNTh7sGek+/m4d+9e9RYr5BeVbRmj+cysehyvOhvN uXqZNh51L1D5PPfUsBXaHhwV3wZCwrpoBQybj/MzmuApaLiN61Reeqinxg8abwBeAPAOwLCUy2oV kH43lPKLDfYYPXQoABpVY3Q4CcQT7IN8EAuia5PifkHDpsdnsYIJMqlzRbl/1FZZoMMEcAzs01iP 8YzrGLb8uYP0YMC7BGLJx9qjjmEWiPmAmBvWNFu/oWf+iatLyDvaMw6BAL3yiI+g+pU/DRaWLP3H fMd0kuFefpz5p8kkxJfe15Y0TDFsxw6fQHKILM21Qd73+lJ63NQMEKcCokUf9Qj4dbkvSCe2QhDC zCHdmpXwCxqpe/mWECcDniBdPtvuF44gTl2vQzEG3FLKnVwudXl72ACgzoSIYeI0zErjtmjP0Tki wnHq/mxtPcAKZ6DT5nq9721U1O850nn0NoGQgOl+H/l0u0xekOgfKoJ9IeB1uESnJ9ZhPIEM3j/w VPpOBTBr8ETBkBcraGD9qHblBMeaMC81f3B9864yxlsDdQvmLHc/nbkHsTRQT51CI4S8djoby1N6 HZ2GoUnwihr7l+/esttwr7TXc0D6aAQN7A8vjXWbfN5E2VnYgKCxY/deqVwhcKA2y4qfJEAC8Sdg 303wkm7+Ahwini/p7uzhzRHsZd2mdQsaWI/ZUeJlEBeSkw9LSoqjkR+vzAPkk1tnnsosQSNAcTJl Fd6Rba+27RT0uiCR1LX0liGj61Kw8rKOBSOTvvVWzLAiL+ou1tm6jNzjWZ9Rn+zMJcFK7n4+2llP gqWPZH1m1GPW2UiujC+N554atihQoWH2RQHf7bJNkxmfGLsPwQG9/ZEYvC026PSVmDYzUGPfemqg Ebe8vy+SLYJlwhMBQ1GcjdVIjhdrGh0lItt1OAeEAzRE3YYghXPmLZQbrr1abr6+uXtzXL+D7z8a gLVamTzHeScEO9AaHYKQoicBESSQOT017tEGPwJZwuCxgRlV3IEwA+URz3WxnGM8jw+hbePuw3re ef3BPJ35Oz01rJfIAXXSWqHCxGnqDQHxKJihLsGzo6B6HiEmSaSG/JfrTCyIUeKe4jVQHia9Dm8p o55QFYvnSSN6BUofal2SutRu2rpT8qkrYLgYG6HyyYxtiKGBISc4Bwg0OAcaCZBAZAS86AHCyzj+ 0CGDXnR01rg7bCIrXfZLhV78fXv36UwowYOGxuOscmkw5SLqhm2H5sQjz2jzyExPDdQv6/1jy+2l aGaPkZGfGVWXgp1TPOqY8/lCTw3fMCmIF9ZTw92uQ7224kZOqc8ZWY/jXWeD3RsZvd55H8Xz2JG1 5ONwRHdFd3+PwyFiyqJsgBlQQmWEXvAa5VKHpoRKa7ehJ7pEoYwdIwrBJdS5LVm23BQvmnga9nyi /USD2RmsM5L9Ty4VW9WMVJyKpAzRpInlHKPJP1xaxMLAXzSGqYUDzejjzgN1CYJUtIb8EZ8mUjPp XTMCRbqvOx2EAAzZ2LZzt6xYq+MWNX5FkUIFNCJ/PnXXjo6TO28vvkPIwLStmOUEQUERQ6NCWQ45 8YI18ySBaAmcSCKGm43pxVexYf/+RM88NtATiTggmSlouM87o7+jjllPZhwbyzlNOMuIuhTsurGO BSOTvvVoy4Vqz5lnpw6jykmWUfWYdTb6WhN9SyX6Y3CPLEZgu0bmxbzJsFOrVcUHjQRyJIEyJYtL yWJFZa++kO9WsWDLjl1mtpKsdrIQWvLny2umbcUsJwwKmtWuEMtDAicuAbzEF9PnqG88+SEFEa9Q bAkaEDL/CT/kxNasUI1Dmya7f3pXl4KRYR0LRobrYyfgbT1mnY31ylDUiJVckP0Q/BHDPTJ6+EOQ 4gRcvVGDhBbTnpdqGk8jK/ZaByy0a2UxjduAOCiwUB4prt1O2K/wfMGQHjgpOGNgnAhAIBAgtkZ2 jq9xIlwnniMJxIMAItojuKVz9oR45Ms8xIgP4JqkXmXJh5MlRT3MjmAO9YhFjgTz+5Nbf4gwPSFm EwgX0ysjuR86dFAi8S08queMeuYORJiRZc3ux0JsgvTVpWAEsnYdC1bqWNfjWRftLB72WKzDlkTs n/Gpx6yzsV+BtHtS1EjLI93fEHBx2bNV0p2PlxmcXre2vPZify8P4XneN51dWPBHi4zANJ0Bh0YC JEACOZ1A/nz5KGp4eJEhQuRX7wr8y2mWdOhQxLGcUM8w5W2xor4pynMai4w4n5xclzKCH44BUQN1 MRbLnz8/63As4Fz7sB67gIT5auqs1j0vLLrgEF6UgHmSAAmQAAmQAAmQQBwIFC5cWHbu2pXhU5HG oejMIpMJ7N6zJ6ISoBGDerZHp8+F1waNBDKLAJ51qIuxWGGd3pR1OBZy3Cc9BEyd1brnhVHU8IIq 8yQBEiABEiABEshwAoX0ZQkv67v0ZZ9GApEQQM/hpk2bzPAaCBaRGOoZhs9s2bKVwkYkwJgmrgRs nUWAXdTFWMzUYfXyYB2OhR73iZaAv85qfY21zoY7JkWNcIS4nQRIgARIgARIIFsQQAC3kiVLmnHm mDYO4gZepmgk4CaAeoH6sVEFDcQXKF68uDtJ0O+mnpUoaYarrF+/Xvbs3WtibATdgRtIIA4E3HW2 pNZB1MVYzD4roeOxDsdCkPtEQuC4Oqu/z7HW2XDHY0yNcIS4nQRIgARIgARIINsQyKtTOpcsUULs mHEMKzhy5Ei2KT8LmjEEIGTk057qUvqSXUgDV+ZJPhDVgfPkyWMEtMTERJ3ydr/s3LmT9Swqgtkz McRSWL7N66T6EQ0aa74d+09HIyVpwFmbxrkpHstp6qz2eKMOpsdYh9NDL/vs61V9jIRAvOtsqGOm 724IlTO3kQAJkAAJkAAJkEAmEMirjdUi2oNZsGABSUmhoJEJlyBbHBKzY+XOnSemnkMMVYGAVqRI ETN0BcIZY2xki8sel0LmTkFgWddwJf2KOlGhfPm4HMOdCY6HRiJ6uuPR2+2uwykpKe5D8jsJpJuA ra/xqLOhCkNRIxQdbiMBEiABEiABEsiWBOyLFArPxma2vISeFvq4BmmMR7P1jHUsRoDZdLcEncHB rWngVBJUdPBySul41VsndtZhJw0ux5uAF3U2UBkpagSiwnUkQAIkQAIkQAI5hkBGvVTlGGA8kagJ sI5FjSxb7xD8eicc78GRTc40+DllkxNgMU9oAmmGgp3QJHjyJEACJEACJEACJEACJEACJEACJEAC 2YoARY1sdblYWBIgARIgARIgARIgARIgARIgARIgAUuAooYlwU8SIAESIAESIAESIAESIAESIAES IIFsRYAxNbLV5WJhSYAESIAESIAESIAEMoSATtGZkLhHci2clSGH40GyD4GELRtF5/DNPgVmSUkg hxOgqJHDLzBPjwRIgARIgARIgARIIAYCEDVW/CP52zeOYWfukqMJHNXKcZBToOboa8yTy1YEKGpk q8vFwpIACZAACZAACZAACWQYAW27yoHDGXY4HogESIAESCB6AoypET0z7kECJEACJEACJEACJEAC JEACJEACJJAFCFDUyAIXgUUgARIgARIgARIgARIgARIgARIgARKIngCHn0TPjHuQAAmQAAmQAAmQ AAnkJAIJejK5c+tfck46K55LRhLIpZUIdYhGAiSQ4QQoamQ4ch6QBEiABEiABEiABEggSxHIX1BS Lr5RJOlglioWC5ONCCQkyNHK1bNRgVlUEsg5BBISDyYhBBKNBEiABEiABEiABEiABEiABEiABEiA BLIVAcbUyFaXi4UlARIgARIgARIgARIgARIgARIgARKwBChqWBL8JAESIAESIAESIAESIAESIAES IAESyFYEKGpkq8vFwpIACZAACZAACZAACZAACZAACZAACVgCFDUsCX6SAAmQAAmQAAmQAAmQAAmQ AAmQAAlkKwIUNbLV5WJhSYAESIAESIAESIAESIAESIAESIAELAGKGpYEP0mABEiABEiABEiABEiA BEiABEiABLIVAYoa2epysbAkQAIkQAIkQAIkQAIkQAIkQAIkQAKWAEUNS4KfJEACJEACJEACJEAC JEACJEACJEAC2YoARY1sdblYWBIgARIgARIgARIgARIgARIgARIgAUuAooYlwU8SIAESIAESIAES IAESIAESIAESIIFsRYCiRra6XCwsCZAACZAACZAACZAACZAACZAACZCAJUBRw5LgJwmQAAmQAAmQ AAmQAAmQAAmQAAmQQLYiQFEjW10uFpYESIAESIAESIAESIAESIAESIAESMASoKhhSfCTBEiABEiA BEiABEiABEiABEiABEggWxGgqJGtLhcLSwIkQAIkQAIkQAIkQAIkQAIkQAIkYAlQ1LAk+EkCJEAC JEACJEACJEACJEACJEACJJCtCFDUyFaXi4UlARIgARIgARIgARIgARIgARIgARKwBChqWBL8JAES IAESIAESIAESIAESIAESIAESyFYEKGpkq8vFwpIACZAACZAACZAACZAACZAACZAACVgCFDUsCX6S AAmQAAmQAAmQAAmQAAmQAAmQAAlkKwIUNbLV5WJhSYAESIAESIAESIAESIAESIAESIAELAGKGpYE P0mABEiABEiABEiABEiABEiABEiABLIVAYoa2epysbAkQAIkQAIkQAIkQAIkQAIkQAIkQAKWQB67 wE8SIAESSC+Bpf/8KxMnf2uywbK1G69rZhZvOvZp1/MzYwnY6+O8NtGUoFvXzlK75mnR7MK0GUhg wrF7b9mxew/3Ha9XBl4AHooESIBonYolAABAAElEQVQESIAESCBTCCQkHkw6milH5kEzhYBt1ODg 7hde+0LMhmemXJpsfVBbr5yNZduYcq5DnWP9yrxLPWjwG4LrYa8NSmKvj3NdoBLa/SBs0LIOAfvc tmIiSoZraa+r/e5+3medMzhxS2KvHZ+JJ24d4JmTAAmQAAnEh8AJ6amRkpIiy/75R0oULyGVKlWM D0nNZevWrTJp8tdy7TXNpXz5cnHLN54ZoVFjbaku255XvFzhpdi+DIdr4Ng8wn0ePHhQEhISJFcu 30invHnzhtsl4PZJX30thQoWkiuvaCy4fiNGjpILLzhf6tSpHTA9V2YcATSebL1CvQnUeEIa/KGO 4c/Wu/SUEvXg8OHDkj9//vRk4993//5Eee/94dKsaROpXbuWf31OWsA1cAtLVugIJ1bYZ0S0PJKS kuTIkSOSO3dusys+7fMg2rzc6fft3y/vDRuuz9xmUrNGDffmHP3ded/hRHFdYc4Gsr3n8InnPSy9 996+fftkxcqVUqZ0GalYsYJ5vpuMs8B/Iz/6WCpUKC9Nm1yVBUoTvgj2Nzd8yvimSE5ONvdjvO7D WLg7f9Pje3bMjQRIgARI4EQkkKVEDbx4wdwNavNCptucL2uxXKxdu3bJc88Pkt+mzxA0YGCFCxeS Z/r0jstL0OYtW+XV19+Q+vXPyZKihuVrG522IYr1eLmCGdbHXn7djR+TIIr//lm+XG5rcVeaPUqV KiUXnN9QHn+si74Ul06zLdSXsWPHS7lyZY2ogRcycC5atGiOFTUOHTokP/08TerWrSMnV6kSCk2m b7P1KFR9wT1t72vUNeyT3sZVxwceklmz/pRvJk+Uk06qFBWHQHyX//uvDP9ghMknp4oaUUGKU+IG 5190XE4XX9RIOnVsL2eeccZx26JZ8c+yf+SDD0eaBlo8RY1pv/wqxYsXl7PPOjOa4mRoWvvMDnvf qWeNffbjvjMN6Ri8bfD72aNXH/P7aU8Uz/MXnu8vDRueZ1dl2ifEs5cGv2p+E6yokR2uY3qAmd/r KN+N7O/yG6+/IpdecnF6Dm/2DcQ9kkydv+nB0v+9aLFs2rRZrrry8mBJuJ4ESIAESIAEDIEsEygU vYB44bIvX87rg5cw/FlXTee2SJfxw9vlsSflu+9/lNYt75IRHwyTt954TerVqyePP9ldxo2fEGlW OSKdfSHGyTgbnFjGSzIMaQJdD7Mxiv+uad5MBr/0gjz/3LPS6MLz5etvvpV7293nF5aiyOqESbpn 71558qmeMvuvOVn6nO09Gaph5TwBCJPO+uXcFs3yho0bjaCBfb757vtodjVpA/E968wzZNTI4XJf +7ZR58cdQhOAeIxnwMsvDpS7W7eUxUuWSqu726rH3PLQO4bZes45Z8vID9+XDu3uDZMyus1oHH8+ Zmx0O2Vwajyb8bwOJPa7n9v2GY9P97ZIi/3Io4/L3Hnz5OlePWTs56Nl6FtDpJJ6arTv+ICsWrU6 0mw8S5cvXz75Ytzn8vorL/uPkR2uo7+wUS7Ydybnb3mUWcQleSDucclYM5k0+Svp3advvLJjPiRA AiRAAjmYQJbw1MCPM36Yg72goUfX9jDhWgR6iQt3jT4YMVLmzJkrzz7TR2684Tp/cgxhaNu+owx5 82256cbr/S7SR48eVRfbVfKPDlOpXr261Djt1ONcpuH+vmjxYlm/foOcfno9f57uBQxLmTtvvr4A VjS9SNYN253O6+/giwalfQnCMtbBLONax16SsR7M42HXNL/a3yMEN3H0fvYfMMi8IKPHdvnyfyX5 cLLUrVPHfzj0Cv6j6885+yyJdsjKjh075N//Vmgv8Okmb1zH665tbq6tua4rVgp65XG8k08+3gvi wIED8pfWlUOHkuS8BvX185Cs1Jf28xqca1ytsQ1eI1UqV/aXd83atYIyO3ueMTRi4d+LZPv27Xoe Z0vp0qX86bEAbyHUn61bt0nVqqdoeWqb/Ldu2yZz584zaVdoWWf9OVtOr1dXChUqZIbeLNEG4arV a4ybNdYXKFAgTb4Z9cXet5EKGrZcuH8RyBCNK9sws9si/fz2W5+QAcFs/BcTpN29bY5zgwf/xUuW yIYNG+VUvYdPPbW6uYeD8cUwloMHD8n+xETD2pZli3pgzV+wQNArDd7O4S5ozO3Zu0dq1aoli7VX cafWgUYXXnDcNcExFy9aIknJSZq2ZqZ634C9FaNwjraR61xnz935aYNPOtdFutzi9tv8va1NrrpS brz+Orm1xf8E17FWzRqmUQyONU47zTwr4Y112aWXmOyxvGTpUr2Om+QMfc46vXJwjSFYYxhKwYIF /cUJ98zFc2DlqlWyZMkyqVLlJC1DTXNdca/PX7BQ9u7dJ1v0vsS9d8rJJ/s977DPMvUOKVKkiNRT L6qSJUv6j5lVFnA98exOryeU83zMPaO/YQ8/9KDcduvNZhM8Y2rUOE3uatVGfv9jlnmG2X1i5Y/9 N2/eIqvXrJEG59b3/+bitxbPXdzHeI7a+85dX/DshpUIch1RX9Zv2JAmb6T/T38vdu/ebbws8T2r m332opy4zukxyzLcMyzY7xWObbmXdxQkUZ+jc/R3DM9U/HbuT9wv69atl4bnNXCkEnPvLtB77sCB g/r7WU/Kli1rts+bv8B4aeAL7sOSJUqY+obvWel5ivLQSIAESIAEMp9Aposa9scZjehQP8620W0b 5NEKG3/OnmMEBaegAfwQGJ7u3VPmz58v+/btV5fjYvpCu1c9CTpqozq1FxExMkZ/9KH/B3f79h1y Z8vW5gXMXsZbbrrRLvo/+z83UD4fO87/HQ2jz0Z/5H9J9m/IoAXboMTh3AzB2DZwvCzORY0amewR 1wSixjvvvW/ikcB7xhpekuGpMPXHb6MapoL9Z/35l+7bQy5vfJkZwoF1TZtcKSk6rr9dh07akFmK VcYaNbpQ3nhtsOTJ47sVIHzdo14k1tDDfOUVV8iXkybL3Nm/m/rS+eEucnerlnJ/p9R0I0d+LH/8 +adMmuC71v/++5+0vqdtGm+UB+7vKJ3ua2+yxkt0pwcfMvUHx8AL42WXXSKvvvyiETTgPQTDWGX8 jR/zqVTQXtEuXZ8wHgqoRxBvTjnlZHl36JtSsUIFkz4z/rPCmD22bVSFEjuwDWP8jZgZ5Us5GqRj x39hxMkbtHEMz5+Ff/+dRlDCvdvm3vZp+KM+DBzwbFC+ZcqUlvb33S8D+vczIhiO80y/52T8hIn2 1Mzn++8NNS/p+DJq9Kcy7ZdfjEjx5+y//Ome6/+MXH/tNeb7Dz9OkceeeMoMdbPD3ro83FnaqhCT GYbrE+g+t8/WjCgTGsN4pkJ0goHjj1OmmnW4PyEOQtQIdB1xn7yiXh+4Z/GsxjWDFxgEU1i4Zy5i QrTTfZzPAdxHbw55VQqqQIj8YLNm7TD3GjwT0JB/efBrMuKjUf7riPv2Fb1fMZwup1t+9YKArV69 WnBfIE4SrGyZMvLDt1+ZZftfevhjqB3uJ4jef/7+m19AhPCL6zL4pUEqjl0RtL70frqvnHXmmfLg Ax0DXscS2jDu+viTxlMTgrm1h7p0NYIaho5mBbPP0EDvRfadCeXEb7b7+Rtt+SN5hoX6vcI7lOXe t08vc3j8ft/X6UF/UXCvXHLxxfKtetXNnzPLX38gGLe4s6URO2ziYe++bYSP3n2e0fq2xqzGtYeA jed3Vnue2nLzkwRIgARIIHMJZOrwE/vjHOiHOxAW+wOOl2/sG6nhJWzRokVyhg41CWSnVq8mt9x8 kxE0sL1H7z7mZRqNFzRkPx09UgWPfdL5ka7+3XvqyxN6lPADjDQfvv/ucY2fzz4fawSNvk/3lL9m zZAJ4z9Xr4M88uhjT/jzyWoL6X1BiuR87JCK0049NZLkMaeB58SXX4yV2X9MN724fZ/pL2u0BxDu 6rhmQ1TMmDFjprz51jvmGHv27JEHVbBAA2fyl+PlT92va5dHjKARTSHQa3V/54fVC+Rk+e6bSTJr 5q8CQeOtt9/xj0f/cORHkpx8WKZN/V5m/jbNuOUvXLhI0DDGePApP3xjDomXxAVz/5TT1FNoypSf TCMLQyR+nvKdOTf0YE78cnI0xYtbWtsIDlZnQt2nwfaJpHB/q/cLevyaN7ta6uvwAwg8X32d+jyA cHBfp85SRhtckyfqddTGEUQGxCgZo7FZgvF1H/tjbWhD0Oje7QmTBxpvaPQ8rA0gvIxbw3MAnlq4 zqhv8OYY9fEnZjMCZD73/AtGsPr15ymm3rXXoRIjR43WnuE9NosM/YSghGep/bPXwn4P9mnTxaOw 8GwCN3itWINIBy8u1P0Ph79rBClcxwrly5v7Ec/QFwY+J9Om/SpvvDXU7pbmM5Jnbs/efY2gATFw zp8z5eORH8g29aR54cXBRrTG/YZnALy7sAxBA+WFoAExCvcr/s466ywZNvzDNMfPqV+KFStmGpV4 1rRu005Gf/qZYYjfVqell78zr3DL7vriTI/e/kDX8ZJLLjKiFAQ0axgChecJBNKsYFbQQFmcy/hu 35mwjPs0XvdkqGcYjhXq9wrbnbZz507zjoMg3t9+9aX5He32xONG0HCmwzI8WNu3vcfch6NHjTDX 5s1j9zY6CP53ZwuzDtcSgkZWfJ66z4nfSYAESIAEModApoka9scZP8r4cY7U7A95qAaTOy80btHQ iWSmk0PqyoyX5ocevN/0xqIXAsMU8KOMnj241WJGDzSGOz/QyfQoIA0aO491fSTNoX/QFyd4IkAw wRCK6tWqySMPdRYEv8IL2YliEDHgSvqHBnV85bUhMvCFF01DFA1SLw3XA8M6MOYXLurf//CjdLyv g2k44ZqhJxjeNT9Pm2aKsXTpMlNP+j7dy/S8o3fy9ttuMQ3SaMqJfPCS2Kt7N+NBgeEh8NBAz/SM mb+brCCSwZAOBpd8CBWhen3hzgtD4DS83OHcvp40we/9YTZm8H/hXqpxn97bqUtAERL7BvIYCHcK EDDQ8wc3ZlzHG66/1ghPGDoAW7psmbm/0MOO4UUYLgKvCcTQwfCFSA0iCAIg4sUaeeD69dOgwniW zFPPLqc9qKIVrjOuyXXXXWOeFfbaHjp0UBJ1HwxNQXkf7vyAudbwCsssA3v7Z8tgvwf7xNC0WG36 9JnmGYBhVR+O+EgefKiLycodAPDxrl1M7z+8MOx17N2zu7kf8QxtdnVTcy1xLweycM9cPN9xXSEy 4l7Dcc4443QZ/t47ZvhhoDyxDtcPtkuHKOD5j/o39M3XZdg7b5n12ek/XN9YrH+/PiryPiy79+yW gYNekjvuai1Nm18nEDKsecXf5u/+dNYX97ZA3/FMh3iBZwieobCpU38y1/Pii30ehIH2y6h1ThED 4qPxaFPPKgwnsu9MKIt9D4pnuUI9w6L5vcKQSzwjcd/inQvMMbT36qZXHVdcDGHC+xHuQ4jBVzdp YoSO4xI6VmTF56mjeFwkARIgARLIJAJ5Mum4GXpYuJziJXTd+vVhj7tyxUqTxtmDiBUY9w1Dr05p 7RmGuWdIqFO7tlmP//DCNEsb8bDGV15tPvGfFTMwPKFhw7QxFvyJctgCGjH4s4aGYl8d8oPZS7w0 55CMFceu6+BXXktTFns90CBertcEZq+1LdtZ6goPoStSW6pj7mH33f+gNoZT413gWPO0ZwrWru29 0qHj/dLif62kcuWT1DX3Irn5xhuOq1Mm8bH/mjdrKhO+nGQC26I+QzC7ThvrNvaAM21OXUajFL3E sAkTJ5nP7du2m5foX3+bYeI2QFSC1XFNywpekRruX3jNuIeI4FrBEOjSzrCAdRDOrFU95RSziDHk 5XOVk8e7PirPPPucXNmkuRkCd8XllxkxzY4dt/vl5E8MI7n7nnb+U0RjBiKTMwYNvCOc8XMwPA1W 89iz1+6MGYEwHaRtaNn1kTxz7TMH8Wuchl5l/AUzlOHmm24wzw48yxCLCdcfQ14gZmWGBRMnsB6N 4WDbYy0rGp73tGlt/uDZgFnERo762MwoBtEP4mK437xY+Qcqs7u+BEoTaB2u2Seffm5ip2AICuoS hA47xCbQPhmxzi1oOIeHQhy2ArAXgkaoZxjOPZrfK/tbW71aVezqN7wvIVC70yACO626es3C4AFk hzg5t2MKWj5PnUS4TAIkQAIkYAlkmqhhf7DxY22DmtlChfpEWvy446XN5hEqPbbhxxEvzwsW/B0w KYYdbNTe71O0VxfBGGHojXOaDYRVWLfbgHTB0mA/O/87XOP79e3tzwqBylCeUz0eeuE/YBZY6PHU k4J4BrASJYr7x0k7i5acnOz8KocPp6T5nt4vtuGBhsmVV1zuzw7XENvQg16wkC/QIK41AgFasx4S 9js+k/U6Og3X1Zo9Fs4b00Jaw7HsNLbolZo29QcTYO9PjQEydvx486KNoTHBppGEOPfpxyNN/IhZ s2bLRI3zgZdEeKS0ad3KHibDPtFosi/awQ4aqoEVbt9AeU7XhpS1d94bZhYxjAf2kTaw0PNvrx16 C+2ySRDFf7h/ce/a+97uiuE+sCKFC9tVpu74vwRYuPWWm0wcADQC7XCnTz4do0NVxgjc+k8EQxyE bk88Zk61kN5ntnEb6twLFfQ9i4Pdj9YDy+YRyTMXQhMs0D1t8wn0ibwx9Xc7dZWfOfMPmfrTz0ao gtcHpsbMDIPnDH4/A1kwQQP3XLBtgfKx69DIhGiE5yQMjeA777jdDAG7pPGVxvsFvfGwUL950fC3 9xrydC7je3rsjNNPN+XHEBTT2aECjY3Hkp5807uvfR66323sew4C9XohVqHc9roGO4dofq9sIF+8 U2For7W1a9bZRf+nvgqlsUBCRpoE+oXPUzcRficBEiABEgCBTBt+goPjxxo/0vgxh1gRzmIRNGye iL6N3kLMlOC23n36yT1t25veAbys4UVnxozf0ySb+fss872G9thVqVLZLE/XIShOQ6PFaWjIoxF7 kQajvPSSi80feobwQo9jnCgGF1S47uPPOXOEPf8S2vDHkBw7fADrMcNAPM3OcoKGkr0W+Kyts1ag YYleSPQewxDkzBrEll9+nW6/mk/MeLBgYapAhhd+lN+a9RAo6DoWZr8prsIEGgcLFi7UcfzbTVkg SkzS2A+wmceGp9iXuwOJvmj+2AbvHszaAoEOcRkmjh9jXhqnTv0ZmzPN7Mu4swBoOKFHMVivot0H 9380hjH9qEfz/vrDBChEnAsM28FwAozPRgDfOnVqmSynz0i9H8H89SFv+uPeBOLrLsc5Z59phgvB O8QaZmCA1akTvFffpsUnvAlwrfHyjoYTYnsg2CG8dpYc8yhxps+py3hm2mdAJIIGONSuVdPg+EMF PGu4jtP1HkEjy+kdY7eHe+ZWPsn3fP/Z5Xn1xYQvZfCrr9tszCdEMWsY8oXreFKlSnJHi9vknbff kLvuvEOfDb8dJ4DbfTLq0x1fyv6eutfb79HeczgPiDfnNLjguKEB+B3Dn53ZKR78rdDn/A3Asy9W c15H5IF7Hw1jDEH5/ocpRuCA0JHZhvchPC+tiOEsj90WiyDlzCeW5Uh+r5z51tN7E/bq60M0bpSv swLPZnfAZec+wZYTJMF44aEMMD5Pg5HiehIgARIggUzz1LDo7Q94OI+N9AgaOBbcZuFO3ldnM1iz dp00UvfhJP3B/WzMWDO0AAHgrAdGm7tbm6COJUqWMOOu0WBFr3CL227199DCLX34ByPMlH4Y24+p y5xji3FMvPx2euAh6da9l3FdRqN9yBtv6dj63fLd118iSYYbXmxtgxLLlr+7ILYHENyDNUzd+8T6 HUEWMUNM/wEDzXAKvMAiKF88DT2t93fsIG+/854ULlJYztchMGvWrJWXBr+iolMj4x2BRhREp54a SBC9w5W0AYMhDhDDnHaOBgiEyzLqxLn166u3xA8mDdyhYTVqnGZiMfTu09dM81qtWlWZ+fsf8q7O 8tKrRzcjRGAmBeT77DN9jYfQjzquG3aGju+HlVLhBI1ANLYq6qwnmCYUcQSGvjtMnnjsUTn//PPM NIT/6bAa9xAJk0EG/GcESa0fqCu1HXFx8OLt/B6oKLYOBtoWbB0C0KFxBUHH9srbtBivjUCsiIyP OCgYaoJ7PSkp2cTVwDUCS8xWAQvE1+ZlP+9ocbuJ4P9ktx6mEbRz5y4TEwbiV6TxYPAy3urutkaI evihB6SoegBNmvy1OQQENVpwAriPMMyjR6+nJfFAohEUMHsCZihCwNBAFu6Zi3rTru29RuBCQxzC 5iJ9vr/6+hvSquX//FnCWwoCGu7zC/RZsWr1alMXEIPn9ttvlf0qVk2fOdOIW9Yzy79zBi3g2b1M OwRw/zmf4/becjaAsc7cp7g39S9agzAP8eLRx5408aYwRA/xRT4cOco0Oq+4vLHJMh787X2Ba9Lm 7lbqtXdYXnw5Nm8Y93W0Q74QZPi11980z2RMU2tFzmi5xDt9LNcm3mVw54d7JtzvlXMfiPd9dHgp htyd27CREY0wXAkdS84Zopz7BFuuV6+O2fTusOHSRL29ypYtw+dpMFhcTwIkQAInOIFMFzXA376Q 4aXLNqKd18U2xNGIsmmd2yNZRk/8i4MGyAsvvaLiwxgjSGA/vKj16/t0miBxHTu0kxQd/jDhyy9N OrjTIljgk4939R8KgUT379/vzwsNWsxUgRk2cuXy+VSiIYqX72Hvfyj3P/iw2RcBRV/WntpAHgv+ zD1acL7Y4hDBXnItb7xg+fdxNFqjLZ67Aere/3oNrDh33jzT6ERDAiwREd09s0Du3Gmra7B8Lf8E fRlzWicVNTBsZOy4L8zLLLZhLPVT3R43yVBHXnpxoPTp+6yZUhArcb2sgGUS6X/wrFitgoidNQUN aEw3t2ixz1sDrryv6DXu13+AvPzKq+alH/XskYcf1Ab3rSabZzXoHqYLxfSCMGzHLBtoPMBwbg/e 30kGvfiSmcZ13Oef6At+a9mqszQ4X/AhtKG+Zoahftg6Ekogc5cNaVH3or2ff5ziE36aXd3EnaVU q1rVNDAx9S7c4l8c9LyO9R8orw15w8+/pwZuvfKKxmbfQHzLlitrttkGDgJJvvTC81pXhkvnhx81 2zCdKAKQWgHU7T5tEjn+Q68zZtlAXbBThaJ+Y9akzAwU6iii54uo25ZpsIMF4oj76GW9H/v1f15e US8K9LiDHQIQImBoIIvkmYtnCxrK43Ra4I90FhoY7qNHtHFr7Y7bbzOBTXv26mOESNy3eP6/+fZQ f48zYgMhcGxmGoag4Bnt/N3Eb6T7dxL3GywWLw3sh9+rcZ9/amYGQ2PVGq4trpGNVxMP/oizgHsV Pf2YwhrHeKBTxzTPvUD1BWXCb0TCsd9ffHdfxxZ6XWFoeEPAhgfBNSpwnIhmfz+DsXQyCfd75eYO T5gzVaBHcPCD2pnTWINyw5PVLWq4f9Odx8Qy4kVBDIFgjc4O8zw+wZ+nbkb8TgIkQAIk4COQkHgw 6WhWgYHGjm0oOcuE9TD3i5ozTTTL6D1duWq18bpAb3gow8wpiIsQ7KU8JSVF9u7dq7EiSoTKRhC3 A0HwbGMoZGKPNjpffq1YEcgLAy/IMGxzLntULH+2mKEEQhFYBuPtT5zOBbj/22EngbKCpwZcZ5EG gSkR7R/TwDrHHsMVFkNPQrnTo37sUs+ckur1Y18incfD0IYDOqtJsPqDuopyOEUwrIPXQLA8nfl7 vWzrFI4TiUhhBQ2k/2Doq/jw1MLdn4H4BioQ7nHcuxC+YjUT2FJbEM54HLHmFet+mInGfZ1wj+M6 hrse9tqFSxdr2ULth+u4b9/+44SgFStXyk23tDAeOFawsvlE8syF9w+e74HuTdzbeCbhue3cjn0K a0yVQMNf7LEz8tNeF/x24tri0xq2wZsD19d93W2aaD8Rj2St9ryX0mea9XwIlEd6+dvnHOIwOZ+7 gY4Val2g64i8W9zZygybwVCizDLcj7he+K3NDhbu9wrngGclprSG16EVu3ANbrntDiM6jf3cJyRG c764D1EHnPUgKzxPozkHpiUBEiABEvCWQOxv6B6UK5hoEWx9rEXAC6ozgFWofII1Nu0++JENlwZp 7Thhu19mflqhAmVwvgDbMtkAdHjhguFlOCMMjYSMaijA+yaUoQEbToCKJAgl6ocdbx7oeIi4Hyrq PuqqU9BAHlgXKs9Ax/FqnX0hR52yvcFY565XVkTDJyyjXuLD3Z+B+AZiFUq4CpQ+0LpI6kug/bjO F8jQ7dmC2DeYIhp2fsMGx2GK5JmL+DjBDMKq+95D2lD7BMvLy/X29xH331K9D+09acUOHDteggby QjBt9wxRWO+29PKP13POfR1/nvaLxtP4xgz/G97tHXexM/w7nonO3+RoC4Dfa1sHot032vThfq+Q H56VmMYdQz0xlTZ+a3/+5RdZvXqNCbYb7TGRPtB7AZ+nsZDkPiRAAiSQcwlkKU+NnIs565yZ7blD idy9es5SOtNlVAPUefystIxggIitAddXvGjTAhNwNqKQwgobVsiw60LVu8A5c228CFivDHttkK+9 Ps51gY6HdLbBHGh7Rq+b/NU3OrXuErnqisvNMLGMPn5WOx6ujxE2jgmHKF88xYysdr6xlqf/gEGy du1aE+cq2DCmWPOOdj/n72y0+9r0GSlq2GOG+8RMX/DWQKyx7eoVWUfjBzVpcqV/eGW4/bmdBEiA BEiABKIlQFEjWmJMTwIkEJQAXtJh1msDy7axTDEDNDLX0PCNtVcY15HXMHOvXyRHxzXGHyyjevAj KRfTkAAJkAAJkAAJkIBXBChqeEWW+ZIACZAACZAACZAACZAACZAACZAACXhKgL70nuJl5iRAAiRA AiRAAiRAAiRAAiRAAiRAAl4RoKjhFVnmSwIkQAIkQAIkQAIkQAIkQAIkQAIk4CkBihqe4mXmJEAC JEACJEACJEACJEACJEACJEACXhGgqOEVWeZLAiRAAiRAAiRAAiRAAiRAAiRAAiTgKQGKGp7iZeYk QAIkQAIkQAIkQAIkQAIkQAIkQAJeEaCo4RVZ5ksCJEACJEACJEACJEACJEACJEACJOApAYoanuJl 5iRAAiRAAiRAAiRAAiRAAiRAAiRAAl4RoKjhFVnmSwIkQAIkQAIkQAIkQAIkQAIkQAIk4CkBihqe 4mXmJEACJEACJEACJEACJEACJEACJEACXhGgqOEVWeZLAiRAAiRAAiRAAiRAAiRAAiRAAiTgKQGK Gp7iZeYkQAIkQAIkQAIkQAIkQAIkQAIkQAJeEaCo4RVZ5ksCJEACJEACJEACJEACJEACJEACJOAp AYoanuJl5iRAAiRAAiRAAiRAAiRAAiRAAiRAAl4RoKjhFVnmSwIkQAIkQAIkQAIkQAIkQAIkQAIk 4CmBPCkpRzw9ADMnARIgARIgARIgARIgARIgARIgARIgAS8I5Fm/eZsX+TJPEiABEiABEiABEiAB EiABEiABEiABEvCUQMJRNU+PwMxJgARIgARIgARIgARIgARIgARIgARIwAMCjKnhAVRmSQIkQAIk QAIkQAIkQAIkQAIkQAIk4D0BihreM+YRSIAESIAESIAESIAESIAESIAESIAEPCBAUcMDqMySBEiA BEiABEiABEiABEiABEiABEjAewIUNbxnzCOQAAmQAAmQAAmQAAmQAAmQAAmQAAl4QICihgdQmSUJ kAAJkAAJkAAJkAAJkAAJkAAJkID3BChqeM+YRyABEiABEiABEiABEiABEiABEiABEvCAAEUND6Ay SxIgARIgARIgARIgARIgARIgARIgAe8JUNTwnjGPQAIkQAIkQAIkQAIkQAIkQAIkQAIk4AEBihoe QGWWJEACJEACJEACJEACJEACJEACJEAC3hOgqOE9Yx6BBEiABEiABEiABEiABEiABEiABEjAAwIU NTyAyixJgARIgARIgARIgARIgARIgARIgAS8J0BRw3vGPAIJkAAJkAAJkAAJkAAJkAAJkAAJkIAH BChqeACVWZIACZAACZAACZAACZAACZAACZAACXhPgKKG94x5BBIgARIgARIgARIgARIgARIgARIg AQ8IUNTwACqzJAESIAESIAESIAESIAESIAESIAES8J4ARQ3vGfMIJEACJEACJEACJEACJEACJEAC JEACHhCgqOEBVGZJAiRAAiRAAiRAAiRAAiRAAiRAAiTgPQGKGt4z5hFIgARIgARIgARIgARIgARI gARIgAQ8IEBRwwOozJIESIAESIAESIAESIAESIAESIAESMB7AhQ1vGfMI5AACZAACZAACZAACZAA CZAACZAACXhAgKKGB1CZJQmQAAmQAAmQAAmQAAmQAAmQAAmQgPcEKGp4z5hHIAESIAESIAESIAES IAESIAESIAES8IAARQ0PoDJLEiABEiABEiABEiABEiABEiABEiAB7wlQ1PCeMY9AAiRAAiRAAiRA AiRAAiRAAiRAAiTgAQGKGh5AZZYkQAIkQAIkQAIkQAIkQAIkQAIkQALeE6Co4T1jHoEESIAESIAE SIAESIAESIAESIAESMADAhQ1PIDKLEmABEiABEiABEiABEiABEiABEiABLwnQFHDe8Y8AgmQAAmQ AAmQAAmQAAmQAAmQAAmQgAcEKGp4AJVZkgAJkAAJkAAJkAAJkAAJkAAJkAAJeE+Aoob3jHkEEiAB EiABEiABEiABEiABEiABEiABDwhQ1PAAKrMkARIgARIgARIgARIgARIgARIgARLwngBFDe8Z8wgk QAIkQAIkQAIkQAIkQAIkQAIkQAIeEKCo4QFUZkkCJEACJEACJEACJEACJEACJEACJOA9AYoa3jPm EUiABEiABEiABEiABEiABEiABEiABDwgQFHDA6jMkgRIgARIgARIgARIgARIgARIgARIwHsCebw/ BI9wIhLYv3+/bNq8RY4ePSrVqp4iuXPnPhEx8Jw9IIC6tfzf/+Tw4cNSo8ZpUrxYMQ+O4svy0KFD kpKSInny5JF8+fJ5dhxmTAIkQAIkQAIkQAIkQAIkEBuBBG10Ho1tV+5FAmkJ7N69W8aMnyAjRo5W QWNzmo3nN2wg59Y/R9re09rTRmiag/JLjiIAgaHrE93l+x+n+s/r9VdelOZXN/F/j/dCtx69ZfyE SUaY+/7rifHOnvmRAAmQAAmQAAmQAAmQAAmkkwA9NdIJkLv7CMxfsFA6PvCIbN+xIyCSP2bNFvxN +uobeev1wVK7Vs2A6bLKyjlz58uKlSulQIECct01zbJKsU7ocgx66ZU0gkbpUqWkeHHvvDScsA8c OOj8ymUSIAESIAESIAESIAESIIEsQoCiRha5ENm5GH/NmSd3trrHfwpobLa7926pVauGWffP8n9l ytRpMvuvObJ27Tq5/uYW8t7bQ6TxZZf498lqC5O//kY++vhTU6zmVzfV4TMMP5PZ1+jnX34zRahQ vryMeH+oVK9eLbOLxOOTAAmQAAmQAAmQAAmQAAlkMgGKGpl8AbL74Q8cPChPdO/lP42LGl1gBIu8 efP611168UXStk1rGfHRaBkw6CWzHp+X6HqKBX5MXAhBAPUMghjsumubUdAIwYqbSIAESIAESIAE SIAESOBEIsDu5xPpantwrh+P/szf2KxSpbK89vIgcQoa9pC5cuWSe9u0MjE1sG7lqtXyy6++nneb xv2JAI3Jycnu1f7viLEQS0iYpKQkfx7xWjhy5IjEM1+cdyznFup8YilfrIxDlSOWbc56cFKlSmGz QHrUn1gMAkq82cdSDu5DAiRAAiRAAiRAAiRAAiQQngA9NcIzYooQBCZO+sq/degbr2qMg+L+74EW OnVoJ8M//MhsGjFqtFze+FKz3KP3M2ZGi/Ma1Jebb7xehn0wQr77foqYmS4Wz/NntXTZPzJs+Aj5 bfpMf/wOxOf43x23ye233hxQUMHO333/o3z97feCWBkIYoohMg30WJfrEJhbb77Rn//oTz+XLyZO lnnzF/jX2aE1jS+9WB68/z7/ejT4x46fKJ9+PlZQLhjyveTiRtK+bRupVdM3/Ma/Q5iFxUuWyigV iRb+vcjkV7hwYTn7rDOkgQZYbaf5FdT4HuEsMTFR2t73gDboj0ib1neZMnzy2RjDC0ISyndu/bPl 8UcflmrVqgbMLlLGCAzb8cFHzLE6aPmaNrkyTX44nz79Bph1HTu0lauuaBx0e/cnH5P655yVZju+ QCzC+Wzfnhqr5Z33houtd0/3fErOOL2u2Q8zooz46GP5ccrP/roBoe265s2kdcs7pWzZMmnyxzV+ bqDPc2jQc8/Ir9NnmGu/aPESQb7YJ5RBOMH54biwDu3ukaZXXWGW+R8JkAAJkAAJkAAJkAAJkEDG EKCokTGcc+RRMBzANubr1a0jNWucFvY8S5YsIfNnz5DD2oueKyHVUSi1IV9IG6U/GU8Od2YLtLF/ a4uW7tWmDGhcLvx7sQx4to8kJCT402Daz+cHvSwjP/7Evw4LCGgKoQN/8xf8LX16PWWmnf33vxVp BA2ktQJH9epV8dUYGttPdu9thBK7Dp/Id8KXk83f5AljIhY2xn/xpXTr+bQzKyPoTJ/xu+Bv2q/T ZeibrxpRIk0i15dkPV/EOIFVr3aK9OrzrMnHJkP5MHsI/sZ9NkrOPON0u8l8RsO4mE6lumrVGnPO U376+ThRY5p64lh2X3/73XGixozf//BvP9XB1lkgeEzg/J0GUcrOrrNv/z6zCQLKjbceL0Kgjr79 7jCZ/M23MuaTkWn47dy56//snQW8FcUXxw/dISXdLdKNtKAogu0fECSUblBUFAwQBOluEJBQQEEU 6e7uTulQuuE/v7lvlr2Xm+9dno/3focPb/fuzs7OfHd2dufsOWes80+aMs2KoYIMH6p/3gTtqsMn n8uffy3QyaDEqlK5ordDuI8ESIAESIAESIAESIAESOAJEKBS4wlAjSpZnjh50qqq+VpubfCyEj9+ fI97zQD2paovynN5c0uqlCl12lOnz0jjpq2s4+rVqaUtLU6r7bN//0Pwdf0XNZ1sxozppVnjD610 C5SCxCg08NX+9RrVJZdSvmzaslVmz/lDD8hhyVC0SCGpUf0VbbVRvFgRmf7LLFmxcrXOB9OGQk+S Nk0aK9/+A4daCg1YPmBa0RQpUiiFwhZrcPxBwyYye+Y0SZXKUQfrYJeVs2fPWQoNWGfAcgTlOXrs mPzx53yttIFyoN+AwdLta2fFh0tWTj8xFSmkTq13pUTxYnp92s8zLCXB19/2kF+UYsMogQJljONe rFxBpv08U5YtX6Xzt/9Ztnyl9XPxkuXaHSRGjBjWNsyGAylYIL9HCx+cY1D/3koxc0M+7dxVp8c1 rFypvF7PkT2bHDt+QmrXa6R/40/N116VF8qUElitLFm2Qpaq/1BuNGrcQiZPGC1g7CoICosApK9V ryYp1XUsGcLLNR1+Q6GBqWWNQqPxhw3k4/Zt3CXlNhIgARIgARIgARIgARIggSdMgEqNJww4Mmd/ yeYSkCd3rqBVFa4IDevXdcrvi67faAUENo4bNUwPWk2C/737lh7UQrHRt/9gee2VapI+fTq9G4N4 CAayE8eNknRpHYoJKE3efL2GnokF+1etWauVGrA4wf/1GzZZSo2qL1Z2CmgKFxZ8/YeUKlFcxowc Yrm9vFrtJeVGUVDadfxUl7f/oKHaekQn9vAHlh1G+vTqLpUrVjA/5cMGH0ix0hW0tQXcKgJRaiCT H77vrgf5JsOXVb3rNvhIT68Lq4yz587pwTz2h4YxlAdQasACBIoDKI4gl69csSxG8BtuRLuUNUX+ fM/hp1ZwQNkAgQuQJ0EslperVpErV69aSo28eXLrbeaY9h0/s6xRYKkDNyQjtf/3rnzTvadWNKF9 DBs5RrvemP1miXJPmzxeKzTMNndLxOmwW2g0bdxIOrR9pGxzdwy3kQAJkAAJkAAJkAAJkAAJPDkC j+z/n9w5mHMkJfDv5StWzTJmyGCth3Xlg7rOLiYYSBqrCZj5YyBtF1h+9Oz+tbUJg1cjHdq21kqQ 6T9NsBQaZh9icZhB9oaNm81mn8vNWx/F+IAVh2tg1OqvvCxQmkAwja0vqfZyFV3GKRPHOik0cBzy NrEdoDg4d+68r+ys/bCAgNWCXWD5UKfWe9am48f/1uuhZVyyeHErr81bt1nrxgoDMTyg+IGsWr3G 2r97zz5rHTPmhFZQ7jXr1uvDwd2u0DB5QkmWPVtW/dPT9ahfr45fCo2OnTpbFjrNm35EhYaBzCUJ kAAJkAAJkAAJkAAJ/EcEaKnxH4GPDKdNlCihVY2Tp05b62FZwQDYdZrXQ4ePWFnGiRPHiuNhbVQr cAkwsmv3Xkup4OoWc/XqNbl+47pcu4b/1wTWCpC7d+6aw30ud+xwHIOE9vgO9gOjK+UBBME5YaXg zuXBpIdCyK4UwuwbV69c1cddU24Xx44dN0kFMTP8FbjFuJO0aVJbm69eu6rXQ8s4adIk2n0E7jFQ ZBglCgK5QhA8FPEyoHiAO4pxDYKbDgRc8j3nCPSpNwT4BzFQjLgqu8x2KIZKlSwuSIt4I2grMWM6 d32w/vAmCAqKqYt//2OeTtayeRNp07KZt0O4jwRIgARIgARIgARIgARIIBwIOL/Zh8MJeYrIQwCx B4wgUGMwJEGCx+Nt7Nn76Kv+kGEjBf+9yc7du512b9u+QzCrCeI+wNohrAL3EyOvvfGuWfW4xOwY sJrwJrDAwIwvcMmAIiQYkjbE1cY1LyiGXCUsjOE+AqWGsaZB3vMXLNKnwIwxmTNl1OtQKMAtJUni xEoBskFvq1SxnA7Qqn+E4s+uXY+schBfw5PkzPFoJhooN2ClY5f48eLZfz62jnYz5/c/re2vKasQ CgmQAAmQAAmQAAmQAAmQwH9PgEqN//4aPLUlsA+ad4ZYPDyJysDSwS5ZMmey/7TWoQxAbIRECR9Z kGC61S+/6malMStwi8AUn2b2FrPdn+VVZeFhxFtZkAb7Mb2qN4GSpHmrdo8pXFDGxIkTBU3J4a0M YWEM95F+A4doqxUEG71586ZVlxLFi2prDAThhFULrDkqVyyvLDccSo2yZUp7K5bPfXfu3rHSxI4d 21p3XYmtrDWMYCresErTlm1l5vSfJGHCBGHNiseTAAmQAAmQAAmQAAmQAAmEgQCVGmGAF9UPxRd4 DNqhTIAbx/ETJ5zcKNzxweD5jXdqyxXlXgF3AQSy9CW5c+WykkwYM0JKlyph/fa2gtkvjEIDbg4d 27WW8mXLWMEscSwCehqXAm952fcVLlRAWyXA+gLThIZVevcdYCkB4J5R5cVKeuYXBMmETJ0+Q9Xj 27CexuvxoWWMTOE+Ar64tpvVrDKYKhUCZYdxu9FxQyZMErilZFSKJ6NEgVtIWMTuNnJQWcS4WmCY vA8cOmRWJWfOR1Yb1kY/VkYMGaCVYFDgoM1/+kVXGaRiqpjZY/zIgklIgARIgARIgARIgARIgASC TMAxagpypswu6hAwMRRQ4ybN2+hpNL3Vfpwa2GJACHN+fwNE5s71aBC6c5eza4n9XBhMX7h4UW7d cnyJ32AL0tlCBXV8v/Z7TgqNhw8fypq1jiCT9nx8rT8fMoMHXC4Qa8GdoAwoixngu0uDbXDHMMEr y75QWtq3bSmIA2IUGkhj4k9g/UlJaBmjPJimFW4kEMwaY6ZyraQsMoyUe6GMXoVbysZNjngaCN4J C46wiN2tZMu2HR6z2hISxBQz28SLG9djOm87UB/MdvJipQo62V/zF8qoMeP1Ov+QAAmQAAmQAAmQ AAmQAAn8NwSo1PhvuEeas9Z7v7bATQKCWAWffN5FHjxw724Bi4gBg4fptDgG05/6I5jdxMxeMXTE aEGMCleBgqF4mQpSqmxl+XHST3q3PXioa2BIJJgz90/LQsI1PwzUjZw7f86s6iUGxka+/a6XWXVa tmrXUZcFZfLm7vDA5priOosKMkRdFyxa4pT3k/gRWsamLHalxbIVK/XmsqVLmd1SpEghvQ5l1ohR Y/W6XelhJQxwJW7cONYMNrjua0PcWuzZTPppmjW9LKxsQiNG+QJlU68e3bSFEvKBlc3qNetCkyWP IQESIAESIAESIAESIAESCAIBKjWCADEqZ4EZUHr1fOQaga/XNd/6n8ycNVswtSoCiP42Z660bvex dvUwrGCR4C0Ggklnlp0//Vivwm2hbv2PlEvGL3rAf+z4Ce2eUf/DRzNR1HjtFZ22aGHHQBo/MJBG OU6fOaPLNHjoCOnwyec6nbs/aVI/miFk8pTp2qLCpEPwS2NlMmXaz9KpcxdZvnKVjhmB+BhNWrTR AT+Rvl6dWuIuMKfJ65lnkipXE4eSZPGSZfrLP2YiQb3A8J1a9SxXDXPMk1qGhrEpi5m21QRihRIg S5bMZre2jjAWDoitAfE0W4l1kJ8rn3XqYKVErAtYAyFWChRdA4cMl6+79dD7oUhr1OADK21oV9Dm hw/ubx3evHV7OXnylPWbKyRAAiRAAiRAAiRAAiRAAuFHgDE1wo91pD0TvtKPGzVMWrbtqAfgGFBi oO9OEGOh/w89pYKaMSMQwQD4++7f6HwxcDaxMlzzGDKgj+XSkCRJEqlT612BUgLHdOzU2Sk5BrlZ smS23D/sO+1xO6AQwf+333xdenT7SitjBvX7QWrXa6gHz1A+4L+rYErVju1bu25+7PeHDT+wFD69 +vQX/LfLS1VfFCiLnrSEhrEp07PPptLWNGaKVcTQcJUK5cvJwsVLrc2FCoTOasLKIGSlaJHCMmRg X2mhlAtQen33/Q+uSXRsjwljR0g6DzPCPHaAjw1Zs2aR4UP6S9MWbfU5W7TpIFMmjQu1a4uP03E3 CZAACZAACZAACZAACZCABwK01PAAhpsDI4AB8dzffpGPGtW3gkPac8CX+9drVJffZ013q9Cwu3vY j7Ovv/lGDR1YFMFJXaV82RdkxvTJUrVKZaddXb/4TNq1bmG5yJidsBpAkM+MGdKZTU5LBJwcqIJA YvYOIw8ePnKrwdf6MSOGCMrkKlDcdPq4nYwbPVzi+ZgqFMdWV9ODIgila73gcjN5whippJQB/kpY g1aGhrEp24uVK5pVMe4o1ga1YrfMgOsJXEf8lejRvHdVVVVw1aGD+rkNFAqrmh/HjZRcLgFCo8fw nifKFj36Izck17JWrlhBWrdoqjfDKqnfgMGuSfibBEiABEiABEiABEiABEjgCROIpoIlPnzC52D2 UYwAgmeeOXNWu2PEiBFTsmbJLEmTJgkaBTTZCxcuausLxMpIny6dXwNkTDd69epV9bU+bUBTcZ49 e04H/UyVMqWeBta1Ijdv3ZIzmMpULVOmSCEpUiQP9YwYCBx6WuWFPFIkT+56qnD7HVrG4VZALydC gFa0D0iaNKklSeLEXlJzFwmQAAmQAAmQAAmQAAmQwNNMgEqNp/nqsewkQAIkQAIkQAIkQAIkQAIk QAIkEIUJ+La/jsJwWHUSIAESIAESIAESIAESIAESIAESIIGIS4BKjYh7bVgyEiABEiABEiABEiAB EiABEiABEiABLwSo1PACh7tIgARIgARIgARIgARIgARIgARIgAQiLgEqNSLutWHJSIAESIAESIAE SIAESIAESIAESIAEvBCgUsMLHO4iARIgARIgARIgARIgARIgARIgARKIuASo1Ii414YlIwESIAES IAESIAESIAESIAESIAES8EKASg0vcLiLBEiABEiABEiABEiABEiABEiABEgg4hKgUiPiXhuWjARI gARIgARIgARIgARIgARIgARIwAsBKjW8wOEuEiABEiABEiABEiABEiABEiABEiCBiEuASo2Ie21Y MhIgARIgARIgARIgARIgARIgARIgAS8EqNTwAoe7SIAESIAESIAESIAESIAESIAESIAEIi4BKjUi 7rVhyUiABEiABEiABEiABEiABEiABEiABLwQoFLDCxzuIgESIAESIAESIAESIAESIAESIAESiLgE qNSIuNfmqSvZ7dt35P6DBwGV++HDh7LvwGH5c8ES+ffylYCOdU38x/zFsmrtBtfNj/2+fuOmjBg7 SfYfPPLYPm5wTwDXadmqtTLmx6mybuMW94ki2daI3k5wTe7eu+f2P/aFRU6dPiuTp8+Sf/+97Dab YydOyrDRE+Xylatu93OjZwLTZs6RJctXe04Qwfa4toUt23fJ9Fm/R7BSPt3FCc/+1fV6Pt3kHi99 ZO+b/Ok/nsQ9ev/+ff1MwPsaRcSfdhbZ7zW2AxKIaASo1IhoV+QpLc+2Hbvlg6btpMNn3/hdAyhA mrT9TLp+10emzZgjd+7c9ftY14TI68cpM2SfH4qKI0ePy5IVa9TAYpVrNvztgcDPahCDQey6TVvl chiVTx5OEeE2u2snq9ZtlB2790aIsv76+19S96M2bv+vV9cpLHLqzFmZ8+dC+cfDtV65Zr1Wcu3e uz8sp4lyx969e1dmzZknP/8616r7nn0HNUtrQwRbcW0LW7btlN9U24vqcubceVm4dKVcv34jzCjC s391vZ5hLnwEyyAi9U3Bvrf97T+exD0KBTqeCXv3H4xgV/y/KY5rO3PXH4TnvYaPiuiP/j55+r8B wrOSQAQgEDMClIFFiAQE0JlC0LHfvHVL4sWN67NWi5askCvqS+/Xn3eQXDmy+kzvLcGx43/r3f7k 81yenPLlJ60la+ZM3rLkPhuB9Zu3SbJnksrQvt1tWyP3qrt2Mn7SdMmcMYM8nzf3f155Y4vx/ntv SPz48Z3KkzN72O4np8zc/Hi75quSP18eeS53Tjd7uckTgVixYknPrz51ul7zFy+T9Ru3SvkyJT0d xu0RkAAGrKMnTJGc2bJIggTO91+gxY2K/WugjPxNH5H6pmDf2+w//G0FTz6dazsLZn8QmtJfu35d 90fvv/empE+XJjRZ8BgSeOoJxPhKyVNfC1bgPyVw6/ZtGTrqRylcIJ+cPntOUqZIrhQGGT2W6fad O7J95x6ZMftPuXf3nhQumE+b0CdJnEhghntCaZo3b92hTd+TJk0ssWI+0r1d+udf2aO+FOAlcsv2 nbJzzz7JlCGdbFCDbliL1PvfW2rAEE+fG18Ujv99ShIlSiCxY8e2yvNAWXWcVOb1CVS6+PEcaWHp gfSb1VfIq9euyzNJk0hM23mtg0NWUM59Bw/r9ChTogQJJE6cOK7JnH7jGJgs4iv6LaX4SZI4sTpH DKc0eDDBdBRKGuyPa8sTdfn75CnNF3XdsXuf5pBQnRty9do12bVnv66XvSwXLl6SvQcOiStL+4nx FWbvvgM6z7hx40iihAn1blzb7bv2yrKVayVpksSSPHkyvT1RQsc57XlgHel3qnJtU9f31q3bbuto jsE5UY84cWLL+QsXZa1ya8E5zPVDubENSrJkyZ6R6NGi6UPtx12/cUOnwTVIqcoWI4YzT81csdyw ZbvguuO6RgvJx5Tj4qV/BF+2Dh05LrFixZTEiRLpXfZ2EiN6DMVhj6xcs0FiqGuWIuRcZjDjiR8y spfX1BNtfb8y48U5EidysEZawxvtIoGLogL77YL7ANe7VdMGkjtHNsmSKYP1365UDLRsuAZwBVu9 bpO8WOEFzQznPX3mnBw4dERfL5T7wsV/JLm6LiiraZtJ1LG7VZlgovzssykfu4dgwrxHtTO0D1x3 cMU9nFC1pzi2e9Rez0Dvtd17D8jNm7e0KxzaD/obXC8IvqpvVG0B/VSyZEmd+hZzXBzV/mGRdOTY cVW/pG7Lheu4ftM2bbX0TNKkj93HcF3CfQCrHnxdBSfT7k6fPS+qo1P3YxKdBv0B3HyyqD4TbR1t FOKr7Zryou8y9cR9gLKZ+uqM1B/0tyiTydtsN0tv9y2+NtrbAvonWDG9VfMVc7jHsqIOW1V63Jfm PATaZQAAQABJREFUXrlyVfVTysInsboHYislDwTnOHDoqKRJnUr/9nRP6p22P/72eb5Yooz37zvf i/jiiWdRqpTJbWd0rB5VfQo4HDpyTNKmeVa3q9TPOsqOFL7ah8nQ3O+u/Sv64ND0jSZf1Bdl3KSe o+jT0N8YsV9P3LuhfWbcU/032jj6IfSZ8eI5PmScPXdBuXYeVvd0fOvewVdk9J+4/+Op566pmz/9 t6d6uOtX0Xeh7va+ydwnUAKv27RF92NpVN8UPXp0OXrshH4eX1P9QvLkz6j+yNl42dMzCCxNvtHU MeB8QT1Hnk2ZwrrPwcbTvW2uhWm/KDeuEwQuCwdVu0pja0/gefHSv7of8af/MPdozVer6v4Wz3DU F+fxJagzXEyxtL/X3FPXDtaBUOinUKzQRyJNUvWeEju24z5G3uDv7d3IFzdTPvThm7Zul0NHj0ky 1SfCahAuw6aPMOfy1D6wP5D3OjCGO6XpI1EPcAS3hCFKS3O98LxC+zPt7O9Tp932B+Zeq1y+jH5W 4D0E9wLOgXzt4u3d77Dqb8+ev+DUr+MZvVs9S1OkSKafH+jj0Q6TJEmkn7v2NmU/D9dJIDITeDRa jMy1ZN2eKIFVazfq/Gu/+7oeLCxYvFwPhjyd9NDhY9Kr/zBrN9bfef1V/cDuO3ikfskyO/GS0a3L J3qwhm1/zF8iv89bqF+IYeUBqVqpnFJIHFIvBbF0p48H2ahxP8nSlWvklaqVpFD+53Q68wdKC5yz wfvvykuVy+sX0q49+mqzPeSBQQgG7d2+/ESeTZXCHGYtMUjq+l1f/UJkNqKcnT9uLXlz5zCbnJZ4 YH3y5XeCQYcRnKPrp+0srTriikz46RezWy+rv/yi4Es8ZMZvc9XL4B79Eo2HnJESRQtKuxYfafcd 1Kv6y5XVMW+a3TJhyi+yecsOGT+in7XNvnLw8FHp2r2PUzyUbFkyKQua9nJRDVzNtTr+9029/nr1 l+R/b9WwZ6HXMQjoovK5cfOmtQ8Dtx5dO1kvCtYOtYKBHPLOnjWzoAwQPOwxIOuj2sEGNWg0guvS p/uXeoBhjiuorisGI0ZwDb5TX8Gh5ILgOn/8ZXd9HpMGSqIfun9hvRzADQnxVXAs2g3ktWovSp13 39DHm3ZSpODzFgfUE9trv1NTarxSVZfdEz8oxkx5Xes5WsUnSaoGG72+7WyKJ6uU0mSU+vr7TecO Wnll7Qjlirdr661sri9cJp9MGdPrNrt+81YZMnKC9O3RRdKmftZqm1AU4KUcMnT0j1K/zjvy8osV 9G8M9Np//q2+v/QG9adY4QJaIdn541ZurV9Cc6/9MHCEVuCdVcoDXFMoZqD0mbdwqYyf/LM5tV52 aNVYlwE/cFxqNdhB+THYNNKo3v+kSsWy+idedHsPGK6VmWY/lp3aNpNCSqkLOaIGSl/36KfzMO0K 9xOuKQb3/YaOluzq9yfqmAHDxuh2huPQpvLlzSVfqH7En7brrp6496CAGD+8r6UQxSDzuz6D5W3V x7pTNgd636KsdvFWVihz+g4ZrRjnl9ZNG+rD8HyA+43pf7ER1wWKseH9vtOugZ7uSft5sQ6XRXDz 1ud5K59R/uCaVlbXuKF6JhiZNmuOUvQelFGDeplN1vK3ufNlzfpN+jf6bFznyWMG6QGdr/ZhZaJW PPWvGAShXq59hq++EXlDcYd+z/6sQZ/YXT1HXRX1/vCzl9es4/nz5be9rT4T23Gf437H8xNlx+AX 9zVk4tQZ2jS+h+qfTX/oq//2VQ+Tjysj9Bn2vgn3CQbhJ0+dscqLgXHRQvm1O4UuoPqTWSmFwQjX EuLtGYT9yDelGlCeUspe1BmC58sXygoUZfJ0b+uEIX8wiAarZh/WtSy1ho+dqAfvpm9F0m97DZRS xQtLzuxZ/Oo/zDm+Uv2QebZim+t9YtJhib6t7+BRuj+2b2/TrJE+t9kGhdSUX34zP3Wde3frrJ9X /vTXvrghYyiekc4IrknuXNn1u+GUsYO14shX+8D+QN7rZiq3wEPqPcTc71Cy4trgYx36asjyVetU W54pIwb01Eo608489Qem/FNnzNaKZfMb/fDX6nlgPtj5eveDazXae//vvzJZaEawFIP1LBQaI8ZN 1vtWrF4v+P+deu9y199bGXCFBCIhAWdVYSSsIKv05AksUG4keNlKnzaNVCxbWlsjYADjSTDwH/D9 13r3B7XflqnjhuivfngJwFejxg3qyLhhfQQPU0iPvkP0En+MPydeoEYO/F7GDPlBa7zxZSCHepHA V8DPv+qpFRrNP6wn9Wq9ZX05sTJxWVm+ep1WaMAlZeLI/nqQia92eNC4k7UbNssJZXGBF5Gf1Ius GZQisKIn6dl3qH7J7Ni6iUwaNUC6dGorN9SXUwz8INC44+UYJv14YI4e3EvKli6uFTgYpBjBYAtf uwb/8K2uO15+1ynTdVwDDCDwEFuuHmhG8DUNCo2SxYtYD1CzD0t8vf26Z39JoBQsGOxPVGX78INa +gskgoKmS5taXx8oJ/ASimvlTqGBvGb/uQALwYsrXvAxiMGDGGXzJrBewaBwwvB+eoCJmANQaECZ g/L0/Poz/aL5zff9nbKBQqNpo/c1z25ffizR1YARg0lYEUB6qnaD8yNvlOcrpaTByycULxC8xI2d OE0w4JygFD6TRw+UymoAPG/hMu0WpROF/EH7Rt2hiMLLOtah0PDFz56Haz1x7TCQsw8+EIwVX7AD cR+5evW6bvdo+/iPMkHCUjZ7uTGAgdIme7bMWtEFCwt3graZM1tWPaDGPQFms/9wtAmk7957kDxQ bRcDHVwPDN5hkeVNQnOvIT8oJmq987q+jzB4xlc4DJyhRMFL6/D+PfS90l8NuGEVYAR1LVOyqL63 cI9lTJ9WB8fFwB+CwTisuaCERXsd2Osb/eUQL+Cmz0MgPyhTMEBHPZs0fF9fZxznKigLBit4aUeb AhOIr7Zr8nGtZ5WK5fQuuLMYMcGTK5UrbTY5LUN735pMvJUV1ikF8+dV1jj7TXJtNYUfGzdvt7bB dLuoUhwGck/iYH/6PG/lswoQ4EqbZg31dcVhvb75XF9nrPvTPpDOiK/+1bXP8Kdv7K3aIuIeoS2h T4MlF/IZo/o6V/GHn+sxsCb6Rj0zYJWF5zgUaHgeQ2mI+xWm71D4wkoJX/xxT8E99Y3XXrY+TiBP X/23v/VwZeRaXvxGP9taXTM8r//3dg1trYF+/vuQa4d+H1Ybxo3VH87IF+dG/4Jn+ucdWmpF5sIl K7FL9zPu7m29M+QP3plgLbp9pyNOE55PJoD55q2O/uKEss7EdihhXMVT/4F06INwjcYN7SP9enTV 1+X3eYucFLb2/GA5C4tXXCdcU3xESJ0qpQweMc7pmH3K6lO/K4W8K6Dfn6PyhfjbX3vjhmd2P6Vc gbsryo1ncx31LoB3Q7v4ah+BvtcVU3yhAP1HnR8CxQoEFrHolyCwMITllt3yCds99QfYB8HzY1Dv b3SbKFemhL4noByC+PvupxN7+FNR9e1D+nTTe/FBC88SKjQ8wOLmSE2ASo1IfXmffOVgfoiXgUpq gAZBhw1ZtGyVXnr6AzN2SA7ljwzBiw+0za+/+pLg5Rvm83ghKKxedGGRgQcdBGbP+Frxpnrwwmwf LiR4ycL+mMp8s22nrwRfJjHINWXRB3r5A+UC5Nz5i3pAjIHM2KE/6K9O7g6D7zsGK1jiizbSF1WD Jbw4uRN8vcDXErz44cUEX8ug2OmirDSqVnYMQjaqlwlI+5Yf6QcmXEqaNqqrrU9cZxuBYgQDRtQd Cgi8FOFlBIIvyuCFlwbIVvXgNF+r9QaXPwfUYA8vTC2UAggvWPhygC/bUK5AWRKIQIkEbnCDwCCt dIkiumy4tt6kWpWK+is3BssYBCEYJ76awUoF5cmsrANqqZdktDXzwoH8YKFS4YVSmie+jEGBhS/V f6svcmAO03BtqaO+tOgvPeprPV6OoERAXnhRwSAb7QdfzPAV/SPFE4otKBb8kUD4udbTDDJXq/pC 8GUJL7RQdgQi7T//Rhq37mT9b9XxS314WMpmzg+G+CKbB+1VKeJgMeNNGtV7T3+5wz1RoWwpzRr3 Fcx2EW+nhjKHhlII1wNWCe+8Wd1bdvoeC+ReM5k52k9lZTacQF9X05bx8gnFFExzWzapr+8NuL8Y wT7cU7i3cI91aNVE79q20/ECagZtcL1Ae8ULLu5Z3GN4+YXcUC5RkHMXLullRcUBbQoKFX/En7Zr 8nGtZx71NRN1wAu9EXxdxAsuBgnuJLT3LfLyp6zo80wfjgEQnhfo2xFkFtzwwo8+qIhKF5p70luf 50/53DEJ7TZ/2kcgebv2Gb76RnCE4v+1alX0/YU+rUyJovprM0zT3Yk3fu7SH1B9FK5jy8b1tSUj rBNgoYHlhhBFFc6Ptong0vj6D8sIKALt4q3/DqQerozs5zDrUFyXKFpIP6/xHIZUeKGkwIIFfVEV 9cyDnDx9Ri99cdaJ1B8ocNCP45mOZyaeQ4EGaYaFlwk+bQbusA7YoKzhIDt2OfoV5B+o4HkGtyDw rxpibXZUuSW5EzyH4Er13puv6WsJhdvnHVtJw7rv6fvTHFNaKX2fy5PLelfAdYeFA8TfdyNv3ODO hH6hVZMGutxwS8RzPG+uHPoc+ONP+wj0vc5Y2u1QrjqQjVu26X4K58JzEALlK95JA5XaSsEOt2z0 zW9Uf1kfbt6LAnn3C/S8TE8CUY1AzKhWYdY3uAQWhygv/lEDxdl/zLcyh++lpy/6SARtPwQDYIix wMBA2C7wM8eA/c7de/rrCh52ZUs7FCcmHRQGEChFIB+3aapfLvQPP/7gKw2UMDDfgzlfLjX4rVzx Bf0y6O5wvHjPUVYJcLs5rwYut9ULHsrlSY4ec7xEuAYxxW+zDYNZDDrwgmAEL1t46TIKIGzHoBIP RyNQAmTJnEEre7CtlOKHOqxQg5pMSmOPJR6kGOy4E/juQrJlzeS0G8om8ITbjInZ4ZTAzQ9YBkxV ZqkYAF65ck2/eIDL/Xv33aR+tAn+zUbA1nwVr9u4rdlsvVThRQADZoirNQMsdSCHlQ8uYpZAcijr Artky+L4DdNSDKzeU240P/38q7To8IXmX1wpSqq/VFkPaO3HeVr3h5851l5PbMN1xIs/Bp1Q4CAu AiRQpUYTZdkEH18jJjZFWMpm8kJbgrzzenWtHDDb3S2hXLMrPcx1gqLJWDGY+90cj8GGNwn0XjN5 ubI2A4QGzTuaJNbysIqlYoJ0or/BPWUE7me4Dw8qlzmUBZYRUFLYBcpACJRIGODUevt16dZLWWN1 /0Er9Qo8n0eqVamklbH24zytm6/F3touFC4Q13piW8VyZXRfjIEn7kMok2At4klCe98iP3/KigEa BNYa8L0Hz3q13lbuG5v1c8DkkU8FcIaSONB70lufBwsdiD8sdcIw/PG3fQRyCvv19advNLGQfp37 l8xVU5wbwcAMAn9+V/HGzzUtfpvnUffeA7V1nEmDc5jnOu6hjsq1q6VSsKIdwpXC1aXNe/99W2fr Tz3sjExZXJdQPhoxcVwSqY8iRkwMqocPHur73NczCO6IkHRpUpss9BLuefjwEohA6QdrKsRIgHUA +sTySuHST1mRIW4DYpHgOWF/N/Anf9xn9hgaGdW7BMS0BXsentouuOH9CILrCHGtMxQhJk/k48+7 kWsedm5HQt6X8DHDLlkVF1g1QEwab+0j0Pc6vH/hPxRMuL7o62E1jHcFXBfEuUE9ixXyTzltLzsY GTExQcxsf/6++5njuSQBEvBMgEoNz2y4xw8C8EOEwIfPVRCcEr7s7gQvP+jc8SUJggcIJKXt5QO/ EawPAt9VmOZDcud0zhPxNCBwB5ir4m3ADQQv0vbBiU7g4Q8e/DDdQwArmIgvV+cZNHycnFCWF+4U M4hRMW/BUm1dgAEoXDNg2m53I7CfKkGCePqn+XJg32fWERzzrBp8uApeJEzgTOzDQxUvDva6IaCW eSnDi0/hQs9rF5Rab9fUJt6vqgGzJ4kfEtwNQT3tygvkCTEDZE/H27d/2a23II4BLGRyqusOZQrM 8qNFfzRItKd3t27qhcFxc+XeY+SuUmohHwyK4X4DQZntcjPkNwbXJmidaxqj7MCXeEiNV6roL3ZQ KODFBdd10dJVlimnPX936/7wMyzdHY8vhIihgbaDdoeXVzNgdZfe3baiKl6BGczY94e1bMjLKCl6 qJgMA3p9/ZjZrf18MWJEt/90WkesCsgZFaDTLqdD7nv7Nvt6oPea/Vj7eopkybQllr1NYT/ah13R YtqHORauTFDM4R5E2wQP83Jv0iCAHsTMQAMFIsy30Z4QaA5xUjCA9xQ3xORjlv62XZPedYk+CQpm uKAgeCEGN1DgeZKw3Lf+lBVtE2bsGJxFU//gG4/YOXjR36Rc4/B1HNZ3pq15uydhnecq3vo8f8pn 8jP9ivXbhzLWpDNLf9uHSR/o0p++EQEvIfjqXE65LxpB3xhPDcrc3aPe+Jnj7UsM7iB1lWWc3Qwf 50huswY6g4C4IYJnNGLv2MW1b7b33+YcgdTDnndY1v3hbPKPHsCzzRzjuiz4fF69aZeyGNuorGle qVJBCoRs26PeSWC98bqycHuSYtrutRArM2/nMnxMGvtvf/trb9zMoB/vQ3geGjkVYkWD3/60j0Df 65AvrOkQAHWr+jCDfjOXmkWseJECui9HftiG/itQsTNyPdbfdz/znDHHu/ZXZjuXJBCVCXh+C43K VFh3vwiYr2AwPcVLvPmPOBeQhR5iKWBQjqBdubI/Uk4YTbY98CPSIB4EXmzwUNinXozwUDFfRk0h oSCBuwD8eN//35taQbJUBYD0V/D1H+aFmMKzrjoesTqQ31o1EHEniAMARQZiNVRVgUaLFymoTdHN S7nrMfgqgXKvUf7Gdpn71yJtnotteHjCnxN1NgKXGgz6sM8udnN5xFDAl077l0gEToW59yxlLYMB mbcv/9mzZtFZ202TMZDDzDIYXHuqk708WMfAHYqpF0oV11+F8TU7T4i5qLcHums++A0TXsyUAK6l VCwQ/M//XG6tdLEreGDmi7ZkBINICEzt0UbA3LjluKbB1zBYoeBFUjUuHWwWPtGI0QHFkWnb5jj7 Eu4qRsLKr0ypYjqr+YuW6xlDjBk0Nnqz/jHn97YMa9mQN4LFfvlJGz2Qx5fZ0JYJvvtQNs2cPU+7 /iBvKHKmzpiDVY8S6L3mKaO86t6GwALJtCm8wOI+tlu5IIgxXGWMYAYDCAJ7QrJkSq9nfIBbgxHT Z2FgjvaINoWo+DgPXDsGqdgcEGOab457tIymuZpYMP603UfHPr4G6xJYycAFZbmatQhKTk9fecN6 3/pbVijeMAPD5m07LDccuANsUvcsgnGaeAGhvSc99Xn+lg9KYWNlAKK4joeVm4w3Ud2GFjMYxw9f 7cNxROj/+uob0yuXAQgUGKadY4nnA5RLroFCTUk88TP77UvjMgqFkf0cUFwaJQf6SLid5M6ZXcdi GqMUt/bYNcjPe/8dunrYyxmWdV+c/c/b+d52dxw44n6FMh3P/KKFCuj7Fc8xWLzieWQsQ9wdrx5g Tv2H+zS+t2ZVFp+7du93UtrCWhMBUz19sHHNNRj9tbEqhbIflioQlMMek8ifdh7oex3OA864BotU XJT8SrGEd5dihQtq61G450ChgfcKd+KuP3CXznWbP+9+mMEPLrN2SyvjEmPyM+9Z9vcTs49LEogq BGipEVWu9BOoJ4J/QRBYzy74Cg5/+TUqwCXMnk2EZ5MG0+RhcJQzx6PBOvwUEeF5xNjJOiYGzJQR rAvSoM67egnLjwzKhNJ03nqj+nNQmQc+ny+3/onZTOb+tVjGTpqugmMW1rE5TDpPSyhA5quI/IjT gXJg9gIoBYqEmE27HpchfTr9Mg6lBKbxw/GY7tKTAgDlrVa1ogr6uUgGjxwvJYsV1i/Qc/5cqNg5 BrWwbvhVRdT/WgXDhE8rptqbpQaAkCpKSWGXPgNH6mBnGPiDEVhWrVTeSpIvTy49gPxFBTXEy5K7 GVxM4mxZMuo04xQvPAwxjRxmBEF9EFvAX8GLGQZOUCLkX5tbvzxP+fk3fw93SocvtXghRsT3auqr FR7kk5T1DQZgo20zESBuCNIhoCpcCHA9MLA0lg7gNm/hUj27Ca4rBi0IWlpMfXkBOwxecQ6Y2NZX bQxTqJogbznV4PeBTWFiCphNKVwwiEW+GIiFlR+YYXANM1qIUXLgBabNJ131gLRDy8bm9AEtw1o2 nAxtF0zhV42gqphVCIqf0Min7ZvrIK0wSYcVD5R48K2+cfKmx+wCvdc8ZVROuawhQv0X3X6Qd9+o ruPxYMAA17Vvv+hotRncS5jZCMHyEONk8vRf9b2EQTkE1mCwPvr2+wHy6kuVVIyXK3omAChH4PMO XqPGT9HuNo0b1pEM6dLq6ZBxbB41wHMncEHDTBro/2B2DssRX23XXT72bTgegX4huHaeJKz3Lerr T1lxr6D/gxgFBtq96eOLFHTwhTLB2z3pqR6e+jx/y5ddDfoxcBr/089SIF9e3adjcIN26kkw8IVg Joiaqs+C8t1X+9AHhOGPr74RLh5QtM9ftEy3WwzS8LydpmZfyKGU43guuxNP/NylhUIY9+1I9axG QNKM6nkIhTLeB2DZiK/rI5UrJ9wyWzb+QD8LWrTvrPtqzC5ixFf/HZp6mLzDuvTF2d/83d3b7o7F PQGrV7Q384EHSn3MmoH3CrvFguvx/p7D9TjX36+rWA/f9xuqg8AiJsq/ly8r18zftNUjLKvsilzX Y83vYPTXsOpCDAq4hdb9qI1ux3BhBBdj0etPOw/0vQ51QKwzKC3g5mJc9sAX2+Amgg94nsRdf+Ap rX27P+9+eHYgeDpmzkLMM7yjwm3VLrhGeJ+AKzWmFoYrrSdltv04rpNAZCJApUZkuprhWBd8VYRZ NTp8d6bvlZRfN75y4kscBvF2MUGlMHA0ggcZorUPVJG28SCHIJ7EN5076kEnzoeBtgnyZY7DiyfM wY2bCx52zVSAzW+VT/s09RXY3UMIL7oQs4QP90X11RgvFcadBgPfempmFneCaf9gCjlRTe0FwUse 0m/dvttdcr0NEanvKXNmPGhXKm4QHNO4fm29jvgK+CoOpceo8T/pbWCCqcQy23xL8dLz0osVxExN id94+JqvGzgQ9apQtqSe/hYPQG8C958un7bV/rs/z/xdK0iQJ1xX7MdGD2HmLS8EMMWAb9CI8ToZ jr+jvjJ5EsPf1T0FL3MIcPbzb3/ocuF4mKTCkkLPvHHVkSNePGFiD8UGBIHEOqgyGMHMOjDRhGsU FDV4OYQZPgLcQdBuMaUngtlh6jbHtgSaOSx1LivFFsSUE+s4J9ov+MN8GtPb+uJnjnetJ/KDwJIG yiC4TJmXEGOB8kD5eHuSkA/FTuWzp/Xn2voqm9mPL7nwpcc0yblzZZOYMRyPjkd+8qY09hI4r8OH HhHgMQCCaToso6AAxSDWk4TmXnPk5VweKK66dGojw8ZM1AMupIHlCGaGMF+esQ3XAMosTNUHQbtD wDrTx2HwAT/r6bN+V1M2jtVpcP8jWCiCG0M6tmmi2yTaFQQvxAiSWLJYIf0bzKKp/0ZKq0COUKpC UYYgfl991k58tV1zrGqdj1Ztay8oZalRajyvrJy8ib/3rWkLqsE5ZedPWXHtwQGzMRilI5Q3uCeh 9EZQQoive9LpxLYfKJunPs+f8uGZ0fW7Ptr9bJ5yQcMgEgoAE+/DdiprFVYgCHaJILSIp4KAtv60 DysD24pr/2pYu/YZPvtGlWcDNfBCv7dMDXrMhwe4M7RW7dgu5hzY5o2f/Riso1/BVOSYoQLPWCgC cW0RF6imcpPYolw44W6FWUbMtYarCvpMKJWNu4Wv/ttXPUz5XRnBxQnyqG/CL+c267rfpDVLfzgj D3f5OrY7/rq7t+37zToCjePdwyj3sB2KVLwLFS7wnEmml/70H673qFMGHn4UUrObYUa3Kb/M1tPR IhmUV5+0aeb0jDHc3WXjf3/9+PWw54e2gfsPz4o7yioOHNdu2CKzT8+3kvlqH4G+1yFjWDJB+YcY b+ajFng/rxTW+Jhht5hxbWfu+gNTWG/M/Hn3wzvfDvU+jXsL5cA7Gt4b7AH5cY53VeDtydNm6Vn1 cO04A4q5AlxGFQLR1Muz57fmqEKB9YxQBOBSAfNZvPCGp0BxgmBd8J00Lzfezg9Tadw9eMAEIlDE YNDs6RxQ0uC2NIMkk3e/IaN03A9M44aXVnCCdt6dDBw+Vtapl4DRg3tb8SXcpbNvw8vpdfX1HGUL i2CGEgwYPU39GUjesKbAi4adBYJOtvq4iyBAJqYyg1VNHNVevMX/wHWFabSnlwtcS7ykwILDl+Da IMgXrIns+YWWH2LFYADsGnPBDBZ8lcef/aEtmz95+5tmuprqNLaKZA9FkBEo8aDkwzTGxnTd7LMv Q3uv2fMw67i/cP1c4zM0VEFEEdQTU0kjDeK4eLu3YWmCfsqTST++bMK6CP2JPwIzc/QJJs6QOcZX 2zXp7Etzj2CgiamR/ZFg3LehKaunsgVyTyIPf/o8X+ULTTvDtNl4iXK1SPTVPjzV29/t7vpG12Nx TdGGPbVRe3p/+NnTYx39Cqw18Byy94Wu6ey/TdsMpP8OpB72cwVj3R/Ovs7j6d72dVwg+4N5DrRd PN+8PVO9lS0095HJD+fG1Mh5lauH+SCGZ26Ttp/p/hFTZbuKt/YR6Huda96B/vbUH/iTj6d3P3Ms rjEsCKEc9nS/ob54dgXj/cucl0sSeFoI0FLjablSUaicroON8Ko6BhSepj10VwZ7YE13+z1tg6m6 NzFf672lwcDHnUIDXxiWKT/61cr152XlugHzcn8FX9vCqtDAudyVy98yuKYzX8hdt9t/+1NmXwPL QK4lXibcvTAEyg8uJvMWLpO/lKk4TGsx1aldkF+wJNCyBeu89nxuKPcmfI2EqwUi2aOtwvoKbhve FBrII5DrYz+nu3XcX77uMX/SeFN44LwYEAQyKPCkxPXVdl3rCJcOfMHDNa/5ahXX3R5/B+O+DbSs Hgujdvh7zQPp83yVz99z2svtSWHgq33Y8wjNuj99oz/XNBB+ruVEGwvkmel6PH7703/7Uw93eQdj mz+cfZ3H073t67hA9gfzHGFtu6G5j0xdce6du/dqF6r8+VZrpTAsFKDsQMwzd+KtfQT6Xucu/0C2 eeoP/MnD13MJ19jX+yPq6+79xJ/zMw0JPO0EqNR42q8gyx9lCGTLktmjdYeBgOBRmEsdbjp1lctL ZBQE9YPbE4JPPs2Cr0trVfDY55WZLVwaIrt8oKbxRMwWmKZv27Fbz4iBGBI1VZyKiCAw0Uegx6dZ 8EUTJv4pkj8jrZVrTTAGZBGdR1To857kNQhvfpGl/36S1ySq5/1d107y86y5smvvfh2kEy6CeFYg uDCFBEiABDwRoPuJJzLcTgIkQAIkQAIkQAIkQAIkQAIkQAIkEKEJBM++OUJXk4UjARIgARIgARIg ARIgARIgARIgARKIbASo1IhsV5T1IQESIAESIAESIAESIAESIAESIIEoQoBKjShyoVlNEiABEiAB EiABEiABEiABEiABEohsBKjUiGxXlPUhARIgARIgARIgARIgARIgARIggShCgEqNKHKhWU0SIAES IAESIAESIAESIAESIAESiGwEqNSIbFeU9SEBEiABEiABEiABEiABEiABEiCBKEKASo0ocqFZTRIg ARIgARIgARIgARIgARIgARKIbASo1IhsVzQC1mfXnv3y45QZMnPOPKt0N2/ekt/nLZIR4ybL8b9P WduDvXL9xk0ZMXaS7D94JNhZ+5Xflu27ZPqs3/1KGx6Jjp04KcNGT5TLV676fbo16zfL+J9+9ju9 PwnnLVwqy1at9Sdp0NNcv35Dho+ZJAcPHw163oFmeOfeQ7n34KHbwx6qzbfV/vsPRC7ffCDNJp2V dYdvuU0bETfO2HRNOv58PkxF+3r2RRm/+kqY8vD34P1n78i3v1+UFpPPyY077q+JP3ndvf9QOs+6 IGsO3fQnOdOQAAmQAAmQAAmQAAmEkQCVGmEEyMO9E4BC49teA2TBkhVy/vwFK3G33gNl0rSZsu/A Ibl1K3gDtVXrNsqO3Xut8xw5elyWrFgjS5avsrY9qZU9+w4+NlDfsm2n/Pb7X0/qlAHnu3LNel3G 3Xv3+33sr7/Pk3kLlsqVq9f8PsZXQuS3bMV/o9SAMmPpStUmVLsIpri2PV95Q5eRusMhqfzD326T TttwVZ5pfVB+23pNNh+/JRPU4H786stu00bEjb3+uiRDl/wrF67d96t4Kw/elElrHykwbt19KN/P uyTdlaLhScu/Nx5Iye+OS48/Lsn2v2/LA2iUQilQRPVb8I+sOhi8fi2UReFhJEACJEACJEACJBAl CMSMErVkJf8zApvVoB4ypE83SZwooV6/e/euHDpyTCqWLSVNGr6vtwXrz/hJ0yVzxgzyfN7cOsvn 8uSULz9pLVkzZwrWKTzmM3/xMlm/cauUL1PSY5r/esfbNV+V/PnyyHO5c/pdlE7tmsvFS/9Y18/v AyNoQtT/i49bS7aswW0Trm3PV/WjRxN5r1giraw4f/W+pEwUw+mQcasuS0yVqHr+BBIrRjT5o006 KZwprlOaiPxjVvO08vc/9yRFQud6eSrziGX/ym9brsv7JRPrJHFjRZM1n2WUJPGfvO5947FbAiXK xEZp5K0ijn7KUzm5nQRIgARIgARIgARIIGIRePJvixGrvixNkAk8VF809ypri/mLl8uGzdvkis2t YfvOPVp5ESN6dG3qDxeQ8xcuytqNW3Qp8DEUSo+r165bpbpw8ZIsXr5adu87oMzuld29i9y7d092 7dknC5eulMPKCgPnh9y+fUfndUst/7l8Wa+fO39RHqg8bt+5KzduOkzB//nXsQ/p8cV+kcrn0j// upzF8ROuGqjX7r0H9AZYXZw+c85t2p2796m6XdL7UCeUzS72ch89/viXedTjyLETul4nTvrnjnM3 hMWiZavk1Jmz9tMJ9qEcqNtxVY+/Fi0TsL11+7bcvXtP/zcH3L9/XzOFNc3fp04L3DPs1+WGcuHB cUbAA3nCcmP1uk0CFxtwdhXkBYuI5avWeeTmeoz5bc6B88ICAq4qV685W4rAbQlt4aay9Fm/aatO Z473xuaequ8dpVhDveziq+3hGuHaoU3gvGhDEE9tz563p/VGLyTRu6Yqqwy7wHJgxYGb8r/iiSR2 zGjaReWmcom4otxQ7IJ0P2+8qq05rt56tA+uFAt237AnldXKHWLj0UfWA7h1/txxXQ6cc9TDKXHI D6TZeuK2jFlxWXafepQO58WxOI9dFu+9ocuNbXCZuXb7UZmwbYeyghi78rLANeXM5XvYpGXJvhty /KLjN/LdrJQMkKvq+MvqXBBYQGDfqX/vyaHzd2W8UvpsU2VzJ1CmwG1l1pZrAhef9UduyVoPrjs4 1x8qX8j5q/f0OUyeqD/OMVrVH3nAFcguy/fflJ0nb8tJVSZY0oCxO7l0/b7OF1YgELgc4foOX/qv /LXz+mOc3OXBbSRAAiRAAiRAAiRAAu4J0FLDPRdu9YPA7Tt3pOt3feWoGowbgQKjs/oKnjd3Duk7 eJQ1GO7Vf5iylsgo5cqUkPGTHfEZMODF/y8/aSOwqOgzeKRs2LTNZCWxYsWSPt2/lFQpk+ttUEJ0 7d7HSdmRPWtmdb5WeiCOc0D+PnlasF77nZrqfCX1eoP335WXKpfXg/VR43/S1gpQuhgpVbywtGnW SP+EAqLzN70ESg0jRQrll01btkv1l1+U9997w2y2lgOGjbGUMzh3vry5tDWASfBVj35OMRyqv1xZ 5fOm3g0lwsdfdndSrmTKkE66d/lEYsZ0f4u6Y5EtSyb5+vP2+ph/lfIG5QAfpIU8kzSJUvDckSEj J0jfHl0kbepntZKp/effKiXHXZ0Gf4oVLqAVVOAKi5df5/4lGzdvl/HD++o0PwwcISlTJFOKlHPW cXHjxJEvlEUMzgcZpyxmoEixC65HjVeq2jd5XMc5Uj+bUk6dPmu1ISRuVO9/UqViWX3cjN/mquu5 SxIlTKDZoZ2UKVFU19e1ndjZXFNKNLBpWPc9qVqpnM7LV9u7dv26fPLld07XCOft+mk7iRs3js4P Gdnbnj91LZo5rqROElMP0FtVSqrLgj/TlaICYpQel64/kLeGnZK+76aUphUc6YapAXGH6c4xK6Y1 SSOvFUioFRofq3gWB7/LImmTxtSD6Jf7nRRYP5zrl03nvfv0bZ3nuAapJUeq2Hqb/Q8UF8W6HdMD drP9+fRxZMUnGbSipamK8QFFA86RME50rVipNfK09HwrhZTNEU96K/eT37ddt8730YSzMnndFW19 gkE9rFAmf5Ral7fu6DOCgT8E9ayYK77MVZYpdUadFjCa0SytVoKYfVCCGMmQLKZs7pJJEsR26OgR xwNuL0bAN0HsaKru0WXDFxnNZmvZXbmcQFkCaR/C88bQHLo8Rbsdd1K+oJ6bvswkOCfk3RGnJI3K /9C5u5pxo7JJJL9iZJeLyv2mdM/jWsmzolMGAdfKfU7IntN39PWAhUiyBDFkueKaNWUs+6FcJwES IAESIAESIAES8IMALTX8gMQk7gms3bBZTqiBf7MP68pPYwZJr28764STp8/SSwyC4YoB5cTUcUPk u66d5OUXK8jIgd/r/R/Ufltvh0JjlgoiCoUGFAYTRw2Qnl9/JlCQfPN9f50WAT+/7tlf4sdXg6Vu nWXC8H5Sv847egA7+48FkiJ5Mp0XBpoYiON83gaV+Co/vN93Mrx/DylcIJ8gGKYJnomgplBooCwT RvSTfj26yjE31hW6YCF/Rg3qJVCMoMw4N9wbjMDiJEmSxDJuaB+dV/p0aXSQVGP90FsN4C9fvqKP mTx6oLRq2kCff8zEaSYLp6VhkUDV9YfuX2heH35QS1vFjPlxqlNa1KNT22aaF5QVrtK99yB5oCwX oMCYrK4hyr156w7XZI/9Rr5QFE1S1+rzDi214mHhkpU6HaxxYG1TucIL+rzDFOfMmTLITz//5qSQ eixTlw2wdilTsqiMGfKDDP7hW8mYPq2gflAcGIEyJleOrNq9qe93XSQQNiYPX20P6Xr2HaoVGh1b N9F17tKprbb0GDr6x4DbnjmvWUJxgQHusYuPFEtwPYE7Soms7t1NYHUAhQYUGH/3zipHemaVQhnj KCXAGe3y8apyWYHAcgKC+A5QJMByApYFkMV7HVYFVfPG179d/7wz/JScvXJfKxcuD8ou4xum1pYW baeek/hKSQBFAyxHOv1yQecLpUUR5R7TqtIzrlnp+kGh0a7KM3JlcHY53Seb5EkbW75SgUAhqAPc PqDogEIBCg1PsubwTa0AON8/m3xdM7mcuHRP/tjuUEr8rpZQaIDL8V5Z9f9SiiEsOzwJ6oG6QaCw wPkhNQef0gqNmcqNBmVe2CG9dlGp9MMJvd/82XdGBRh9PbmcVHWA0skuUNRAoXH99kNZ93lGrTwC B1xvuBNdGpBdK1pwbYbYFDH2PLhOAiRAAiRAAiRAAiTgnQCVGt75cK8XAlBYYCCMZXQ1mMegs6ga OIdmNhO4GGDgC0uIWMo6IXPG9FJLfdmH8gEuIwcOHtZWAc0/rCcZ0qWVOHFiawVJ2+aNJE/O7F5K 6X5X/drvSFJluZBUKRter/6STrRRuc9ANiqLDFiVoCxxYseWNKlTSfuWH+l9of3zkVI6xIsXV+dV NcTSAK4MGJTv3X9QXqtWRVt3xIgRQ1sbQNGyyYNywbBooVikT5tG83pRKRAQK2Kdiulhl2pVKkoh lRd4RYumgjjYBO4cZ86dlxqvVtWKIChkYGHyzpvVbancr0IxU6lcaW0VgvPCQgMuIJCUKZLLxJH9 BXXGeWEh8lKIRcQZD+477s4CBRWUNQmUIgtKqw6tmuhk23budkre/KMPJHmyZ3RZAmFjMvHV9mDd AmsXKOSKKosdWM/AEqmLstKoWtlh6WHyCs2yfhlHDIlJax3WGaeVWwZcHj5UX/09ya/KrQIysVFq /ZX/2cQxBBYXGBwvVVYMmZPH0koRo9SYu/2a5EkTW2/DwB+ycPd1yZVaXR9lJeAqsB5YpQJ3QgkB qwnE9Hi3aCKp9nwCmRti1QALig5VnxEoYF4dcFIP+KcqSxGXZqazNm4ziB0CxUqSeNH1IB9KhECl cbmk2noDlhltX1TXXSlCZmx28EA9IT8qLojlgf8T1DrSBCKY/WSTckuB9czL+RLo40tniyfd30yh LVeOK0WKkQIZ4kgbVQ5wBCcjF5VC44WeJzSXdZ0zSiZ1TSBwy4EcVe42cGd5Lm0cOaOUPH1cFCI6 Ef+QAAmQAAmQAAmQAAn4JODett3nYUxAAqLjWcz5c4GsWrtRx5O4reIfuIuD4YsVYhWYr+91G7e1 khuXCHyxNzEqcmTPYu3HSslihZ1++/sjbZpnraRQkkDwlR9lQRwKKALskkkpWUIrUBZAeWIko3It gaB+R479rdfh4jF3/mK9bvZhiXgNUAzY5aAKsgpxDXSZI1sWgUsNXCWMpFEuHJ7k+IlTelcWpUyy C1w1fEm6NI4v2yYd+GCmGSOIr/Ln/CWC+CCIc2KuJfj6K1mUYsmuiHk2VQptCXPwsKP+yAeKDyjB jATCBsf40/YSJnBYPcAixC747brNvt/f9XTKPQQWDogR0fnVZDI5RLlRv7RnpcbsrY7BO2ZPcZXN x2+rYJsirygFxF+7HJYacAOpVSKRsjy4L3O2XZNPqyXTMR1aVEzqerj+bWJVwIVk0OJ/rDRQdkCu 33mg3T261kiuXWU2qFgd/f+XSlAXdwIFCJQDmN0E/zGQR3kal0uiXVfcHeNpW+7Uj1w0oERIkzSG XA1RFCD+B1xD4qg4JEag0IDyJhAxsS+KZXG2lCmayeFaskHF18iYzBFQNHuqR+Wxn2PAQge31pWf ceICy5xxKq5Ic+W+0/qnc1IqW1yB2wqURhQSIAESIAESIAESIIHACbh/Aw08Hx4RBQlMmPKLnuoT CoDK5ctoywfEy/AUeNMTIjNwhZtKc+XKYgQBLaOpAQkG3edCpoO9ceOWmEGmSRfMJcqCgfKZs84B Qc+duxDM01h5IR4DBAzLlS5ubb9567bEU/tixHjcmCq+sviA3FJp7Cxu3nQEV4R1iVm3MnSzgpgV ENe6nlZxLHxJdC9fvhFQtc+gkQJrDli7INYFAo+uWL3eV7ZO+12n+kUwUijN4ILkSfxhg3ZlxJ+2 Z4LMugYWNXkEYwmrjGZqkItgnBPUtK1wJTFxG9zlj31HlbvKyHqPlHNId025ORRSlgMQuGAgeCXc TZC2hvp99so9bVmB4JhQUFTP7xiY6wNsfxLGdSgFoIiorZQPRq6pYKQJ40aXWCHX/x8V6wPWF5Bl ykIESgp3gmYMNw64XcxWSpVfNl6TL2ZdUAFDr8qqTzO6O8TzNnemICGpoWD4bcsdpawSJ4sRuPYY SwnPGT/ak1jVEQKedjG//Z2RBRYzAxf9oy1cyud0tFtY1ezvnkWWq0ChiOUBJU/9sWf0tf9KKYko JEACJEACJEACJEACgRF4fMQU2PFMHYUJIPYCXDgQs6GqCsJZvEhBbVUA5USgAveFBAni6zxKFS+i 4lMUkfzP5daDdgxiYYUAWb9pi5U1BrkI+vn7vEXWNqxgNoywSO5c2dXsFvtl6/ZdOhvMpDF87EQ/ soymB93uZgLxdHD6tA6LBygwTL2xzJEts1KuqBgDNisEk0f2rA4WdvcUnHPL9p3aTcNf/nDZiB8v nsycPU+7+SB/KKSmzphjThWq5dYdDvcQxJ2oqVxbUB+cJ1A5pCwy7DOeYIYZSHYvliShYeOr7cEq BdY2a1QMGbvM/WuRDBvt3C7ctT1/rJfeLuqIJ/HZzPM6/sNHXlxPUIZyOR1xMEpkiSdvF0mk/0Np kUYNmBF0ElI+l4M5Ym8gwCXcJMorVxLIZzMvaJcKV0sEvVP9yZ3aoRhJpAb3Jn8si6vzJVcuHZiR BYLBOCwhvqyeXM80AisQd3JYxbSAWwyUDp1eTqbjSCC/LcqqxMyQEk0cs7y4zjDiLj9P2+AqAxec L3+9oBUbUG58M+eidQ5Px7luz61cdVAv1/qY30X9mFoXTFZ9mkFfjzeGnNSxTnAeKJTg2gIlB4Kq IvYH4qdAwWMEdaCQAAmQAAmQAAmQAAn4R4CWGv5xYio3BDKkT6dnBMHgLvWzqWTpijV66k5/B9X2 LGu8UkXPlvJtr4FSrUoF7XYxSQUchcXBaBWEE64IiLkxadosuaOmaIUVwBJ1PlgFIFCpkWxKOQJl xLyFS634B2afv8vG9WvL3n0HpWe/oXowji/1qVN5duMw+cIVYc36TYJAo+VfKKktTMw+T0vEIoFC aL6aKQQD/yIFn1cuG6dl2ozZkiN7Vh3jwvXYbFky6vglmGEEg+g0ij1YYLpZxKAIRD5t31y6qBll Wnb8UluoYHpdsL1x0hFEMpC8TNp0IYqaSdNmaoXGPjXlr+tMKCattyWUAZhd543XXtaz20ye/qtm VLRwfo+HhYaNr7YHa45qVStq5dngkeO1yxPqNOfPhSqQaTGrLK5tD3FARk2YIktV0NQeX30qxu3I OsC2gvgQ1QskEBMr420frgh1SiaSPvMvSfneJ6RL9WSSIlFM6T3vksANZOnHGbSVB/KEWwumDkUQ TgjcMspkj6e3VX0ugYQYXNhK4liFZUWT8kllxLJ/JbGKf/GqcmXZrawsvvrtog5eCuUBpkzFLCSI X/FW4UTaDeUDpeTAbChGsWIyxrHvqsCjiMnRXsXpQFwJxPuAuwoULhC4YfyiBvaf/HJe6pZKLAVD LE5MHv4sG5RJIjNVfI2+C/6RoWp2GMg9ZUiCGVACEXD5SFmdYIYZWNDAlWf1IdUXqaldaxRMKEnj +/4eANcYxNlAQNCS3x2Xav3/VsqcTPLjmisycvll7QKEfOEyA2sXrEMQryNfl6Pyigr2OrVxmkCK zbQkQAIkQAIkQAIkECUJBPamFyURsdKeCDR8/1015eYZmTh1pk6CWAzFihRQSoVHgRyNeb89D3fW 47DyQGDJn3/7Q/oNGa2TI0AnZtYwMSUw9Wt/tW+GSoMBL76ev/fmazpQqckfA9RDh48K3GDgnlFR BbOEmHKYJZQJngQWEv17fqUsH3bJfhWgFIN0KCnqN23v6RC9vXSJojJ/8XKtUEEQ0K8+a+dsA+/h 6AZqFpf7agaSZavWycKlK3WqAs/nldZNGrg9AsFEu3zaVnP6eebvmgVcZmq9XVMQMBRi6gn3Hbvg azjE1D+nUpwM6v2NDo565ux5PbUuAnNCuWTE5GV+O5bO+dr3gfmO3XtluaoP/qNsr1V7USsB7Omi u3Gtse9HsNQH6lM7pqCFoD20UkxwfRzyeBn8YRNysLXwp+1h+t17anQMxd3KNRv0sWjrUIAZcW17 CEBrXGZQD18CFxQoNTBoNgN9c4ypqXH7gVvDvLbppcnEs9J8ssNVCsoHzOJR3BYH4jWlKIFVAKw4 jLxeKKEOAlqzoGMQbba7LjGTx937D1WMjysyRg3mIVXUTCkTGqbRs6IgHgSmboXFBQRBS4t3P66U AOcEU8vamx6UIp+9kkwpXv6xpk9F4FIEFjXyjlLkYLAPRQJiWixon17d49GsfEw7tOdrjjVL9C2z WqRVViE31bS211VA0hhqWtzE8sbQU1q5YdK5Lg1f+/Yf3nHUf+r6q9qNB9PhQjk0tr7DusqkNfeU +W2WpovBFK9j1DGNxp+Rxj+elUG1U+lgoz3/vCT4D8E17/W2Q3Fq4s7cp7WGQcklCZAACZAACZAA CXglEE29QPl+2/aaBXdGdQIITIlWhMFrMAQuB3C7iBfXOUifyRsKjatXrzkF3zT7sESThjVH7Nix rMG9fb+v9RVr1ivFyDGtMMGMJRAMzjF9Z6sm9Z2+zrvLC0ExoTTAADtQwUwv4OjO7cRdXmBxXVlX JE78KO6Bu3Setk2fOUdxim3NAIN0sEbAwH3EgJ6SJJT5Ih9wuH79hnZRwu9ApGHzjlLg+TzSplkj PV0s4mAE2r48sYHC6dOuPbSFD2busYuvtoe0/6prBN5GMWQ/3l3bg8IqNG3Bnq+3dbhvID4GZvp4 UoIZWZIrqwPjdhKW85xReSWNH0OgJHAnqAv0XbB0CFTWqwCeU5QSooGaUQbKBAimfM31xRGpUyKx jPrAOQaJv/ljattUykXEnULW3zxc08HNBjFOnk0cU9fXvh/uJ3B/oZAACZAACZAACZAACfgmQEsN 34yYwgcBe7BKH0n92v3oS7z75K6zibimwhddY93hus+f3wnix9fWFquVK0nh/Pnk9Nmzsu/AYT2o Lqh++5LQuN+YPDH9aSACFqFVaOA8N5T7ysw587TbTFZlaYPpZeHGgmlaw6LQQN7ggJgrYZW4ceII /gcq7thgut6xE6fprODq4yq+2h7Se6uTu7b3JBUaKA+sOhIGjgeH+i1pAnTf8JaxL1cQT8oOb3ma fVlSxNJWJQi2Wi1fAhVfQ7TFBvY3VBYboRUE9wy2QHGT1sNsMVRoBJs28yMBEiABEiABEojMBGip EZmvLusWagK79uyT2SpmwslTZyShspyAm8Y7r78asLVAqAsQTgfCsgAuM2vWb9YzzCB2SH5lIVHz laqhsnIJVrEHDBurYpKklxqqHMEUxC7Zd/CInmkGLj6UyEcAM710VbE/tqogpHD7wXSy7VQcD2O5 EflqzBqRAAmQAAmQAAmQQNQmQKVG1L7+rD0JkAAJkAAJkAAJkAAJkAAJkAAJPLUEPEdLfGqrxIKT AAmQAAmQAAmQAAmQAAmQAAmQAAlEBQJUakSFq8w6kgAJkAAJkAAJkAAJkAAJkAAJkEAkJEClRiS8 qKwSCZAACZAACZAACZAACZAACZAACUQFAlRqRIWrzDqSAAmQAAmQAAmQAAmQAAmQAAmQQCQkQKVG JLyorBIJkAAJkAAJkAAJkAAJkAAJkAAJRAUCVGpEhavMOpIACZAACZAACZAACZAACZAACZBAJCRA pUYkvKisEgmQAAmQAAmQAAmQAAmQAAmQAAlEBQJUakSFq8w6kgAJkAAJkAAJkAAJkAAJkAAJkEAk JEClRiS8qKwSCZAACZAACZAACZAACZAACZAACUQFAlRqRIWrzDqSAAmQAAmQAAmQAAmQAAmQAAmQ QCQkQKVGJLyorBIJkAAJkAAJkAAJkAAJkAAJkAAJRAUCVGpEhavMOpIACZAACZAACZAACZAACZAA CZBAJCRApUYkvKisEgmQAAmQAAmQAAmQAAmQAAmQAAlEBQJUakSFq8w6kgAJkAAJkAAJkAAJkAAJ kAAJkEAkJEClRiS8qKwSCZAACZAACZAACZAACZAACZAACUQFAlRqRIWrzDqSAAmQAAmQAAmQAAmQ AAmQAAmQQCQkQKVGJLyorBIJkAAJkAAJkAAJkAAJkAAJkAAJRAUCVGpEhavMOpIACZAACZAACZAA CZAACZAACZBAJCRApUYkvKisEgmQAAmQAAmQAAmQAAmQAAmQAAlEBQJUakSFq8w6kgAJkAAJkAAJ kAAJkAAJkAAJkEAkJEClRiS8qKwSCZAACZAACZAACZAACZAACZAACUQFAlRqRIWrzDqSAAmQAAmQ AAmQAAmQAAmQAAmQQCQkEDMS1olVCgcC+46cDIez8BQkQAIkQAIkQAIkQAIkQAJRhUCuLOmiSlVZ zyASiPZQSRDzY1YkQAIkQAIkQAIkQAIkQAIkQAIkQAIkEC4E6Pr9HeMAAEAASURBVH4SLph5EhIg ARIgARIgARIgARIgARIgARIggWAToFIj2ESZHwmQAAmQAAmQAAmQAAmQAAmQAAmQQLgQoFIjXDDz JCRAAiRAAiRAAiRAAiRAAiRAAiRAAsEmQKVGsIkyPxIgARIgARIgARIgARIgARIgARIggXAhQKVG uGDmSUiABEiABEiABEiABEiABEiABEiABIJNgEqNYBNlfiRAAiRAAiRAAiRAAiRAAiRAAiRAAuFC gEqNcMHMk5AACZAACZAACZAACZAACZAACZAACQSbAJUawSbK/EiABEiABEiABEiABEiABEiABEiA BMKFAJUa4YKZJyEBEiABEiABEiABEiABEiABEiABEgg2ASo1gk2U+ZEACZAACZAACZAACZAACZAA CZAACYQLASo1wgUzT0ICJEACJEACJEACJEACJEACJEACJBBsAlRqBJso8yMBEiABEiABEiABEiAB EiABEiABEggXAlRqhAtmnoQESIAESIAESIAESIAESIAESIAESCDYBKjUCDZR5kcCJEACJEACJEAC JEACJEACJEACJBAuBKjUCBfMPAkJkAAJkAAJkAAJkAAJkAAJkAAJkECwCVCpEWyizI8ESIAESIAE SIAESIAESIAESIAESCBcCFCpES6YeRISIAESIAESIAESIAESIAESIAESIIFgE6BSI9hEmR8JkAAJ kAAJkAAJkAAJkAAJkAAJkEC4EKBSI1ww8yQkQAIkQAIkQAIkQAIkQAIkQAIkQALBJkClRrCJMj8S IAESIAESIAESIAESIAESIAESIIFwIUClRrhg5klIgARIgARIgARIgARIgARIgARIgASCTYBKjWAT ZX4kQAIkQAIkQAIkQAIkQAIkQAIkQALhQoBKjXDBzJOQAAmQAAmQAAmQAAmQAAmQAAmQAAkEmwCV GsEmyvxIgARIgARIgARIgARIgARIgARIgATChQCVGuGCmSchARIgARIgARIgARIgARIgARIgARII NgEqNYJNlPmRAAmQAAmQAAmQAAmQAAmQAAmQAAmECwEqNcIFM09CAiRAAiRAAiRAAiRAAiRAAiRA AiQQbAJUagSbKPMjARIgARIgARIgARIgARIgARIgARIIFwJUaoQLZp6EBEiABEiABEiABEiABEiA BEiABEgg2ASo1Ag2UeZHAiRAAiRAAiRAAiRAAiRAAiRAAiQQLgSo1AgXzDwJCZAACZAACZAACZAA CZAACZAACZBAsAlQqRFsosyPBEiABEiABEiABEiABEiABEiABEggXAhQqREumHkSEiABEiABEiAB EiABEiABEiABEiCBYBOgUiPYRJkfCZAACZAACZAACZAACZAACZAACZBAuBCgUiNcMPMkJEACJEAC JEACJEACJEACJEACJEACwSZApUawiTI/EiABEiABEiABEiABEiABEiABEiCBcCFApUa4YOZJSIAE SIAESIAESIAESIAESIAESIAEgk2ASo1gE2V+JEACJEACJEACJEACJEACJEACJEAC4UKASo1wwcyT kAAJkAAJkAAJkAAJkAAJkAAJkAAJBJsAlRrBJsr8SIAESIAESIAESIAESIAESIAESIAEwoUAlRrh gpknIQESIAESIAESIAESIAESIAESIAESCDYBKjWCTZT5kQAJkAAJkAAJkAAJkAAJkAAJkAAJhAsB KjXCBTNPQgIkQAIkQAIkQAIkQAIkQAIkQAIkEGwCVGoEmyjzIwESIAESIAESIAESIAESIAESIAES CBcCVGqEC+aocZIrV6/K5i3b5PKVK1GjwqwlCfxHBO7fvy937961/t+7d+8/Kon/p3348KE0a9lW qr32JvsI/7ExJQmQAAmQAAmQAAmQgA8CMX3s524S8Elg3vwFMmr0eNm+c5eV9rm8eeTDBvWk+qvV rG1P1cqDB3Jt3UY53KSt5JwxUeJmyyISnTrAp+oaRuLCNmneRpatWOlUw9TPPislSxSTTzq2lZQp Ujjtiwg/bt++IwsXL9VFOX36jCRJnFhOnjwla9dvkDRpUkvpkiUiQjGfrjKofgr90qEPmkqsVCkl Y69vHOWPFu3pqgdLSwIkQAIkQAIkQAJhIEClRhjg8VDRA6tWbT/WKDJkSC/FihaWDRs3y67de6Td x59J3Hjx5MVKFZ4qVHfPnJUD/2soicuXkQfXr8vF6bPkypLlknPWTxIjUcKnqi4sbOQk8OChGswq gfIwTepn5d/LV2Tjps3y6+zfZdOWrfLbL1MlUQRrq3HjxpE/Zs/QVhq5c+XU5d+ybbt82rmrvFT1 RSo1NJHA/pz6vp/cPXdB7ijlEPqqQw2bS+JyZSRlg/cDy4ipSYAESIAESIAESOApJkClxlN88f7r ol+8dEk+bNJSF+OjRvXlkw5trSINGDxMBg8doc3NVy1dIPeUufyGjZv0F+TSpRxfZA8fPiI7du2W zJkySoH8z+tjd+zcLYePHJH8+Z6TZMmTydJlKyRp0iRSUO1ftmKVXLr0jxoAVVYDudTWubBy8+ZN 2bJ1u2zbsUOyZ8smRQsXkmeeSWqlmfvnXwIT/YoVysnadRsE5/6gXh2JFzeulcasPFRfP+PnzysX Jk3Tm86PnSgpar8jD+9HfBN/UwcuowaBJh81lGovVdGVPX3mjJSr9LKcOPG3bNq8RSqUL6u3+3tv IB9YTezff1CgdChSpNBj98fRY8dl8+atcumff6Rgwfzy/HN5JU6cOBZsuJggjz179gnW8+TOpa1H oodYOR08dFju3Lmj7++du/ZoBSgO/vvvk/LbnLlSsEB+yZQxg87vxo0bsnX7Dtm+faekT5dWChUq KOnSprHOtX7DJkGdSxQvKseOnZBtKm25F0rLvgMHdZoqlStK/Pjx9Tpc45YsXS4xYsSQ6q+8bOVh VkxeJYsX03lCMZszZ3Z5oXQpfYxJB7efFStXC+qBvHLnzik4JlqIZYTpZ6DIXaP6mf37D8hzz+WR 8mVfkKtXr8kf8+bLP4pdgQLPS6kSxU22eunrOjklDvkRV5XxwpQZWqFxW22LpRRcKeq85y4pt5EA CZAACZAACZBApCVApUakvbRPvmI7lUICkiVzJunQtpXTCVs2ayILFy2Rvfv2K0XDTsmRPZt07NRZ YCK/YslfOu34iT/JlGk/S5HCBWXqpPF628Ahw7QiY9yoYXJHxQwwx0Cxgbwg3Xv2ls8+6SAN69fV v8+dOy9vvfe+nDl7Vv82f36bMVXy5smtf3bu8o1cV18yixYprL9oY+Nbb9Z8bNCG7dFixJTocZyV HdFixVIDF7qfgA8lYhKAoq9M6ZKyavVaPeiGUiOQewMD7sVLllmVw309c/pPkjBhAr1t2MjR0rf/ YGs/VmAp8uO4kZI4USJ5oJSBrdp2lPkLFzulQTmGDx6glADR5bMvvtL3IRQB036ZITNnzdZpYdmF e/3br77QSo2zZ8/J2/+r+9g93btnN3m9RnV9zKSfpsqffy1wuqczKmsxKFSh2BkysK9UfbGSTguF BvKHAsSdUsPkValieScGyZMlk4Xz5mgGUErUb9TEyc0Omdd87VVBuaDYMP0M6gyFrJFmjT+UWb/N carP5506SoMPHBYV/lwnk5d9GS12bPtP0f1ULD7WnaDwBwmQAAmQAAmQQKQnwFFapL/ET66CO5VV BaR4sSJOXzOxDQMYuKJAoPyANQYUGlA84AUegoEGZJP68guFAwZF+EIKgaLDCI7JkSObQNHxzltv 6M1Tp/9idmtrEKSprywv/pwzU7p+8ZneV7teIx1I0UqoVo4cOar3DxnQRw1U3LuSPFQWHVeWrZRk 77yuD01Rr5ZcXuwoqz0vrpNARCKA+BRQaEBgRQFBYE5/74116zdKz+5fS7/ePfS9euToMenVp7/O BwN0o9DA/ikTx2oFAZQRn3XuqtPs2LlLKzSgDFm+eJ5WBsDiCsduVW4mrtKyaWNp18Zh6YX7HQqU KiFKiCYt2uhywy3l5yk/ytddPteHf/zpF7J7z16nrOB207J5Exk6qJ88r8739hs19X67UsEoa6CA 8CZggPpBSQGFBqzRVq5erQ+BJQniBsHqAgrT0SMcCh5sR79il6vKMmTCmBGW0gIKIVh1TBw3SurW +Z9OOlEpZYwEcp3MMVje2LJdEpUpIbGVMieesgiJnTa13FKWNhQSIAESIAESIAESiEoEqNSISlc7 yHXFoAeSIX16tzmnT5dObzcv/PgKCtmxa5cOEIjBFszNIXAdOXbsuFZu4GtzPBWLwy49u30tL5Qp JV985ojfgXNjEIdBhwlQioFNKhUsr8Zrr2jzdihKDhw8ZM9Gfvi+u7xf+z2pWqWyWysNJI6dLo08 t2ahPPPqy/rYFHXelTyLZkuMJImd8uIPEvivCfQbMFjqf9hU3nq3jlSo8oouDpQKcNcK9N7opqwk 3lIKAQT37dXzW53XytVr9HLFKscSFlnYD4snDPwhsMyAW8b16zf07ytXrsqhQ0f0vThj+mQ5sHur k5JSJ1J/EIMHlhWQFClSKIVEXq1IuHDxoo7Jg+29e3yr+4ja/3tXar33DjZp9zG9EvKnedOPpE3L ZgJ3k3TKTeWVai/pPbA8uX//gVZsYh1SpXIlvfT0p1njRrp+sAapU+tdnWz5CodSA/0G6gJlBizA ShQrZvVfcEexS5fOnwrc7IzSBvu6qm0I5NqmVXOdFNYkcIkL9DrZz5O2c0fJMqyfChKaQuLmyCrZ J42SVI3q2ZNwnQRIgARIgARIgAQiPQHaqUb6S/zkKpg1axad+bHjJ9ye5PgJx/Zs2bLq/WXUS/5P U6err7Y7tH85Nn7cvo3U+aCRrNuwUcXCcKSD8sIuGKTFDjGzho88fkOpcfPWLTmhfPGNFC1Zzqxa y71791suKNiYK1cOa5+3lWjKXz5R2VJS8NA2b8m4jwT+UwLnzl8QKBEwMIZASfjj2BESM2ZMOXDg kULPn3vDxLVBPgWez4eFduNAbIvtyoUMkk/F0DACd5cECRJoRSRibcDaAnEi1qxbLw0+aqaT4TeU A7C48Fdwz0Jg5WFXbuZTlgiQnbsdFmL6h/qTV8XtsAuswnAslJ07du6UW7cQbUJ0wGK4sXkTHGsk u3KZgyDWBQSxQEaOHieIm+GqxED8ELtAuQqxx+wxMX4SKmZ2CfQ62Y9FPwXJMX2CfTPXSYAESIAE SIAESCBKEaBSI0pd7uBW9rm8uXWGCAyIL44YSBnBl1uYckPMYKR4saL698ZNW+Tc+fP6qyxcVDAA QfA9mGxDApnaMX4CRyBAHDeof28stPz772UdYDRPbkcZzXYT0M/85pIEnmYCPbp9pQOFzl+wSFq0 6aDdPK4pCyUoAwK9N65eu2ahuHbturWOQKDJkj2jf9vTwAoC1lAQxNRAuvFjhusgpStWrpEly5Zr BQeUHLBugNuGP5IkiUPxYD8XjkNMC0jSkP36h/rj7p5GvBwoNRBc+JZSfkJq+HA9QRp3eWE75Pve /eTHyVN0EFUoY1OnflY6fOJwi3GkCN3fQK9T6M7Co0iABEiABEiABEgg8hKg+0nkvbZPvGb58z36 mgvfe/O1Ess+/QdZXzNNOnwlhQIDPvDLVMyK8uVf0IOI8iqoHnzzFy1epr/85sqZ0++y58ye3Upb qEABeblqFf0/TZrU+gt27NixrP1cIYHISuBF5XqBoJ2Q4SPG6GWg98YvM3/Vx+HPzF8dATxxv2KW D2O5ASsFI8tXrNSriD2RMmUKHTvnD7UfCpX2bVvKnFnT5c3XX9NpduzYZQ5zWiJvCAKDGsmp4udA YI1l4mdAaYq8IflDrEj0Dw9/4F4GmacCif6lFD6QCuX8U6roxG7+rFjlcEPp/OnH0vjDBvKSOgdc aMIqgV6nsJ6Px5MACZAACZAACZBAZCPw6NN6ZKsZ6/PECcCcGsHwPlAzAoybMElmz/lDBw+EhYYx h8cXWgx4jGBWAHxBxf6yarpESCnlZz5oyHAdGPC16tV0kFGT3tcybtw4eoABs3DMloDjEWsDPvQw jV8WgNm7r3NxPwlEVAKYMhWKhEaNW2hrgnp1a+tZRDD49vfemDh5qmxTrmGxlcUFFI+QOrUc04O+ puJo/Dhpivw1f6G8X/9DPaXyr7N/12latWiql5jmtd3Hn+n1Fs0aS3yl3PhrwWL9u2TJ4nrp+qeg mtoUgkCimB66yUcNVIDhItY9jWC/mGp2z959WvEJ17MK5cq6ZvPY7xTJk+spbU2wUMTIsLuyPHaA HxugNIKi5etuPaRypQqyUsUZQVyMsAr7sLAS5PEkQAIkQAIkQAJRnQAtNaJ6Cwhj/REMb9jg/jpw IBQVUCZgCf/6wf1/eMzkvJRKb8S4o9i/vJYtU9rs9moKbiVSKwhe2FQF+LurpoAdNWa8LgPOP3XS OEmSmME97ay4HjkIRHczvXC5F8pYATmhJIQEcm/06fWdnDx1Wis0YH3RrnULefONGjofWCTAtQRT okJpCYUGtsFqwQTUxL37TdfOWpk4ZNhI6d13gMRVChIE5y1auJDOx/UP4nIg0CdkmbL8OHzkmF7v 2K61YBrURAkTCixIYMkF95XxSolq4mJ4cxVBJvaZTqqHBP3Vmbv54ysvHNLp43Y6ZgniaYwYNVYH OTVTxkZTSiVfAsWTq5jzBnKdXPPgbxIgARIgARIgARKI6gSiKVcB5whnUZ0I6x9qAgiod/jIUR3I EwE9/wvBzAn4Qvxfnf+/qDPPSQL+EPB0bxQsVkbHxlizYpGOcwOLi2TPPONRqYjAm7jXTeBLd+e+ fPmy3mziY7hL47oNSslYsR53Fzt/4YI8kzSpU8we12Pd/R49boKOg4GppJcsmBvw8e7yxDbE9oge PZpW3nhKE5btnq5TWPLksSRAAiRAAiRAAiQQmQnQ/SQyX91wrhvMu41ffzif2jodzM4pJEACjxPw 596A5QCsNLwJ3CXw35sEosww+bhTaGBfSjXdayCCOBxfdv3Wmuq5Y/vWQVNooByJEiUMpDgBp/Xn OgWcKQ8gARIgARIgARIggUhMgEqNSHxxWTUSIAES+D975wFeRdGF4RNC772L9N5BmiBFxIa/ioqi iIUqVVAEKQLSpAmCoIBdQUVFFAXpIL2DIFV67zUBQkL++SaZy96b21Nuynd4yO7dnfrO7uzO2TNn PBFo2OB+CVWWF66UCp7iJ7bzWHr1krIUaVC/njzz9JPy+KMPJ7YisjwkQAIkQAIkQAIkQAJxSIDT T+IQJpMiARIgARIgARIgARIgARIgARIgARJIOAIxPZclXN7MiQRIgARIgARIgARIgARIgARIgARI gAT8JkClht/oGJEESIAESIAESIAESIAESIAESIAESCCQBKjUCCR95k0CJEACJEACJEACJEACJEAC JEACJOA3ASo1/EbHiCRAAiRAAiRAAiRAAiRAAiRAAiRAAoEkQKVGIOkzbxIgARIgARIgARIgARIg ARIgARIgAb8JUKnhNzpGJAESIAESIAESIAESIAESIAESIAESCCQBKjUCSZ95kwAJkAAJkAAJkAAJ kAAJkAAJkAAJ+E2ASg2/0TEiCZAACZAACZAACZAACZAACZAACZBAIAlQqRFI+sybBEiABEiABEiA BEiABEiABEiABEjAbwKp/Y7JiCQQTSAkNFQuX7kqIaE3JDw8nFxIINkTSJ06tWTKmEGyZ8uqthkD Vt/roTflwuWrgm14eETAysGMSYAEEi+B1KmDJXPG9JIre1a9TbwlZclIgARIgARIwD8CQZFK/IvK WCQgcubsObl46bLkyJFDMqRPL+kzpCcWEkj2BG7euCk3bt6US5cuSc4c2SVf3jwJXueTZy/K5ash ki1LJkmfPo0Ep1KGd+zNE7wdmCEJJGoCQSIREXfk5q3bcuVaiGTPmkkK5s2ZqIvMwpEACZAACZCA rwSo1PCVGMPbCEChEaoGdjmz55B0SqFB/ZgNDXdSAIGgoCBR4wU5efqUZFTXf0IqNqDQCL15S3Ln yCrBwcGSSik0UBYKCZAACTgSgK7zzp07EqGsuc4ry66M6dNRseEIib9JgARIgASSNAFOP0nSzRe4 wmPKCSw0ihUrppUZVGgEri2Yc2AI4JrHYCGHUuqdOnVKMmfOlCBTUTDVBBYahfLnkjRqGgyUKxQS IAEScEUAPUQqpfyENVfenNnk+OkLkjVzRk5FcQWMx0mABEiABJIcAToKTXJNljgKfOnyFT3lhMqM xNEeLEXgCKRLl07fC7gnEkLgQyObMiGnQiMhaDMPEkg+BKAAhT8g9B/oRygkQAIkQAIkkFwIUKmR XFoygesRqpyCplcmrBQSIAHR9wLuCX8lVFk+4b83SkJYamRSvmtooeEvbcYjgZRLAP0G+g/0IxQS IAESIAESSC4EqNRILi2ZwPUIj4iQdOkS1ilohMoT/ykkkNgI4F7APeGPHDp0WKrUrKf/r1y9xmMS WOUkbRrOHPQIigFIgAScEkD/wdWSnKLhQRIgARIggSRKgG/GSbThUkKxbyonpCEhIYJt2O3bdlVO myaN+jqeXjJlwsoPCatcsSsIf5BALAls37HTlkLZ0qVt++52aKXhjg7PkQAJuCPA/sMdHZ4jARIg ARJIigSo1EiKrZbMywwlxuXLl+VWWJj20p5FOTSD/wC9ZKWqe4Ty4n47PFxu3QpTS8qelXRp00r2 7Nmp3Ejm10Vyrd6Wrdt11fLnyyd5A7A0bHLlynqRAAmQAAmQAAmQAAmkDAJUaqSMdk4ytYQy45L6 nzlNsOS4ckEk2vci7DTsbTVE4NED/29lzyWnTp9Wq1Bk18qNJFNZFpQEFIF16zdoDvXq1SYPEiAB EiABEiABEiABEiABHwlQqeEjMAaPPwIXLlyQ0Bs3JE+uHBK+d5dcWbLAq8wy12sgearWlEtXrmmf G7ly5fIqHgORQKAJXFLLIh86fEQXo0a1qoEuDvMnARJIogQu3Dgl59X/wllKSaY0WZJoLVhsEiAB EiABEvCPAB2F+seNseKYACw0oNDInSO7pFVTTURNMYkMu+Xdf+WgEXEQF2kgLW/lwMFDMnnKVPln xw5vo8R7uKNHj+kybd26Ld7zYgaBJbD9n7vXXZXKleK9MHcwdcvBP028Z+okA1flgCNgZ+VzddxJ 0i4PHT9+Qr748mu5dOmSyzA8QQJJkcDpkCOy5sR8mXfwW1l29BcJvX0tKVaDZSYBEiABEiABvwlQ qeE3OkaMKwLwoYEpJzmzZZXgYP8vScRFGkgLaXojR48elanTP5MdO/71JniChDl+4oQu0+ZEptRY sWKl/PHn/DhncPr0GZn75zz5778DcZ52Yk9w6/Z/dBHh8LZkiRLxXtyffp4tNWrVk6tXr8Z7Xu4y mPLpNF2O69ev2wXr9XYfffzs2XN2xwe/P0weaNw0Vqsf4b6aMPFjuXiRSg07uPyRpAlAobHh1CJZ d2qh7LmwWTadXiKHLiee51mShsvCkwAJkAAJJBkC/o8gk0wVWdDETgCWFVmzZJY0bpapTHNPUUlf prz+n7ZYcZdVQhpIyxdrDZeJ8YQdgVFjx0m/Ae/ZHYuLH7CS6T9gkKxdtz4ukktSaWzYuFmX976a 1WOl0PO20pGRkd4GjddwNWtU1+n/Y1n5JUw5Bl62fIU+vmHjJrv8V65aI/fXq6cYBdsd5w8SSMkE zoYe1wqNDacWy5mQo5ImOK1kS5dbJCgoJWNh3UmABEiABFIgAfrUSIGNnpiqDIsKrHKSM3tWt8XK Ur+hpCl0jw4TceGcnD801WX4LJkyyqmz57W1hr/LveJL8bbt2wVfkqtUrizFihWVVKnsdYDuwqBe q9eskwIF8sk9hQvL3ytXS7hasaVWrZpSIH9+u7KHhobKps1b5MyZs1KjRjW7c9YfKAsGgZieUr58 WSlbpoykVSu/WOXatWuCKQ3Hjh2X4sWLqbJXslsVBsqeLcoC5NSp03LPPYWlevVqkllZCbiTG2pK z5q1621m+0uWLpdcuXJK1SqVdTTUa+e/u2TPnr1SqlRJqVixgl6RxprmDlXuPXv3KcVVGl320qVK 6dO7du+WrdGrf+zdt1+QNgb4WbNGXQ/nzp0TDPzvRN6RGtWqScGCBWzJIu6pU2d0+F2798iBAwel xdNPSoYMGWxhEvPOrVu3dLujjDVVOyQmwbWG6yj8drhUqVpZsmfLFqN47sIcVn5Crl67KpUqVtTX 21m1SlEVdb0ULBDVfubaQdvXq1tHp71z592vy2vWrpXmjz+qj584cVJZV1yUevWiwuEgpqjs3rNH Tp48rfKoIIUKFdRhzbmt27ZLieLFBfcDrs3a6r5zJidPnhJYcOBeya188YSEhMq/u3bJuXPnpWjR e6V8ubJqfBg1QPRUJ5M+FEco26FDR/R9Uq5sWcmmLMisgnsG1y/yRzlLlCgeo3/BtY96gFk5VQ4q dKwEuX/x5hlZd/Iv9X+hQLmRPnVGKZ6tojQq8rRUyE2nw7xCSIAESIAEUhYBKjVSVnsnutqGhISo ZVvTe1UuM7hQn6E8hkeaSNsfpcbMH36UD0aNtcvjwSaNZOzoD2wDC09hoPDo+VZvNeCuIfDbgUGZ kQH9+kjL557VP6GgeP7F1nowZc4/3Kyp2bVtYc3Qus3rtt/YKVy4kHzz1ed6MIbf8MHxyuvtsWuT EmqwNvnjj/TACIPG9p062+WVL19e+eKzqVrxYovksANzfdTFCPYfaFBfPp44Xis6XmrzmsBfgRGk OfPbryRPnjz60MBBQ+S33/8wp/X2jU4d5I2O7WXWrF9k9pzf9LHf5/4h+D/zu6+lYoXy4oxx925d pN3rr+rwM2b8oKet1KtXV9asWauPPdT0wSSj1NitlEBGqlWtYnYDvkVboc2s0qN7F2n72qu2Q57C fDfzB1nx999SpnRppdBbZYuH6x7XP+5LtNuGjRuli3TU57EKTCalkGzT+iX55rsZyq3OHT3Q3xY9 RQf3EmTf/v3yymvt7K7jhg0byPixoyW18q0D56vtOrwhjRs1tFl+fDplUgylgUmnRvXqMm7MB1op 1qlLN61cRDmg4EC6E8aN0fe9pzqhbFDQ9uzVW1atXoOfWpDWtE8mS6VKFfVvky/SN4KyfjBiqO3a HTb8A5n18y/mtOTMmVN+nPmt4N6iJH8CEZHhEhZxU9KkSiup1X+rREqkhIRdkVXH/1D//xQoN9IF p5cS2StK4yLPSNW8DazBuU8CJEACJEACKYKA/afnFFFlVjIxEYBFQ7p09i9tcVE+pOmtXw1rfhs2 bNQKDSgMvvvmC/nt15+k6YNNtAXB1Gmf6aDehDFpbty0WRrUryc//ThTPhw7Sh8eNmKUVnTgB3wI YHDz6isvyy+zvpchgwbKgoWLTXS9hXVFxze66n2k8defv0uXzh21IuEtFR8C54edu/WwhZk3d450 fqOjzucT5b8A8sVX3+i8vvx8mmzZuFaGDhmkLVF+/TVKqaADOfkD64jFC+bZBlTYH/b+IB2yd9/+ uhwYqC5ZNF+GDx2sB4Vvv/OuPo8BHAbAGBxuWLtSh8EA/ptvv9NlfvvtnnqQi8CdOrTT+ZQpXUo2 b9mq2wFfqH/9ZZb88dtsbVUycdJkWa/ayCoHDhyQ8WrgiUFf9uwxLQqsYRPTvtVJaMUK5RJF0aD4 gkLjiccfk7+XL5Y1K5dJm5dfko8mTrYpJ7wJg8rA8ihcOf5csnCerF21QiujZv30s8z/a4Gu6/3K QgOWCLAEgqxQyo+HH3pI6t9fT1+ne/ZGKX02b9miFXiweMK90qFTV8mfL5/88fts2bxhjYz+YLjA 38vHUz7V6Zg/4Pv59E9l47pVUqd2LXNYb/fv/08rRurWqaPvy3Tp0slX33yrLEDCZcXShbq8UHTA 1w7uYSOe6rRSWWRt3bZNpTlatm1eL7//+rOOOu3zL/TWlD937tz6mkbZhg8bopUv8HcC+XHWz1qh Mfi9/rp+c2bP0lPzrIpFHZB/kiWBSGWVdj70lGw+vVxOXD+krNQibPWEQuNmeKgsVc5A8R8KjeCg YCmZo7I0vbclFRo2UtwhARIgARJIaQRoqZHSWjyR1TdMmZGnUV9X7USZe6crUUpytnrFdjhNnny2 /eBs2e3OBcM0PtpE3ARCmkjbV1kT7ddhQL++UrlS1GoUGPwvXrJUli5boRUF3oQx+eLL6qCB/fUX ZAzW+/R+S0aNGaetKnKq1Vow6IdVQs8e3bSZO6ZvHD5yRL5UCggjMJ/Xg6H2bbWCBcc7tm+nrBPW 6UEhnD7uUINRhMFxKGGiwrSVvHnU/OpogeUK5IhKH2b1T/6vuf4ffVrgsBN5WwXTDsqWLSN58+bR U0dwDvsQTD+AggdWG/gCD3mi+ePqC/0qWbhosVxX+aFMkKtXrsrJU6ekeLFi8vWXUcohfUL9yZ49 u97NkiWLLe1VyocCZGD/d5V5fjG9369vb3m25YuyXn3Rr13rPn0Mfwa/N0D5W6hr+23dgULnk6nT rYfs9mEtAquRQMjmLVGr21QoX04yZswYiCLEyHPN2nX62MAB79qsnHBtwkHsylWrdVt7E8Yk/L5S 0hmLna5d3pC/Fi4StO2jjzwstWtHtSGu3ZJq+sVuNYWofdvX1fSkctpiY/36jeo6LSew4Higfn2d JBQdsHr6UCkcitwTNR3tkYebCZQJuObe7B6l/EPgV9u01pZSpixmu/+//2TI0OHS8IEHtBLOTOvA 9QyB4iJHjhwCqx/8dxR3dWr6YGN1/zW2RcEUluZKQbRo8VJ9zJR/zKgRUqRIVPmhQMqh7oFM0dfA ItXXQLHT4umndBzcMz26ddX+bFB3WG1Qki+B8zdPy8zd4+TQld1qGkktefDe56Rk9sq6wrDQgDJj 4eEf5JZSbkDKq6kmUGiUzRVlyaQP8g8JkAAJkAAJpDACDqPJFFZ7VjegBLBMI8TZiifBmTIL/juT IOWXIW3hIs5O2Y6ZNJGHGbTYTrrZgQIBArN5IzAfx8AaCgj4QfAmjIkLfxwwiTdSQSkwIBhYYcAD qaosF+5OrRHth0CfiP6DwR4EPjSsAt8V+NINXxTwZwEpV+5uGKRpBkY41/b1V7UzzsHvDxf8h8XE 48pvwTNq8ARGGLQOHT4SQW0Ck3987XYm+NoNwfSCytXuKhlMWKxmAn8HZhrAUy1a6gFZ0yaNpdUL LbUfARPWcbvj33/1oRdb31VsmTC7LNM2cOzeIq6vBaOwcKbYCKRCA34X/o5W3Ljy92Dqm5Dbf3ft 1v4brNO2cG3AN4tx6ulNGJQZg2+jAMNv+KSpWKGC/LNzJ37q1V5wb8GywTj2BQvkB8UcpnA8/tij 2hKoTp0oS4u9+/bpuKWVgtAqUIRgBR2jmMA5q/8Va9h3lHUR5BVlgWLtG9q+/pq07/iGtGzVWluG NKh/vzz95P+0Us/E91QnTJmZrSyfFi9dpnzfHNXWSEaxhzRs96lSFFoFSgwI4kNRCGn04MN6iz9m +hruqVq1qNSwgUmGO/subpPTyunnjdvXZce5tQLfvhFFIiRPxoJ6ygmUGlBowGoDU00w5QSWGrDY oJAACZAACZBASiVwd7SVUgmw3iRgIZBVWQtAQm+ESi65O3iA1QEEji69CaMDqz8mnvltrCXwVdY4 6IQzQ6uYMOYYLBggN1SZrBJyPapMWTJnVo4Io6ZdOMa1hq91X009nQDKC5jUYxrA1uHbBY4Y8TUe 1g8w5bcKvli7kozRDkYxMB0+dIgtWIhyfIr6FbmnsFbofDR+rHaKCMuS5WqaAHwF4D+msVgHvbYE 1E6WzFHOS2HlkkNZtBhB2sbZpDlmVQiZY9atM8VGIBUaKNvRY8eVFUtU+1VPRP40cE3Cca2jgLu5 Dr0Jg/gYiEN5Y20fpI3rFQIlx4NNmqhB/CY5pRx+QoFm8oBCAVOYcK1CakQ7Us2YIcqiBVNWMken g/OmzHCcGxoaNZ0Fx52JsXTo3vMtPS3MOEGFxdSKpWppTGUZslE5p/159mz5/odZ2m+NcWzqqU7T 1TSTyVOmytNP/U+aK4VMzpw55CM1ZcooJk2Zoegw+9YyGmfEKOP7gwfaTsGxKDiWSIBlf22Zcicg BMopi4szapnWtcoJ6KWb52T3hY0ScvuK5EifRy3ZukWuh13W5aqW9wFpfG8L7RwUPjUoJEACJEAC JJCSCdCnRkpu/QDX3XwljYi447Ek4ZcvSfj5c1H/L911uukqoknT5OEqnONxWBZA/lZTKIzg6ypM 0uvWqa0HYt6EMXHhwBJKAyN/LViod0srS5BixYrqfSxXefnKFb2PL7Xzo8PoA+oPVjqBLF6yTG/x B8qS1WvX6t9YOcFYaCxcvEQPJHUYZU7ftXtPGTRkqMBiBRYVWCUEpv/vDegns3/+UcfHIA4Cc3iY 8lv/W6d5GJbmy7OZFgL/BverL81NGjfS/+9V6WAQhlVI4CQV+ebOlVvatX1N+yl5pkWUWb3xmaAz V3+uqGk0RrBqBgQKE5MulDLp1KAV/g98Fe2YNHqaSaAVGii7cX6J/SpVoqY5YT/QAuufI0eOyrHj x21Fgb+Wf5XlTOXoe8ObMCay1W8IpknBP0alSlFtizC4p6BgW7BokTRq+ICJphRsUZYZkyZ/oi2K jLKjbJkoC6r1ShFiBPfMajVtBkoJx9WATBjrdvqnk+XTyRP1Pd1HWW3g3kAacMZ7/vwFPcXmrV49 ZK7y4wJZGz0lx6Thrk4rV64RrOwD3zhYvQUru+A+MIoUc5+uXrPGJKfzhq8Y4zAXlk1YiQVTqjC1 C/9hVQUGuB8oyZtAzvSqPy30uNQp8LDkzlBAKTSuyoHLO2X72dU2HxpV8tZXCo1ntEIDq55QSIAE SIAESCClE6ClRkq/AgJc/7TK8uG2GgAHB6d1W5LLv/8k4WfO6DCplE+NvB26uQ2PNJG2r/Lwww/J 19/O0H4v4AMCX1PhuA/y0osv6K03YXTA6D+vtm2vvto+pvxVHNYOR+FnA4M5DM7hiwLOE19Tq5Y8 qEzusfTp2mi/HiYNLAmJr9jLlq/QjkUxeIOPDyhaXn/tFW09YsLAYWKvt99RA+UqsnjxUj1Qg58B KCSmTf9C/3659YtqkFRVLTkbNbBydKJo8nXc1qxRXQ94+/YfIE8+8YT2HQBFxWeffymdu3QXrNpy XClwvvr6W7n33iLqK3xjVcYzWrGC3+2UeT9k2fK/9baymtIAwZQEyIyZ3+ttq+dbyiOPNFMrYMwU TBX4Ty3VCouOX2bP0V+8YU0CBr6KVmYoHxqJQbZEL2MLhRD+J7TAt4WxejB5Q2mENps6/XPp3qOX dOzQXlvafKtWIoE0b/6Y3noTRgdUf3r3eVewYg2sO76b8b32sQK/K0Zq3RflBwCKMrO0K85hCVQs N7xFOYx9UU1VMgKfM7h3+g14T1tTFSpYUKAoRDhHKyMTx3ELawikM3L4UHm3/0CZ+PEUbak07sOP 9BSzoUMGqylN9+gpJIhrVcLgt7s6lSpVQl+nv875XQopB7vgjLIZpQaWb8VUE0z/Cgu7rRWJC1QY hIezW8jzLZ+VTp27SZ93B2iLD0x5m6TKeOnyFVkw73cdhn+SN4F8mYpI3UKP6kpuOrNMzoWe0Kuh pAvOIGVyVtc+NLDaSVpaaCTvC4G1IwESIAES8JoAlRpeo2LA+CCAufu3boVJerVaSVyKTlOl7Ums pvEIi6kN0z79WEaNHiffqkE1BF9e+/Tupb+Y4rc3YRAOAieA+FL7+Zdf6d/44tq/Xx89aMOBd9Tq H7dvh2knh9PUYBJ59ev7joz4YLQOjz+Y8jLhwzHy/rAR2s8AFBoYJGFpUzhfdBZmydLl+qtuB+Vc FCurQLBkJHxmoF6mbhhAYbDvjTyvFDBYDQKKEwgcInbt3Ekw6Xu2GpRhVRcIBm0D+vfVihQ9AFX1 +WjSx7ZlQqHgwMoSxuwfvg9eebm1UiZ9pxQvn2sfHHCeOfWTj2W0cqqKYxB8pcYqK7AkgQSpwWlS FaO4qhPtLDOh6mGu92HDP4iRJZY9hWIBlgwfjB6rFEr9dBhcs5MnTtBOXnEACiZPYRAO7QzfKf0H DMJP/RvtblVIwYkoLH5geQSLI6s0eqCBVggYfxo4B+Uc0nh/2EgZP2GiVpIgHziUtV0XQVGpmKkc Jk1T96BUUQEef+wR2b1nj3bKC+uroWpFnyFK2QClIATX27t9ets5ofVUJ6w4dOjwEW0dhTSw6k/L Z5+xKUhQ/jGjRsrwkR/oewLKHOTT/90+SqHUCFF0G0BB89nnX8kbSlkIgYJn3NhRflkp6QT4J8kR KJi5WJRiQ0072nR6iZp2clVK56giTYu2VIqNapKKPjSSXJuywCRAAiRAAvFHIEjNeVZuqCgk4BuB XXv3S7GiRX2L5CQ0ll09c/asFMh7d5UOJ8Hk/DfTfLLUOHX2vOTLm9e2goOzND0dwxfS22oFFWdz 301cV2GOHj0mzZ9sIS2eelIGDxqgl5dFWsaM3sQ3W0zXwAAHX6jdCczkr6ipKu58XSDMRTVlIJdS fJiBnDXNsLAwuar8eORU/jIcB37WcK72ER/OTx3jwt9AJvVF3tX0kCtqBZTg1ME2XyKO6aPcsLDB FBOr4BrBf/gNcVYfa9hA7h86fFjKlynlsQiX1Rf3++o11OGGKr8JL7R8xmMca4Dtew5J6WKFrYfi ZR/M8XiAUs6VuAoDBdf6DRtk7pxf9PQOXLPGWsFVWr4ex7SR68qvjKd7xtd0b6nr+4by/WFW5THx fakTHJaCnav7HWmi/PCn45iPyQ9bTNmBUtNdG1jDcz/5ETgVclg2nlqinYdiWgpWRIkL2XfouFQp WywukmIaJEACJEACJBBwArTUCHgTpOwCwFIDg9hrakCfxc188YxVa8md0KglF4PSubfAQFpI07qC gz+UMTh3NUA36XkTBmFRFnflgZLAm8EZFAnuFBrIC2EwJ9+VwO+Au/Ou4pnjrvwWeBq0eqofyu2o 0ECentiZciWV7Xblu8FI1UTkT8OUyWzdXa++hIF1gqdrw6TnyxbperqmfEnPhMU16Ow6NOex9VQn d4pQkw7ScKfQQLisWd0rOU1a3CZfAgUyFdXWGTfViifwt0EhARIgARIgARKISYBKjZhMeCSBCeDF /tTp05JeDSbSpHF+SWasVMWrUt2+Ha6sEK5Lgfz5vQofX4EyZEivp1GU9uLLfXyVgekmTgLbtt9V apQqWSJxFjKWpSqnliw1yyrHMqlEEz051inRwGVB3BLImDqL4D+FBEiABEiABEjAOQHnI0jnYXmU BOKFAL4I51CKjYtqekJutXyn08GQmlfsSbDiCdJAWt58ZfaUXmzOw1cAljKlkIAjAaz2AWmoVrXA 1/rkKGaFm+RUt+RYp+TUPqwLCZAACZAACZBAyiWQdD3tpdw2S5Y1h7VGRjV3//yly8qPRbjPdUQc xEUanky6fU6cEUggjgjAH4lZjrRGjapxlCqTIQESIAESIAESIAESIIGUS4BKjZTb9omu5rmUH4gs agnVsxcuah8b3hYQPjQQB3GRBoUEEiuBPXv32YpWTS27SyEBEiABEiABEiABEiABEogdAU4/iR0/ xo5jArCywNSRy5cvC1YwyQhHomq51zTKkaaZloJpJlglA8u2hqoVGuDUDz40Aj3lJI5RMLlkSABO Vnt0jVqGt3KlCn7VMLVaQSY8PEKtQJM8p674BYWRSIAEvCbA/sNrVAxIAiRAAiSQRAhQqZFEGiol FRPKifxKSYHlIkNCQuSaWrYxTC2HapW0aplDhIvtsq3WNLlPAvFNoGyZ0oL/sZHMGdPL9dAbkj1r 5tgkw7gkQAIplAD6D/QjFBIgARIgARJILgSo1EguLZnA9YCDQygd4tM6Amlb04+IiNC1TK7OFRO4 CZldHBLAvZBQ12Wu7Fnl6KlzkjVLJknlhQPdOKwmkyIBEkjiBO5ERsqlq9elSIE8SbwmLD4JkAAJ kAAJ3CVAnxp3WXDPBwIZ0qfTSg0fosQ6KAaNCTVwjHVhmUCKIgClBu6JhBB8Yc2uFBqnz10UDFAo JEACJOANAfQX6DfQf9BSwxtiDEMCJEACJJBUCFCpkVRaKpGVM1vWLHJJ+b3AYI5CAimdAO4F3BMJ JQXz5pQMytfMkRNn5LL66oo58hQSIAEScEYA/QP6CfQX6DfQf1BIgARIgARIIDkRCIpUkpwqxLok DAFMBTl95qzydRGu/V8kTK7MhQQSFwEo9eDUNm2a1JI/X94EtyS6HnpTLly+qnxs3KRiI3FdGiwN CSQaAnAqDMsMTF2jhUaiaRYWhARIgARIIA4JUKkRhzBTWlJhYWFy7vwFuXLtuuSIXrXE6gMjpfFg fVMOASgz8F9baGTJLHly5xKsbEIhARIgARIgARIgARIgARJIWAJUaiQs72SXGxQbISGhck2tUnLj 5i0xzjyTXUVZIRKwEIBvF/jQyJIpk2TKlJEKDQsb7pIACZAACZAACZAACZBAQhKgUiMhaSfTvKDI CA8Plzt37iTTGrJaJBCTQKpUqSR16tQJPuUkZkl4hARIgARIgARIgARIgARSLgEqNVJu28dLzemi JV6wMtFERiCIS6kmshZhcUiABEiABEiABEiABFIqgdQpteKsd/wQ4GAvfrgyVRIgARIgARIgARIg ARIgARIggZgEuKRrTCY8QgIkQAIkQAIkQAIkQAIkQAIkQAIkkAQIUKmRBBqJRSQBEiABEiABEiAB EiABEiABEiABEohJgEqNmEx4hARIgARIgARIgARIgARIgARIgARIIAkQoFIjCTQSi0gCJEACJEAC JEACJEACJEACJEACJBCTAJUaMZnwCAmQAAmQAAmQAAmQAAmQAAmQAAmQQBIgQKVGEmgkFpEESIAE SIAESIAESIAESIAESIAESCAmASo1YjLhERIgARIgARIgARIgARIgARIgARIggSRAgEqNJNBILCIJ kAAJkAAJkAAJkAAJkAAJkAAJkEBMAlRqxGTCIyRAAiRAAiRAAiRAAiRAAiRAAiRAAkmAAJUaSaCR WEQSIAESIAESIAESIAESIAESIAESIIGYBKjUiMmER3wgcOPmTbl585bcvn1b/4+MjPQhtm9Bt23/ R6Z99qVvkVRoxJsy9TP5buaPPsd1FWHO73/IwsVLXZ326Xhcle/YseOaz8WLl3zKn4F9J3D27DnN +vSZMz5FjsvrxqeMU1DgiIgI3Tb/7todq1qvWLlKJn8yLVZpMHLSIvDFV9/K/AWLEl2h8VzFMzYi 4o7TsoWHhwv+UxI3gUD1KXzuxP918dkXX8uWrdt1RgcPHpJRY8fL5ctX/M44LtLwN3Nf+kG+d/pL mfHigwCVGvFBNYWkuWfvPqlcvY5Uql5byle5T/+vVqu+vNquk+z/70CcU8ADY8yHH4kvihMoDJ5r 1Ua++XamnDp9Os7K9MOsn+XPeX/Z0vtn57+ycNES229vd+KyfMeOn9B8Lly86G32DOcngdNnz2rW J0+6vqaWLf/b9pJjsnG8bsxxbv0jAIXqH+o+PHL0mC2BMDX4Qz+xQ92TsZGvVZ8xYdIUuXL1amyS ibe4zq6veMssBSQcFhYmI0ePk6nTv7DV1t9+3ZZAHO2cO3deP1+79ugVI8Wjx45Juco1pXffATHO 8YBnAgnZxgnRpzjrF/jcEYnvdoYSY+OmzfqCW7x0uUDJgfc7b+TEyVP6OXb9eogtuK9p2CLGcsdZ P+guSb53uqPDcwlNIHVCZ8j8kh+Bp/7XXJo99KD6ihQuW7f9Iz/+NFsrEtauXCIZ0qcPaIXXrt+g 818wb45ky5o13soy57e5MnvOXM3Bl0wSqny+lIlh44YABkiVK1WU6tWqxE2CTCUGgWvXrknPt/vK iKGD5N4i98Q4H5sDo0cOlfPnL8RrvxGb8vH6ig29mHHTpk0r8+fOlsyZM9lO+tuv2xKIo528efNI vz5vy4hRY2X5ipXSqGEDW8pDR4zW++++85btGHe8J5CQbZwQfQr7Bedtn5Dt3Kb1i1KzRnWpUrmS 88I4HN2xc6d+ji38c46t//E1DYck/f7prB/0OzFGJIEEJkClRgIDT47ZPf7ow7aXrEeaPSQFC+SX YSPHyE71pbR06VKye/deKVe2tGTLls1WfZjvHzx0WHX6FSVDhgy249adGzduyAal+b6lvsbWrn2f 9ZRtH1Yb/x04KHv37ZeKFcpL0XuL2M5t2rJV550pUya9zZo1i5QvV1afx5fdPXv2SqrgYClftowU KlTQFg9pwdQX6Rm5dOmyzqNG9aqSJk0ac1hvYUFy6lTUF/t16zdKjhzZpYyqtydxVz7kD/N5aPCr qIFx4cKFbMnh3OYt26RkyeJy7eo1/QWibu1atvPWnRMnTgo06SVKFJM8uXNLSEiI+oK9S86eOyfF ihZVdSwnQUFB1ih2+5hehHY8qep3T+HCml/69Ol0GFflwAs4BG28ees2KVSwgFQoX06CFWtXsv2f HZI1SxbJmSunbFU8M2bMKDWqV1Nx7I3J3LWbSSN79uz6i0k6Vc7769aR1KlT62sEPFEWvGg4tqGn smJKA778H1csK6tr1p3AegBfaK6qtkG6uCaKFi0i+fPls0XDFxmECVXXeFVVHsPMBIAp+fZ/dqpB 9XmpUaOa5M6Vy5xyukX5UL9Dh49Igfz5pVKlCnYKRdwnOI97DmlVKF/Wdj9a2zEkJFR27Nipr7eq VSprq6jN6j7CdYhrumyZ0nb5u7v/7AJafrhrQwTz9hrF12vcQxD0AeBcWdU7KNXdawb8t2zbpq6t rFrBZB2wIh7aYdPmLfoawb1t7YvAIjT0BoLp/sDZPefYbqGhofLPjn9j9Hf/KKZZMmeWYsWKCiyp 9u8/oJVdh48cld2qHypVsoRmm8pSduR7UJkx71Lns2TJLJUqVJCcOXPo6X6uri9zD2RW4dFuhQsV svVj7uqKvDBtbce//8q1a9elZIniur1N32DKXKVKJfnvv4PqOkPfXUkrktBHrFfsscUx9P/OxHqd Wfstw9DdPWjqlV+lvW7dBrmt7o/atWo6VTidOXNWtm7fLrly5pRKFSuK6a9MmXDd4F4Oux2m2qms nTIM96MWdau669dx3R9QbYNnSEnVdqVKlrTrq0x5re2AtsX0kUoV7z5XkBeuK7Rv6VIlo/J28bdN 61ZKcf67DBw8TBbO/03f3/iaCyXHkPf62foQT2XD1+R8+fJKkXvuKgFxT166dElwz7sS9Ek7/90l x9UzBdcr/luvV2+fFbduhal7ZKeOj+vMk7jL19u6uGrzuGhjX5431j4FUxNg7epMaqo+H88tiLfP grh47vjSn1vvZ3dtijQD/exx185g7KnPQBhHOaSepTvU/YB3Tny8sMpN1RfC4gGMgoOj3pdcPdfQ j+xTzwMIPgqev3BB7qtZQ/Xz9mmYPsXTO5L1XaWSKhf6Qdy35dUzH+9Y3rzfWvtBlMvT+wXCmGsH feI99xTW73zmGsZ5CgkkCAF1IVJIwC8C6mU8smS5KpHK3NEu/vTPv9LH1UAjUr2o6v1Ppn5mF0a9 mEVWqVkvUnX8dsfND/WyouMhffxH2O49e+v9O3fu6GDq5TvyyWdesAv3Wvs3ItWDRJ+v36iZ3bl2 nbrq4xM//sTuONL//sefTdaR3d58O/L5l16x/cbO3D/n6zhKGaCP4zzKA3no0f/Zpdezd1993NMf V+UDV9TX1B3bDp272+p1+vQZfa5Tlx62MCtXrYlcvWad/r1v/386a5MO6n3jxs1IHDd5mvSRrnpp clpUNeCKbNzscVseKEfzp56LVA9dHd5VOXAS7Wstf+37G0eq6T9O88FB5IO2QzgTD2VFHYx4ajek 8UrbjnbsXmj9WqQyJ7elibTs2Pz1AABAAElEQVTbduhiV2dPZT13/ryNmynbuwMG6zTVgMQUz7ZV L0h2+SGOub5w3eC/I9e16zbY4quXDrs6IP6kyZ/azjvu4D54+dX2Ok/DD9ekUkTooOrlSNfZlB1b tL8aGOvzph3N/WXCjR43IbJzt552dfl02ue27D3df7aAlh1PbejLNTrvr4V2ZUO5wU69kOnjjvXB 9YS6Gvn1t7kx4uMeMjL8gzG63fHbMHK850xYs1WDFJ3m6rV308E5tPf7wz7QwdR0GR3mvSHD7fJH X6aUIiapSPXFVZ839yq2KJ+76wv5vPRKW9v18+FHH+v0PNUVfbhpd7N9590B6j6JsCuzI9Offvk1 xrWslEu2Olh33DH0dA+iXujHTP9lyjj3j3m2LPBcMPelOY+ttTzzF0RdM4YpzqN/MPJI86d1Gvjt ql9X05F0P2jNA+VCuxhx1g7vDx+lGeP6NHLy1Cl97OvvZppDbre4Z5HvR+oZhmsF+bZ47kVbO3lT NtQd8a0C/qivKzHPEmudcS+Y69XbZwWejdY0UHY8m1yJp3y9qYu7No9tG/v6vLH2KbgurSys+5ev XNFIfHkWuOsXvHnu+Nqfm/vZXZsmlmePq3b2ps9wvDbxvoT3Jmt79e0/SP82z8dFS5bp38rfhI7u 7rmG54I1LVzTEMc00Kd4ekdCm5h3AJPmgEHv6/TNu4o377fWftDT+4V573y7T3+7eqC/dvV+ryvI PyQQDwSgXaOQgF8E8MKBjhMPtQULF0f+Mvs3PZhFp6zMZG1ponNDJ2kESgeEGTZytDlkt8UDHecR By9LeDDO+P5HW4dplBronBEOnTUeNEuXrdBh1Hx6W3ofjPlQd/LmgOn0x42fpF+mMEDHIBf1MIN7 bzp9q1IDaQ8ZNlKXxeTj7daxfNevX9flNXXHQ8EoVDDIhJiXCTy88GKEl0KlSbdTamBwBTZderwV eevWLR3vnX4DddoXLlzUv/GyhzSsAzl9IvoPBlV4kOKBDDZm4PPl19/pEK7KoRyyap4//vSLfqhB uWVevq3pW/eRD9oAA1VcH5s2b9W/1TxVW14oq7t2M2koZ2z6JX/mD7N0Goh3QJUBdUB85AM+EG/K ihcJxIHiAWlYFW7mRUEn5vAHL1JvvdPP7iiuG6QFNqjn9h07dTvhOMQMVDDAhVICAyAoNBBn+d8r dRjHP7jvcH7rtu361MGDh3S7GUUI7k1cC9hikIrz+I0XM4hpR7TRkaNH9fViXlDw0o77EeUyg2Vf 7j+dQfQfb+49X69RozSd9fNsW1ZGqYE6gon1HjKDOfXlUDPDCx8GgspKQQ+aEQdpQqwDEMPI8Z6z ZRq944tSA2mhD8V18NeCRbbyICn0e2hTM+BGv4DrEMorI86uL3MPgIeyFNLXqzd1xeAS/eDly5f1 Nad8iej8lUWDzs4oYnDN4CUX/aYZKEBxgj7m6NFj+rpC/+lMXDH05h409Ro7fmIkWGAAh2sTjMAK gn4Jv7/57nvdJ0KJCqUm2hR5o48Ec9QBzE1/gGOoN8T6Mo/fzvp1M6BB34s0wAh54J41YsprbQfc 6yifcjBtgkV+O+MHfcwoy20n3OygTEjnzbf66C3a14g3ZUNZzX1g4rlTaphnEtpbWYJptkZJ9vmX 3+gkfHlW4JrHM8v0z44fRUyZvMnXU128afPYtrEvzxtrn2LqabYYAKM+5t3Jn2cB0nLWL3h67iCe N+9TCGfEej+7atPE8uxBmZ21s6c+w9TVujUfSaCIxHWMfg8fe3BPulJqeHquGcXbwYOHbFk5U2og D1fvSIiIdsY1ZN6JscVvxDPvKt6831r7QU/vF0apgf4P1wSep0Yh76jct1WOOyQQTwTu2ukmiF0I M0mOBOb+MV/U4Fn69H9Pvv/xJ0mfLp3ky5tX1OBHV7fFU//T5uEHlZkdBFNKYIr3RPPH9G/HP7t2 79Hn3x/UX5sGp1PpvfhCS7HOI1YDFe2lvmvnDtqMG1MbGjd6QJ575mlZokxyXQnMbtetWiq93uyq zZJhmvdMiyd18BMnT7qKlmDHUXeYeg8dPEDXHdMkmj/2iMBviaNX/navv6JNsGFebTUDhnnh8y+9 Kk0aPyAfjRslmCMJua7MyiFmxQ5MFQKLenVr6+OOf/r27iVLF/yhzYTBF/xhVrh77167oI7lUC8y 0rBBfWn5bAs9zaNE8WLydq/uepqMOyemmELz6MMP2aYCNG3SSP5SaUG8bbcmjRvKA/Xv16bgTz35 hI77wvPPSnFVBtThf09EXXOYkgPxVFaYVCsrGOnZvYvUUVOgkAbmyoKNv4IpHGAD08zKFSvIY480 0yboSO9f1f5oH5iTw4wfPmm6du6op66sWr3WaZYhasoD5NTpM9q8vVixorrdEA8CfzfbNq7WW0zn KVasqLqeHpft23fgtE1ef/VlbZKO6+XpaHYd2r6mTfwxLaP5Y4/q+xJm0/7cf960oa/XqK3wTnae f66FNqc39xCm/6gBoA6JVQgggwa8q01yMWVsUP++un5b3Th3c7zWdSJ+/hnYv4+ecoLr4OFmTeWF ls/IosXLdGroHyGXLl/W0zowhe6LaVPkmy89r8aCew/9IKY04Hr1pq6/zJohn039WE9JwjXXquWz On9Hh89d3+io53yj33xc9UuQju1e030M+obGqo9wjKMDWf44MvR0D5qoxYreq+9DsMCUlRFDB+tT mIIAWbx0maAPefmlF3TfjvYeOWywbtMt27arDzgiN2/d0r8xnRBs8BxAH2idGqkTc/FHKW9EKc+l Z4+uuu9FGpimOLDfO/rawhQaI47tgHsddVADGBNEOQecr/tVTA30Vt5UfRH4w0EuWJoplb6Uzdu8 EO7uM2mgNrXH8wbPI1wvZiqet8+KV9q8qK95pIE+EG25VDlUdibe5OssnvWYP23uC0dfnzfWsln3 8Zx5o1tPNR2qjPTu1UOf8udZYE3Tcd/dc8ef/tyk765NE8uzx5TVceupz3AMj99Ll6/Q936bl1rp fgb93vD333MW1HYsrp5r7t6RlDJBv0d079LJ9k4Mf1593n7TVg5/djy9X5g0u3XpqN/TMMXl5Rdf 0If37fvPnOaWBBKEAH1qJAjm5J3J9E8m6RczpXjT8wEx+B46fJSeT9ix/ev6HF5esARqpw5t1UBy iX65w0ueM9mnBuWQsmXK2J2GbwnMH4ZgDj1k1Jjx8tnnX+t9/DGDZswvdZxLbQKtWbteOTP9Rc9l h98DEwcvQIGW3dFzbMuUtvddAN8XWJZNfSW1FdHqB8R2UO3AcSKk7att9Iu7/qH+dFTs27zWQZRG XSsnGj1QX55t8ZTtpdiEM1sMrKYrD95KEy9KAy/Xrl/XA4LqVauYIHprLQcUWcb5aZ36TWzhDGNl 9aEHHrYTlp3ixYtafolSppRUaW20HfOm3eAzw0jaNFHKnOwWXy7GcS2uVW/Kigc0xAwcTNrwEeKv YGBjFTOvHGWC/xnIK207aeWgCQd+W9Tce2cCpdcvv/4mamqAHiQ0bHC/HnRAyQdBPWf9/Ku6/5aI +qqtfSeYQbM1vfz5lSOBaEmbLood/NAYyZAhyukvyunv/eepDX29Rk3ZnG0dHYeWVX59MGCBLF0W NZBS1ikxou5V92CzpnevXWsA67VuPe7PPnz5WKVC+fLyw6xfRE13Uv4sSut7Ex708f/+enWUwq+Z VsqZa9ga17pfpEhh60+v6gqfCuqru5rTvV3gf8Dcr5F37DvFfNH+cpBB2rRRvoXg/8aI1SeJOea4 tTL05h40/oLgr8OqvIXSD88V3DNIZ/2GTdJBKVisUkQNOCCYUw6FKZxpKuscqdewqZ7z/dCDjbUC yPj1sMZ1tn/g4CF92LHtjK8ZKHxNWo7tgIgYyGOVhOHvD5IrV67oQcikCWOcZeXyGPqk115pLcpq Rdq//qotnC9ls0XyYgfKBYhjHwiljRFvnxVF773b90EhVKJYUbkecveZZtLD1pt8reGd7UOJ62ub +8LRl+eNs/KZY4OHjtD33RfTp9h8afjzLDDpOdu6e+74258jH3dtmpiePY5MvO0zrPEQR1k8xOhn Spdy70Mtrp5r7t6RDh06rIvq6JvH8V3SWh9v9j29X5g04L/JiOnjzfPWHOeWBOKbAJUa8U04BaUP p3L44gQN9m+//aGXOIVSAy/h/1NWGb/N/VPat31Vb7u+0cElGfOSDEeh+NpoxGiM8du82GNQ/rD6 Em0EXzxwLnXqYHPIbosXX2W2rAfW+DKNr3kYhGNdbqvcDrtt/akdJdkdiKcfmaIHCDHrfkPnmE4N NpVZqtvc8RUP0qnLmzL311mSPXs2/RtKpA2rlwkGlus2bNQDKGX+LD/O+NrpCh0du/RQg4Hd8lKr ltq5XVa1eswrr3d061jUDDpQhg+GD9H54g8c++H6gHM5V2LiOjvvbbs5i+vqmMnPXVnh0BCC68oq aB9/xThfNPGtv43iYNCAvpJDOTw1gvzz5HbuLBRWBr/+NFM5Ft2hr+Vf58wVZaKqrUnavtZGlD8b vTQp7pUnn3hcf+XFgMhYLZg8fNn6c/9504a+XqPuymza14Sx/saAGM42rdcowoGzu2vUpOVpe0c5 hLSKY3+Cc47XlLmvMyqrGAzGRg4brJXAsNBZtGSpHozjyyKUyL6Ip7pevXZNKzrz5smtFSmwaopQ 92vXN9/2JRu/wpo2cXcPmoQNH/MbTjcxmIZiA+kgDcf7Eg7uIMZBLKx3Hmn2oLJeWa0tsLBkL/pA b1fHsj2bXPQHKIs7efyxh7VSA22qptBEKSEfuLuSibu41nNGYY/ngRFfyhZ+O9xE01s1jcbut/VH lsxRis2Q0BC757E1jD/PCmt8Z/ve5It4nuria5v7wtFZuX09BuvW2b/+rp/DVosdf54F7vK2PmcQ zvrbn/7cXV7mXGJ59pjyWLfe9hmOcXCPO/Yzt8KilOXWsNb9uHqumf7SmrbZL1Qwytk9HPla5djx 49afet/xeWT6yRgB1QFP7xcmjruymTDckkB8E6BSI74Jp8D0YQaHNcGt00VgroqH94wfZukXUbzc uZIy0SssrFm3Xn9xRjg1B9pmpYHfRYoUwUavkmHNx3yJhkm3M9mwcZM+POmjsTbP+fCEbxV4M4e1 idXaQ80ZtQaJsR8kQbpeeNF2XLEjRmA3B2B+CoGiBQNQCNLEFAg8GM1UEn3CxZ+vv5iqlTCwyHjz 7T7y+dTJ+gUGHufx0gRe+I8Bb70HmsqqNWtjKDUwgMAgFObNxhzWfN1PlSrIRc5Rh5s2aaQ95Deo X89mKYKVFfA1yNNLv6uEvWk3V3HdHfdUVqNY+FsNgvCl14gx6Te/XW0NM1fnHY+br6FQblmva7Sd edl2jAPrF3xBwsoF+N+x3evy+JPP6oEw2nj536u0yTcGyUYmfzpdDwLNb1+3/tx/ntoQdfDlGtVl jr4UHQe8nuqDFWWg+AFv82UdAzt4yTfWOZ7ScHY+W7aoZaOxikj9++vqIJjqYKZ8WePgnjbtDeuX v1etFnxNxT2i/EHoQW8ldc9DqYj/sH77Zsb3WhliBiHeXF+e6grlFtJ5d8xIPYUPZTTWVtbyxte+ p3vQ5LtaKWPxbDFLc2OFE0i5clF9JlavgbIAXwcxZRGycdMWvYVlFazcDhw8qKdfQcmO/8gbyhsw qFentg5r/ePYr8PyA+2DtrP2B6uUNRukrLKwcSdYmQhWN5iCclKtKIQymLaMsh6L9Pv54W3ZsIIO FHpGkK/jM9CcwxarJkDQB8LSBIJn0oRJk9V0tcKC1c/8fVboxFz88ZQvplh5qos3bR7XbeyiOk4P ox2Uw2AZPLBfjGew6Rt8eRaYTLzpF0xYbP3pz63xXe0nlmcPyufYzjjmqc9AGEe5r2b1GP0MPhS5 Em+eaygbRPmDcpWMx+N5lFIaU2EmfzJNmigrTTzXYPWn/OfYxfX1/dbT+4Vd4vxBAgEm4HzkF+BC MfukRQDLzMGKAi9HmE+9cNESXQG87BipVrWy7nDxYo6XOrzcuRKY9uJh07vvAK0RL6imFChnRTaT d8SD4qBbl06inCHqr3B4IYVCQzkoUj4V6sV4QTB53Ru95Cu+IDRp1FC/zE1UaVgFy8xCATNo6HCt WNi//z9tmm0N47hfMXqZvk+mTtfz4/G1Fy8ssACBSbR1eVjHuNbfWDYTfJSjRm2RATO+P+cv0MtO jh/7gTWoy31ozJHOuNEjRDmqlHETJsk7b70pyimpWkJuv4we8b6Ag2kn1NdRMICGFcsC1Zb31agu qdOklilqIOyNvNTqeVFODfU0mGefeUoNMsLkQ1UGDO6WL57vTRIxwnjTbjEieXHAU1lhIo32m/bZ l/oFGqbwG9USoDO+n+Ux9WpqPiu+wGHaEK5PM3h2FxHthjze6feeXFS8ShQvqpRO6zR7+NkwU1Ws aUAB9/GUqdKvz9tSt04tteTmAX2vGFP8MqVLqulWs+Xn2XP00sXzoq8nfNn2V/y5/zy1Ia5bX65R lB11wHX6s+ofCqovVUaR4KlemF4y5ZPp0rZjF+ncqb3yqZBVvv3ue+WXYbm2bvKmrZzlgbKgTDO/ /0lvYZI7RfUJzgTWMsHKogwD4QWLFutpXvDxATl06Ii2KMPArdXzz2kT/ZWr1+gpE2YQ7O315amu ZmlPXNOYPoIlBYeNGO2syPFyzNM9aDLFQK1L917yapvWaine6/LB6A/1M8X4BEI6sMJ7860+8vxz z+hpVsq5slbooQ8Lu31bnmvVRiv+3nqzm7Y6wL0JqaCUW87EWb/eTikKMVDAF0wsGQ1FHAYSaCdj EeIsLXPs2aeflJ69o9q5d6+o+e54drZ88RU9JWX+3Nk2ZbCJ480W9483ZatRraruk1BmLB05768F emlRx+kJJk88yzDVpP977ytfOre1Xw08k9CfTJ74oVa2+vusMHk423rKF3E81eVO5B2PbR4fbeys Po7HMMUL1pSYulSmTCmbXyWEw9LU/jwLENfbfgFhjfjTn5u47raJ5dmDMjprZ099hrO6vaT8u7V/ o5utnzmtLK7w3HIl3jzXykZ/zFJOSJUC+3nts8NVeu6OfzxhrLa6u7/RQ1pBrhz76vcJ5YTWFs3X 91tP7xe2hLlDAomAAJUaiaARknoR0OnhPwRfsapWqSTdu75h9yULpo54mRs/cbLNCaGresPKYtL4 saKW59NfMRAOX63h+BCDNyPd1G+Ynv6o5qFP+TRq4NDiqSeU07a+JoidiSUO4uuaWllDKykwhxwv crBEUCum2OLAqgRh8NKGQSnCwBeI8mxtC4MdDEiMNGncUD+I8LILzfbE8WP0V19wGTQw6gXWhLVu rSagOI5BNOr+3pBhykx5gv6CivzhOBRzGyEmTirF1E6if+IhCsFXQHyBnP75VwJ/JKNGDFUvpkO0 U1ecR1u917+vdqyJ347y0YejpUevdwSmxRAM/mC9YsRVOTCwhAIGD2i1ooIODueaH380zqWfEwQy XytM+tatN+3mKo1USgFmJCiajbE28aasvXp01e2AQR+UG2iPEUMHSb+BQ5TZu0MbmIzUFi8/W9WX fyjnoJCAs1uI9brRByx/0P4fTxwnAwcN1S9KGMihnd7u2V0PmixBbbsYyJw7d06U13zbMQywzBSv Hl07qy/Uh/X9hAC4VnHeKLVctaMtseidYBu7KJ7e3H/WNLxpQ1+vUVzrb3bvLEPVIFwtPyt/zPlJ fXW8R2cbFHS33a3lwD4GYV99/qmoFZi0LxIcw1euaVMm6kEGfhsu1v0Y9xxOOsinkydItzd760Eg TuG+OXnqtEMokbGjhsvYDydqKw4oQrqoKXmtX3xeh4Nyqn/f3nrakFo2NeqYUnZZrW1cXV+O95E3 dUX/8oHyTwQLJFxvA97tbbtekLnpU4LcXO8Ih8GRKys5w9ORoTf3INKGgifiToS80TVKEYA+BfeV sdyAcgP9Lp4FGHRAcK0PGzxQK2ugsPn686kyYPBQefm19vo87uVvv5xucxSKslvvacSvXaumVmKY fh3tFK6mtUDRjv4AbQfnpGgvqzi2gzmHNI3AkZ+RO9FTZcxvd1vTjzmG8aZsfd/ppT8AYOoNBAqL J5o/Kjt37nJMTv9Gn/TRh6Nk0PsjtB8P0yfBusD4nvH3WeE0w+iD3uTrqS64Njy1eVy3sbvnjbkH UEX4zIBiA/9btX7NDsWaFYsFX959fRYgEVf9grvnDuL52p+bujjez0jLSGJ59qA8ztrZU59h6mHd 4l0UTuynfPqZUoJ30/0l+mX4tLL1k9GvBeY+9fRcg/8nvB+oFYGUxd4a7djbvN6ZNFAGV32KKR+s e1YtW6gV5HB8X035P4OiFcpcI96831r7QU/vF9FGJra6m3y4JYFAEAhSXwjsPYEFohTMM0UQwMAD Dg3XrFjk0pTeEQTmnUNxYfWt4RgGv/FigBcYVy/UjnHg7fv69RD99d3xnPltwuCLnHmAm3OutoiD lzH8H6henneoF8U5P3/vKrjb45jniC+S3nrmd5uY5STMs0NDb+gvjZbDLnfBNlPGTG4VEq4iw1w8 bZo0elDhKowvx02bwOw4rsVTWdEecCyL68FbQfcKSxU4VTQvPN7GRX5Y/SJnjhxexYVJ+KXLl5Qv jhx6cOmYD0yxI9W/2EyvcEzT/Pbl/vOmDX29RlF3TFEzvgZMubzZoo9Bmczg2Js43oSBZRIG0o5l wlduWBOsXr5ID1xgGYGBsavrA1O38GLqbOqZr9eXu7rCTFot96z7RPRfgRBX92CTh5sLHBtDCYs6 oK3dXcfwEwLfJK6eB7gX0Kd7Y1kBDtZ+3coFbQyfRd4+HxAXvjTqN26mFZXwOWUE/CGurgMTztut p7L50x946gNj86xwVy9P+XpTF09tHpdt7K4u/pzz9Vnga7/gWCZf+nPHuM5+e9M+zuJ5c8zXsrpq Z099hrOyIO/s2bI7fd46C+/puYYpkGg7rNjlj6glatXUu7S2DyhIAx87cHzjmhU2/2o4Dg54B/b2 /dbT+wXSpJBAoAnQUiPQLZAC8sfA/q+Fi+Sb72bKm906e63QABptap3eMyQMCnwRDBBy5kzrNoo3 YRwTsA48MBXHrEDhGM6b3xhYxLVCA/livrmZc+5NOXxla00zrgeK/rSJtTzu9j2VFe3hi0IDeWGw 4ziodVcG6znklzuXc+eg1nBmH1/J3YX3pBg06fiz9eUa8aYNfb1GUffg4Cg/Cr6WH32MmdLha1x3 4b25VnB9WJ0DOkvPnQLP1+vLXV0xmMbX4UCKp3sQZXNXB1N2dwoPhPH1XrD26yYPbL1pY2t4WHvN Vop9WMNgqWmrxJUyw6TpqWy+MkC6nvpAX/oBU05vtp7y9aYunsLEVRt7Ux9fw/j6LPC1X3AsT1y3 oyf2jvn78tvXsrpqZ099hrMy+Zq3p+eaKyWss7ydHYNvKSgxMI0SVhtYqWWTmi4L6wwoX63izXPY Gt7T+4U1LPdJIFAEqNQIFPkUlO/efftU57pVeqgpKZjGkVIkb548Ar8dFBIgARIwBOBP6OFmTfUX NXOMW/cEGqsVQkqVKuk+UCI/iy+wmEqEZUCHDhkY55ZBibz6LB4JkEA8E8BUx8KFC8kSpdSA02RM a8FUGfgYopBASiDA6ScpoZVZRxIgARIgARIgARIgARIgARIgARJIhgRce1JLhpVllUiABEiABEiA BEiABEiABEiABEiABJIPASo1kk9bsiYkQAIkQAIkQAIkQAIkQAIkQAIkkKIIUKmRopqblSUBEiAB EiABEiABEiABEiABEiCB5EOASo3k05asCQmQAAmQAAmQAAmQAAmQAAmQAAmkKAJUaqSo5mZlSYAE SIAESIAESIAESIAESIAESCD5EKBSI/m0JWtCAiRAAiRAAiRAAiRAAiRAAiRAAimKAJUaKaq5WVkS IAESIAESIAESIAESIAESIAESSD4EqNRIPm3JmpAACZAACZAACZAACZAACZAACZBAiiJApUaKau64 rezBg4dk1NjxcvnyFZ8T3rb9H5ky9TP5buaPPsf1JsKGjZvlq29meBOUYUiABEiABEiABEiABEiA BEiABJIoASo1kmjDJYZiL166XD774muBggJy4uQp+WPeX3L9eojb4iH8c63ayDffzpRTp0+7DevN yX92/isLFy2xC7p2/QaZMGmK3TH+IAESIAESIAESIAESIAESIAESSF4EUiev6rA2CUmgTesXpWaN 6lKlciWd7Y6dO6Xn231l4Z9zJHPmTC6LAoUDZMG8OZIta1aX4bw9Mee3uTJ7zlxp9tCD3kZhOBIg ARIgARIgARIgARIgARIggWRAgJYayaARA1WFmzdvSlhYmNy+fVsOqKko+/Yf0EXZuu0f2bhps9Ni bdqyVXbv3iuZMmXS21279+hwCH/02DG7OEeOHrNZgSCPdes3yvkLF+TQocPy29w/5ezZc7Jl63Y5 dSrK2gPn9+7bb5dGeHi4TgMWJCijo0RGRsr+/w5oC5PDR47anXaVp10g/iABEiABEiABEiABEiAB EiABEggYgSA1qIsMWO7MOEkTwPSTN7q+KcsW/ilffv2dfDPje1t9oLTYtnG17bfZadD4YTl95oz5 KY0aNpDpn0ySqvfdL6+/+rJ079LJdu69IcOVImODLJz3m5w5c1bqN24mTZs0EuQL+XL6J/L+8A/k 0OEj+jf+PNH8Uflw9Ej56ONPdJnq1r7PFh7n33qzm3Tq0Ba7eppM61fbyb+7duvf+NOgfj2ZNmWi pE6d2mWe9e+vawvPHRIgARIgARIgARIgARIgARIggcARoKVG4Ngnq5wH9u8jkyaM0XXC9BNnCg2c XLlsgbR7/RXJlTOn7N+1TSs0fAEBK5DvvvpMdmxZL/Xq1tYKj5dfekFbfiA9KDSMhISESK5cOWX7 pjWyfNE8qVu7loybMEluKAsTSL+BgwXWGT/O+Fr27NislRkrV62J4YvDMU+TPrckQAIkQAIkQAIk QAIkQAIkQAKBJUClRmD5M3cfCUAhUrtWTUmfPp2kSuX58n3rze6SMWNGKVSooDzT4kmd24EDB/W0 mfkLFknXzh2kerUqEhwcLI0bPSDPPfO0LIm2BDFF8zVPE49bEiABEiABEiABEiABEiABEiCB+CVA R6Hxy5epxzEBKCe8FUyByZEjuy148WLF9H5Y2G35Tyk2IKPGjJfPPv9a7+PPhYsX9f7Nm7dsx3zJ 0xaJOyRAAiRAAiRAAiRAAiRAAiRAAvFOgEqNeEfMDLwlEH473C4onHzGl2RIn14n/WyLp+Rhy6op mJqCc6lTB8dX1kyXBEiABEiABEiABEiABEiABEggjghQqRFHIJmMSJD6Bwm9ccNnHDlz5rCtdILI 8F+7Y+e/XqWDfOE/IyLijppG4nlKChItUqSIThtTU+Cs1Ah8bFy8eEk7CjXHHLcRERF6uorjcf4m ARIgARIgARIgARIgARIgARJIWALejQATtkzMLYkSKFu2jC751OlfyPoNm3yqRY1qVWWtWulk8ifT ZMPGzTJk2EjZs3efV2lUrFheh/tk6nS9PKs3kaD86KZWWvnmu5kyfuJkXd4ff5otTz3bSr765juX SWAZ2Rp1HhCszEIhARIgARIgARIgARIgARIgARIILAFaagSWf5LOPSjKMEOCoh123lvkHnnxhZYy 84dZ8rdaRcTVCihBJqKl9n3f6aVXIpkwaYo+2rBBfb08686du/RvEyeVk7hNGjfUzkOxjOu+/f/J xPFjxIS3ZBFjt1vnjoIpLz/O+kWmfDpdn2/x1BMysF9fl3maFZDv3ImIkR4PkAAJkAAJkAAJkAAJ kAAJkAAJJCyBIDVIi0zYLJlbcicAXxi4rNKkSeNzVa9duy6R6l/WLFl8jhsWFqanhWAlE18FDkKz Zc3qdtqJSZPTTwwJbkmABEiABEiABEiABEiABEggsASo1Agsf+ZOAiRAAiRAAiRAAiRAAiRAAiRA AiTgJwH61PATHKORAAmQAAmQAAmQAAmQAAmQAAmQAAkElgCVGoHlz9xJgARIgARIgARIgARIgARI gARIgAT8JEClhp/gGI0ESIAESIAESIAESIAESIAESIAESCCwBKjUCCx/5k4CJEACJEACJEACJEAC JEACJEACJOAnASo1/ATHaCRAAiRAAiRAAiRAAiRAAiRAAiRAAoElQKVGYPkzdxIgARIgARIgARIg ARIgARIgARIgAT8JUKnhJzhGIwESIAESIAESIAESIAESIAESIAESCCwBKjUCy5+5kwAJkAAJkAAJ kAAJkAAJkAAJkAAJ+EmASg0/wTEaCZAACZAACZAACZAACZAACZAACZBAYAlQqRFY/sydBEiABEiA BEiABEiABEiABEiABEjATwJUavgJjtFIgARIgARIgARIgARIgARIgARIgAQCS4BKjcDyZ+4kQAIk QAIkQAIkQAIkQAIkQAIkQAJ+EqBSw09wjEYCJEACJEACJEACJEACJEACJEACJBBYAlRqBJY/cycB EiABEiABEiABEiABEiABEiABEvCTAJUafoJjNBIgARIgARIgARIgARIgARIgARIggcASoFIjsPyZ OwmQAAmQAAmQAAmQAAmQAAmQAAmQgJ8EqNTwExyjkQAJkAAJkAAJkAAJkAAJkAAJkAAJBJYAlRqB 5c/cSYAESIAESIAESIAESIAESIAESIAE/CRApYaf4BiNBEiABEiABEiABEiABEiABEiABEggsASo 1Agsf+ZOAiRAAiRAAiRAAiRAAiRAAiRAAiTgJwEqNfwEx2gkQAIkQAIkQAIkQAIkQAIkQAIkQAKB JUClRmD5M3cSIAESIAESIAESIAESIAESIAESIAE/CVCp4Sc4RiMBEiABEiABEiABEiABEiABEiAB EggsASo1AsufuZMACZAACZAACZAACZAACZAACZAACfhJgEoNP8ExGgmQAAmQAAmQAAmQAAmQAAmQ AAmQQGAJUKkRWP5JPvfbt2+L9X9irdC58+el2WNPSq933o2TIn72xddSp34T2bJ1e5ykx0RIgARI gARIgARIgARIgARIgAR8J5Da9yiMQQJRBLZt/0eea9XGDkeunDmlbp1a+v+zLZ6SVKkSh97sxImT cujwETl77rxERERIcHCwXbnd/Vi4eKlcu3ZNmjZpJNmyZdNB16xbLxcuXpTde/ZK9WpV3EVPMuci IyPl0JFjcm+RwhKcSNotycBjQUmABEiABEiABEiABEiABAJCIHiwkoDkzEyTPIHTZ87IT7/8qutR s0Z1yZ0rpxw+clT27f9Pli5bIdevX5cH6t+fKOqZP38+qX1fTWn76suSUylefJH2b3ST2b/+Lk80 f0xy586lo9a/v67UqX2fPPzQgz4pSHzJ1xp2z77/pMc7gyRz5kxSsnhR66k421+yYrWM+ehTgXKj YrkycZaus4Ruh4dLm/Y9ZP/Bw1K/7n3y05w/5YMPp0jNqpWU4iirsyg8RgIkQAIkQAIkQAIkQAIk QAIxCNBSIwYSHvCVQLGi98r3336ho926dUvm/jlf3h0wWL76ZoaUKF5MXmj5rC3J8xcuyMZNW+To 0WNSpXIlqVKlkmRIn952/saNG7JqzTrZ/98ByZE9mw5TvlxZ23nsnD17TrZs2yYH1YAY6d9Xs4ZS VOTQYQ4ePCQ7/t0lJUsUl7Rp08qateukVMmSUqliBYESJjQ0VIoVKypXrl6V5StWSnaVR+377pOF i5fI+fMXpGbN6lKhXDmlqEglISEhsnjpcrl48ZJOe/GSZbrczZQi49Chw3L58hVtrVEgf359HhYg u3bvVVNStuq8q1WtIqVLlbRZq1jLliVLZlm5aq2uO9KDssKVQMnw8bSvJZWyLnmwYdwoiS5fuSpd evVXViaV5K2uHXTWZUuXkLKlS0qVSuVdFSXujqs6Rdy5oyxgrus0mz/yoMyZ+5eq51cyemj/uMuH KZEACZAACZAACZAACZAACSRrAlRqJOvmTfjKpUuXTjDt5NjxEzLl0+my4u9VNqXG2vUbpM1rUQNo UzIoH36Y8ZVky5pVKytav9pOTxMx57Ht3auHdGj3mj60YuUqadexq/W0YMrL59MmS4Xy5WTdho0y 6P0RUlkpMf7Z+a8O1+alVpI/X155u09/ueeewtK40QNy+vQZ/Tt/vnxasbFn7z5bmk8+8biMHTVc KywQx8hHH38imTJlEighZv74k8z9Y75MGDdKHn80v/Yr0rl7L60oMeGxfe6Zp2X4++9JUFCQrWy1 a9WUnf/u1koThOnT/z354buvpEb1qvgZQ/bsOyDnL1zUCo3Uqe/eslB2HD95SiljLkrpksVV2TLa 4h5T020ghQsWkL37D2hrElh4oBy3boXJwcNHtVLh7Nnzev+eQgUkh5pa06bVM5In2hrFJHbx0mUd pqialgJrHCMo01WllLj3nkJy4tQZZZkTIuXKlNR5mDCwyDisprRAiVKkcCHJlze3OWW3hWILCpaN m7cLyn5PoYJ25/mDBEiABEiABEiABEiABEiABJwRuDtCcnaWx0jATwKYdgKlxtr1G3UK55QvC6PQ GDlssLbA+PLr7/T0lYGDhsrE8WPk9z/naYXGE80flUED3pX9ahpLu07dZMrUz+Tl1q2UZcRlm0Kj Z/cuUq9ubZnz+x8y4/tZMmzkGJu1CDKEQgPpNGvaRAoWKKDL4OwPrDdyqYH65I/GyanTp3U6v839 Uxo1bCAPPdhYZs+aKe07ddUKjvFjRkpxZRniTMZPnKwVGrBaGTywn1Ic3NLWKpieA0uT1i8+b4u2 fsMm6dmjq7KKKCXTlcPRTZu3yJ/z/3Kp1Fi3cYuOW7VyBVsaUDT0eW+EXFOKBCOPNWuilRL4PXT0 RAlR5woVzC9Hj0cpODJmyCAfjnxPK0hGT/hERzty7IT0GzJKxg4bIEeUImrSp19K6+efluaPNNW+ R4aPmSS79u43WUiJYqp+/XpJGqVc+f7n32X1uo1SplRxpTg5qMMgjxGD+0j+vHm0wmXIyPF2ZWzc oK50fL21LT3rTrXKFbVSY93GrVRqWMFwnwRIgARIgARIgARIgARIwCWBxOHF0WXxeCKpErhHfZWH YAoHvuBvVU5FIU0aN9SWDvlgOdGzuz42f8EiNYC+o8KG6t/nz12QY8eOC6ZvbNu4Wv/Hl/xt23fo 8w0b1JfOndpL1SqVZcC77+h0GigfF1iFxQjOfTh6pDzS7CGpXKmiOex0O2XSeF2mV15+Sbp36aTD bNi4WWB1UqlieckYbQFRsmQJraBwlgimpkBGDhuilS2wBhnQ7x19DNYlVrm/Xh3p3LGdZtG9a1R+ ixZHxbeGM/tQPECgUDAyYtzHWlnwfIsnZPC7PaVA/rwyb+FS2bB5mwmiLTHSpEkjb3fvKLVrVpVQ NbVnymffaEeg77z5hg5XvGgRGTGoj1MLihmz5miFxn3Vq8j7/d+SurVqyIFDR+SrGT/Z8sDOjRs3 pW/PzoJwyOPv1ev1+WV/r5Ug5XD0jXYvy7CBvbWVx7KVa+WSmrbjTEpG1+9odH2dheExEiABEiAB EiABEiABEiABErASoFLDSoP7cUbg6LFjOi1MDYG/iF279+jfcCBao3YD/b92/ca2/I6fOCEtnnxC TyXBNJWnn3tRylaqIT3f7muLu1v5q4BUVIoGI5iO0bH961rJgQG8EUw/8UZQvoIFonxiIDwUKZB/ lV8ObwV+OrCyCqRc2dK2aOXLRjnbhA8Rq5Qodtfaw+xfU05VXQl8d0CMA01MHzl+4pQUVlNGnn7i Ee0Ho+NrL+kwW/+JmnKjf6g/fZSyoWa1ytLjjbYCPrv3/qetLDCVBJIpY0aBYsPKTp9Qf7btiEqr e6fX9PSWrh1f1ae277Bn8+pLLQVWJK+8GOU75Z+du3W4l19oIZPGvC/58uQWWJaEht7Qx0+dOau3 jn/g3wTiSunhGJ6/SYAESIAESIAESIAESIAESIDTT3gNxAuB5X9HWSfUuq+GTj9rlix6C58W77zV w5YnBuwYzObMkUPgPHPZ4nnyt4q7fuMmmTd/ofwx7y/9f+3KJZIjR3Yd79rVa7b4LneU7whvBMuy wjcFfE1AjHIhhyqPtwKLDiOwSsmoFAWQ68pKBZJXDertxMuymThh0RYoZpnVc8rZKsTq+8Lsnzp9 V2GA8FkVUwiW1s2l+J0+e05PK9EHPfw5p3x1QNlhFB5IL4tSUF1SCgqrZM0alUf26FVLwBOy7O81 MvXLGXofceEY1J1gSgvEanHjLjzPkQAJkAAJkAAJkAAJkAAJkAAtNXgNxCkBrF7yw6yfZer0qNVQ MA0DUrFClHUFnFE2bdJYTwt56MEmkjZNWrmqlBQZMqQXTNNYoqZxYEWU9/r3ldUrFikHn/l0/AMH DmlHoPixcPFS26oZ8IPR7LEn5YmnW+opLDqwj3/+WrhYx8AUGLNEbTknS5qaVVAckw9Wq5LA+ScE ZTOCaTWQGtWrmUN+bY2yANM8IAXU1B3IkaPHtUIG+4eUM05I0XujLDCwDyXCiZOnsauniJxTq7vA 5wXKawSOPF0JnIdCwXAlWomE6UHw4ZEvXx5XUeyOfz3zZ4Ey4+OxQ2XG55Pkgftr2513/GGUQMYi xfE8f5MACZAACZAACZAACZAACZCAIwFaajgS4W+fCWDqxTMtXxJYFFhXEenUoa08raaUQKooJ5BY 3WPzlm3S6uXXtd+J9WqlEvyGj4mWz7ZQDjO3yqfTPtcrlLRSy8Bi+Vc48oRUVvFTKQsHk8Yzz78k dWrXkmXL/9ZhXn7pBb0Mqw7s45/uPXtLg/r15LhylGmmkTzx+KO2VOrXqyvfq9VOevV+V6108rAM 7N/Hds7stH21jcAB6JBhI2WDsjK5FRYmmGoDafV81LQME9bXba5cOfTqI8fUlJPSJYtppQSWXcU0 kLGTpkkZtfLJnD8W6GTr3FfdLvkhoyZIo/p1ZdPW7VrJUbN6ZX0eVjFQOOz/76D8NOdPefShRnbx 8KN+3Vo63yEfjJemjerLcuUPwxzXOx7+pEmTWm4qh6kb1Iom2BpfG66ioX6QPJYVVlyF5XESIAES IAESIAESIAESIAESAAFaavA6iBMCWG0ECg1YVmBJVyyJ2kut8GEEUzSmTpkojz3STA2kD+iVUaDQ eOp/zeWjcaN0MDjPhHICTkJHj5sgX3z1rbbOwAokcBRq0nj04Yfk7LnzWtEApcdLrVpK3969dBpm GonJ12xdHcdqJQPe7S0rV63RCg0sMfvp5AlSulRJE1WvXILlYjFV5Zc5v+vjqYLsbx1YpIwf+4GU LVNaYKEBhQb8enz9+VSbo1JXZbBl5GKnRtVK+syeffttIXp1aa/SLyebt/4jM3+aoxU6ndu1kbKl StjCYNoI4v4+b6GcVEuuli9TStq2eUGfx1SPp//3qFZ0/PLbPL3kapDYT9l5rFljeeLRpoJpKN98 /4ucOnNOHmnaSFooPx4QT7NoOig/H1CcfPP9z/LH/MVSoVyUvxEop5zJrj1R9atWxb1jV2dxeYwE SIAESIAESIAESIAESCBlEghS89+jJsCnzPqz1gEggGkeF5QVBnxkGH8N1mLcUdMmLly4KJmVNQGU Gc4EaVxUSoacytFncLC9gsFZeMdje5WCoPlTzwmUGgvn/ab9TFy7dl3793AMa35HRESo3SCP+V29 dk0P5jNlymSixmqLaRntur6jHJrmkw9HvGeXFqaYYFqI8Z1hTnbo0VdPOfl22gS1vGyYpFKMjM8K EwZb3P7gbZ2SYj1v9i9fuSpmGow55s0W6YMrLEM8KXU69ewn8Jfy1dTxTsvqTX4MQwIkQAIkQAIk QAIkQAIkkLII+D4aTFl8WNt4IAAlRN68eZwqNJAdnFrmUc41XSk0EAZpIIw/Cg3EdxQM6s3qG47n zG+E8SY/OEWNK4UG8s6slCPPPPmYtrbA6iVWgSWEo0LDeh776dKldakkgKLBk0IDafij0EA8pJ81 axaPCo2NW7YLnMa+3OoZl2VFehQSIAESIAESIAESIAESIAESsBKgTw0rDe6nGAJYyrRRwwbK+qFA kqjz080f1g5CoaDwRrDEa7gbJ6DepJGQYaAI6qaWjq1XK2q1nITMm3mRAAmQAAmQAAmQAAmQAAkk XQKcfpJ0244lJwESIAESIAESIAESIAESIAESIIEUTYDTT1J087PyJEACJEACJEACJEACJEACJEAC JJB0CVCpkXTbjiUnARIgARIgARIgARIgARIgARIggRRNgEqNFN38rDwJkAAJkAAJkAAJkAAJkAAJ kAAJJF0CVGok3bZjyUmABEiABEiABEiABEiABEiABEggRROgUiNFNz8rTwIkQAIkQAIkQAIkQAIk QAIkQAJJlwCVGkm37VhyEiABEiABEiABEiABEiABEiABEkjRBKjUSNHNz8qTAAmQAAmQAAmQAAmQ AAmQAAmQQNIlQKVG0m07lpwESIAESIAESIAESIAESIAESIAEUjQBKjVSdPOz8iRAAiRAAiRAAiRA AiRAAiRAAiSQdAmkTrpFZ8kTC4HroTflwuWrgm14eERiKRbLQQIkQAIkQAIkQAIkQAIkkAgJpE4d LJkzppdc2bPqbSIsIouUhAgERSpJQuVlURMZgZNnL8rlqyGSLUsmSZ8ujQQHK+MfXlGJrJVYHBIg ARIgARIgARIgARJIJASCRCLu3JGbN2/LlWshkj1rJimYN2ciKRyLkRQJUKmRFFstkZQZCo3Qm7ck t9KwBitta6pUqUT1URQSIAESIAESIAESIAESIAEScEkA30DvKMVGRESEnL90VTKmT0fFhktaPOGJ AKefeCLE804JYKoJLDQK588lqVOnlqAgqjOcguJBEiABEiABEiABEiABEiABOwIYOaQKDpZg9VE0 T85scuL0BcmaOSOnothR4g9vCdBRqLekGM6OAHxoZFOmYlRo2GHhDxIgARIgARIgARIgARIgAS8J 4MNoGvWBFOMKjC8oJOAPASo1/KHGONopaKYM6WmhwWuBBEiABEiABEiABEiABEjAbwJQbGBcAUtw Cgn4Q4BKDX+oMY5e5SRtGs5e4qVAAiRAAiRAAiRAAiRAAiQQOwIYV3AVxdgxTMmxqdRIya0fy7rT j0YsATI6CZAACZAACZAACZAACZAArb95DcSKAJUascLHyCRAAiRAAiRAAiRAAiRAAiRAAiRAAoEi QKVGoMgzXxIgARIgARIgARIgARIgARIgARIggVgRoFIjVvgYmQRIgARIgARIgARIgARIgARIgARI IFAEqNQIFHnmSwIkQAIkQAIkQAIkQAIkQAIkQAIkECsCVGrECh8jkwAJkAAJkAAJkAAJkAAJkAAJ kAAJBIoAlRqBIs98SYAESIAESIAESIAESIAESIAESIAEYkWASo1Y4WNkEiABEiABEiABEiABEiAB EiABEiCBQBGgUiNQ5JkvCZAACZAACZAACZAACZAACZAACZBArAhQqRErfIxMAiRAAiRAAiRAAiRA AiRAAiRAAiQQKAJUagSKPPMlARIgARIgARIgARIgARIgARIgARKIFQEqNWKFj5FJgARIgARIgARI gARIgARIgARIgAQCRYBKjUCRZ74kQAIkQAIkQAIkQAIkQAIkQAIkQAKxIkClRqzwMTIJkAAJkAAJ kAAJkAAJkAAJkAAJkECgCFCpESjyzJcESIAESIAESIAESIAESIAESIAESCBWBKjUiBU+RiYBEiAB EiABEiABEiABEiABEiABEggUASo1AkWe+ZIACZAACZAACZAACZAACZAACZAACcSKAJUascLHyCRA AiRAAiRAAiRAAiRAAiRAAiRAAoEiQKVGoMgzXxIgARIgARIgARIgARIgARIgARIggVgRoFIjVvgY mQRIgARIgARIgARIgARIgARIgARIIFAEqNQIFHnmSwIkQAIkQAIkQAIkQAIkQAIkQAIkECsCVGrE Ch8jkwAJkAAJkAAJkAAJkAAJkAAJkAAJBIoAlRqBIp/E802dOljCwyOSeC1YfBIgARIgARIgARIg ARIggUATwLgC4wsKCfhDgEoNf6gxjmTOmF6uh94gCRIgARIgARIgARIgARIgARKIFQGMKzC+oJCA PwSo1PCHGuNIruxZ5dLV63InMpI0SIAESIAESIAESIAESIAESMAvAhhPYFyB8QWFBPwhQKWGP9QY R2tSs2fJJKfPXaRig9cDCZAACZAACZAACZAACZCAzwSg0MB4AuMKWmr4jI8RogkERSohDRLwl8DJ sxfl8rX/s3cWcFYVXxw/xAJLd3c3SAsWIKAYqNio2PUHVEAsQkI6lQYFBAMQFBQFBBQB6W7p7u7+ n9/szuO+t6+2YON3+Ly9NTN35jtzH2/OPefMOcmUPq1+EYXSFy6qIJmPBEiABEiABEiABEiABBIJ AcTQgMsJLDSg0MidPXMiaTmbGRsEqNSIDaqJrMyz5y/KsZOn9YvpIoOHJrK+Z3NJgARIgARIgARI gARIILIEEBQUlhlwOaGFRmTpMb0nASo1PInwmARIgARIgARIgARIgARIgARIgARIIF4QYEyNeNFN rCQJkAAJkAAJkAAJkAAJkAAJkAAJkIAnASo1PInwmARIgARIgARIgARIgARIgARIgARIIF4QoFIj XnQTK0kCJEACJEACJEACJEACJEACJEACJOBJgEoNTyI8JgESIAESIAESIAESIAESIAESIAESiBcE qNSIF93ESpIACZAACZAACZAACZAACZAACZAACXgSoFLDkwiPSYAESIAESIAESIAESIAESIAESIAE 4gUBKjXiRTexkiRAAiRAAiRAAiRAAiRAAiRAAiRAAp4EqNTwJMJjEiABEiABEiABEiABEiABEiAB EiCBeEGASo140U2sJAmQAAmQAAmQAAmQAAmQAAmQAAmQgCcBKjU8ifCYBEiABEiABEiABEiABEiA BEiABEggXhCgUiNedBMrSQIkQAIkQAIkQAIkQAIkQAIkQAIk4EmASg1PIjwmARIgARIgARIgARIg ARIgARIgARKIFwSo1IgX3cRKkgAJkAAJkAAJkAAJkAAJkAAJkAAJeBKgUsOTCI9JgARIgARIgARI gARIgARIgARIgATiBQEqNeJFN7GSJEACJEACJEACJEACJEACJEACJEACngSo1PAkwmMSIAESIAES IAESIAESIAESIAESIIF4QSB5vKglKxnnCGzesS/O1YkVIgESIAESIAESIAESIAESiL8EShTKE38r z5rfNgJJbqjctrvzxiRAAiRAAiRAAiRAAiRAAiRAAiRAAiQQRQJ0P4kiOGYjARIgARIgARIgARIg ARIgARIgARK4vQSo1Li9/Hl3EiABEiABEiABEiABEiABEiABEiCBKBKgUiOK4JiNBEiABEiABEiA BEiABEiABEiABEjg9hKgUuP28ufdSYAESIAESIAESIAESIAESIAESIAEokiAq59EEVyiznb9usj1 a/rBVj8m1qyNN5tEJIl+kqq+zHyShW0TNTA2ngRIgARIgARIgARIgARIgARIIDYIUKkRG1QTYplQ XFy9EvbZuUVkxQKRzWtEtm8QOazLu549ocoNbXjaDCJZc4kUKiVSvLxI5VoihUuKpEgpklyHWxIa ByXE4cE2kQAJkAAJkAAJkAAJkAAJkMDtIMAlXW8H9fh0TygzrlwWOaiKi99/FPlllMiurWqhEYlG 5M0n8khT/TQRyVswTMEBaw4KCZAACZAACZAACZAACZAACZAACUSDAJUa0YCX4LPCMuPwfpEx/UUm DBI5r8fRkeSqyHjidZHXWovkKSgSkiI6pTEvCZAACZAACZAACZAACZAACZBAIidApUYiHwBek89n AAAAQABJREFUm2+tM6aME+nfRuTY8TDXEq+Jo3AyXSqRFt1FGr8mkjpNWAyOKBTDLCRAAiRAAiRA AiRAAiRAAiRAAombAJUaibv/I7YeCo0TR0V6tBL5TZUaV/U4tqT+4yKfDhDJkYfBRGOLMcslARIg ARIgARIgARIgARIggQRMgEqNBNy5kW4aFBqH9op88IzIqoX+42bAlSS5Bv1MFr66SQq1voBcvhi2 Iso1XR3lmgbegFLEn16kZFm1BpkkUqAoFRthBPmXBEiABEiABEiABEiABEiABEggSAJUagQJKlEk QzDQdx4S2bTau0IDsT1DVJGRLr3IfU+I1LxfpFRFkdwFREJThyG6pEqNA3vCylg0W2SOKixOqvvK ZVVy+FJuFCosMnS6SP4iVGwkioHGRpIACZAACZAACZAACZAACZBAzBCgUiNmOMb/Uk7rkqzN1R1k 6Vy1sPDSHFhmZMsp8mJLjYXxikiGzMHFwjh3WmTKdxpstJfIvp26kooPzUa5O0QG/6b30OVguTKK lw7gKRIgARIgARIgARIgARIgARIgAU8CVGp4EkmMx9euinRuIfLTUO9Kh5RqndHwBXVL6SqSPXfU lA4nj4l82V6XhB0pck6XiPUmjfQen2sdEDyUQgIkQAIkQAIkQAIkQAIkQAIkQAIBCFCpEQBQgr+M OBozJ4u00TgaF72YaIQmF2nVV+S5tzWGRkj0cUwaJdJTFSgnz3ovq9tokUefj5l7eb8Dz5IACZAA CZAACZAACZAACZAACSQQAlRqJJCOjHIzTqnbyTPVRHZujRjzIoVaaHQZLfLQc6pkUOVGTMmfP4t8 plYZp85HLDF7VpGJq3RFlChahEQskWdIgARIgARIgARIgARIgARIgAQSKAGdtVISLQFYafwwRGNd bI+o0EimMTTe665uJ8/GrEIDsOtp7I4P+qibiRfLj8O6nOx3A9UNxoeLSqLtLDacBEiABEiABEiA BEiABEiABEjAkwAtNTyJJKbj0ydFGpXW1UoORFRq3N9IpM8PIqlCY4cIFCofvSQyTYOIYtlXp6TX e/62JerxO5xlcZ8ESIAESIAESIAESIAESIAESCDBEohBn4IEyyjhNmyGLrd67HBEhUbalBpHo4dI ylQR2p76XVU2xJCcb99NZNFMkcMedTh9QWT6RJEm/2NsDR+sL2j4kzNXRbC95qET8pElWqdhuBOa TFfz1W8MbCkkQAIkQAIkQAIkQAIkQAIkEBcI0P0kLvTC7agDLCX++FGtJLwEB33uPZF8haK2yklk 2pIzr8izzURCvAzD39VK5MqVyJSWaNIeU8+cAxdFzqpS41YoNAAW98H9cF/cn0ICJEACJEACJEAC JEACJEACcYEALTXiQi/cjjocPSiyep7OVj1unlxfyT/5WkALifODi8mKFStk1qxZcuyYLtfqR1Kl SiXVqlWThx56yKRys/ZorPca01PkssdqKKuWqAXHfpH8ReTo8eOye/deKVq0sKRPl87PneLGpU2b /5Mpv06TkiWKS6NHwtocUzWDQuHUbdb12PtnSRGxVafPnJEhw0ZK6tBQaf6/tyMmiENnZv45W1au XiMN6tWVihXK3/Kajfh6tBw/cUJee+UlyZolyy2/P29IAiRAAiRAAiRAAiRAAgmBAJUaCaEXo9KG VYtVoaGv3j2lel2RXPkCWmkc0Dgc48ePlyZNmkjBggU9S3E7PqMT3UmTJsk///wj99xzj9s1s8pJ 9fois3RFFA+zg5UjBkqndXtl3X9bXXnKlC4lfXp2lSKF1ZIkDsgqnRRv275DypcrK8WKFjE1wvHI b8bIIw8/GKNKDbiaWIVCME0/sG+fZNbJckpVKsW0oB6pk0V0Rblw/oJpe5o0aeK8UmPBwsXy/Y8T pFDBArdFqfHDhJ9kz5698tQTj1GpEdMDlOWRAAmQAAmQAAmQAAkkGgJe7P4TTdsTd0M3LFclwvWI DO56QCRpYF3Xtm3bpFy5clK+fHlJnz6930+ePHmkVq1asnnz5oj3w5laDdQyRC1EPGTXT6Nk63// SdEiheWpxo+byef6DRul8TMvyIaNmzxS357Dyb/8Kh9/1kEWL1kW6xVADI1g5fKlS/JVt66yTfnF lkSmPrFVB5ZLAiRAAiRAAiRAAiRAAiSQuAkEnr0mbj4Jt/U7NeCnF52GlK0ikiywruv69euSLJm+ qg9SkBZ5vEqZynpPlOV+Pd+Ni9Ki2TvyxrvvmGxXNMZGm0/ayW+/T5dRY8ZJr+5dXMXt3LVb3WFW GXP+ihXLS7kypSVlSg14qnLq9Gn5e+48yZgxg1SvWlVmzpotR48ekypVKkmZUqX01kkFFhe7du+R fHnzSqU7KrjKXbpsuew/cFDKanme1iEzZs6S7Tt2mLTLV6yUdOnSSr26tV15sXPg4EH5Z96/cv78 eamq90M5Trlw4YKsXLVGVq9dq8qbIlKl0h2SKVNGZxLXPiw14pIEqs/Vq1dl1py/ZO++/XJHhQpS oXxZSZ487CtnydLlhk31alVk1649snrNWsOuUKGCcu3aNZk3/1/Zum27GWMlSxaXGtWqSpIkYYov mxfnwHfpshVSvHhRuavmnRHGJKxmVq5aLcePnxCUU71qFde4cLKEkmzhoiWmD2tpOXly53JejrAf 7HirWL6czJ23wNy/Qf26kitnzghl4URUxp/XgniSBEiABEiABEiABEiABBIZASo1ElmHu5q7Xyfj 1zX6o6fkK6yuJ4GVGp7ZonWMoKRJI94zT4hIxaYvuooOCQmR1h+0kPOqCLiklgjX1NIECokhw0dK 3/4DXemwAzeVb0cNNzE4Dh48JK0/+kxy5shhFBuIeWEFMS969/jCTLyRBlYhf/w62V6Wlh9+KgcP HZLvxnwdQanRoVNXOabxPiBQtODz+1RdUSZc9uzZJw8+0ljOnTtnT8lX/XvJA/XrmePDh48YqxOU 75Qpk36U0qVKOk+ZfQ/vnAjXz5w6JSuXLpGrqvwpVS5ijIgLqlhZs2K5HDtyRHLlziMVNc4JFAUX ledajY9SomxZSZ8hg6vc9atWSTo9zl9I+8eLBKrPy6+/7WbBcu/dd8mwwQOM4mHc9z/KHzP+lCqV K8my5StM6QXy55OsWbPKy6+9JWvWrXe7I/oJSizU1+atU/temfPXXFe6LJkzy6zpv0ratGnMuf5f DZZBQ4a7rmMHsTOGD/7STXH05+y/5LP2nVzp4Drz84TvpFChgq5zzp2ojrcvuveST9q0kldfvjmm bblQ/ER2/Nm83JIACZAACZAACZAACZBAYiYQcSaZmGkkprafPRVxKVeMhvSZAsbTiHFMuKcXqw8s H5rMQ9mRJ09uGTZogHzZr5dRaMACwyo0+vXqJj+M/Ubw9h9uKp+oW4hToDyAxcigAX2k7ScfmksI 6AllRJ377jHHsA7Yu3ef2d+ydZtRaGCyXFktKDxl9NdDpf79dczp119tKpMnfC958+ZxJcPb9ybP PS0jhw0UTOghI0aONlv8eafZ+6b8l19qYhQpHdp+Yq49/9JruvBL5KKBXrp4Ufp06ijTf/lFli5Y IIN66pK8Djl+9Kj06tBefp0wQbZt2iQTx34rowcPMilSqEXLrz9NlAV/zXHlOHf2rHw3coQc2q/B WqMgUORAaYN+6vx5W1PC3HnzNYbFRLfSoNBo9u5bMvirfsaKBf0BhQZ4QbkDdhCc37Fjp9m3f+Dy gz6HsgN9BAXT/H//NZdnzprjUmj079NDxo0eacYF+uS7H8bbIswWY6j7Fx2lX+/uki9fXqOEmjzl V7c09iCy461YsSIyasQQ4z6FMn7UOBreJCrjz1s5PEcCJEACJEACJEACJEACiY0ALTUSW4/b9l68 aT1gT0lKdQEJN/F3nbsVO7hnytR6p/Nudwu5AXcUL9YkjlTzFiw0R63eby4PP/Sg2cck9546D6ib yRzjyuBIbibPuXOFuQCcPn1Gvhw0VODO8HDDB+SJxx4RxMj4Z/4Cef7Zp9VtZIHJ2viJRkaB4iwH +1jdJEv4qhV5cueWcmXdXUtw/cOWujyuSja1QMCkHhP2GzduGDcZa42AST0sEB59pKH8/MtUkwYK FW/WGqYwL3/+27hBEEejTafOklEn+L9OnCAL5960Ypgy/kfj/tOuZy8TOHTX9u0yrG8fOaEr12TS NlSoUkVWLl4sDz72uCl9zfKwGCHlK6trUBQFygTbhitXrkqnL7rLosVL5MUmz7pKfPftN+Q9dTGy 8sLzzwg+Vi5evGSsK6CMgMKpsCNA7DtvvubqcwTcRF/C1QeWMLgP5KPWH8hDD2rMFpW8eTvLlKm/ Sfbs2cyx/QOFVOPHG5nDEydOmno6rXlsOmwjO966d+koKVKkMC5NEyf9LDt27pJ9apUB5ZxTUqdO Henx58zPfRIgARIgARIgARIgARJIrARoqZFYez40bcSWX9SgDUaREPFSrJ5BrI2L7goN3O9yEsTZ UIWHH1mzdp256oxVgbgFcCGAIPaBFbzNtwoNnLujYljsjPXrN5gkjzzU0Gzn/PWP2c6a87fZNnxA V2eJguAtvZXCDhcOKDW2bNlmL0mVGvdI5ep3m49VdGzadNNFxpXQz84mjcmRMVNmo9BAsjIV3S1L toUHaR0zZIgM79dPZkyZYkpboYoMSNU7a8pZXaVm3+4wXsvU4qF4aY1LkirqK6dAqWOlQoVyZnej w/UHJ0qXLGGTmO3ly5dl4OBh6rbzhBQrXVHKVapu4k3gIrg5pWCB/K7DouErzyBGCWT16rVma5Uq OECcDChRntTVRpxSsEAB12GRIoXMvi9LmciMN6yqAoUGBEoLHEMuqFWNN4np8eftHjxHAiRAAiRA AiRAAiRAAgmNAC01ElqPBtuedJnC9AXOeSL2TxzTGZgqPG6lxcZJjUtxXRUqHnL66g0JVYUHVBtW 4GIwfOQoE3AS8TUyZ9Z2qJxRdwkriLVh41ikT5fOWEXgGvJiYmwDTto8mTKFlXFnjWpGGQKLCrz5 h2sEJqKIzxHTkjoNLFPCBHE2rJw8ecrE/ShVMmJMDZvG2/aIutbAQsNKJsc+ArTiU6BwYVV2VLRJ NKZGVcmTL0wxkF+vpVZF0PJFiyStrmaD5WDrPBim5HFliOTOJVVQhIYrRc6G9w/6wym2L+y5Hr36 ybff/WCsYGDlkjNnDmnV5lN72W3rmdd5MWu2rOYQywkHksgM9ciMt0D39bx+K8ef5715TAIkQAIk QAIkQAIkQALxlQAtNeJrz0W33nkKa3BOL1YQu9WCQCfAt1R83HPvlSQyTBUYVrAqRp9+X8k3o8ca pQMmtRXKlTWXp/0xwyZTF4T5Zh+WGdnCJ7f24nRdsQQCxQfcASClSoVZCyDextNPPm7Ode3R22wf a/SI2fr6kzSc4VF144iMFC9a1JUcK4PAZQKfXOoaA7eYFCk0SmokpFjJUrJ/7x5Xjr27drn2k2pc klShoZI+Y0apVusut0+e/DetHSrXuFNWaaDRFYsXadzWpFIynK2roEjuTJk6zZXjp8m/mH1PFx1X gvCdeQvCYmJ89vGH8ubrr0iDenVNnAvPdIGOy5ctY5L8qvFSrPz19z9Sp8HD0r7jF/ZUpLeRHW+R uUFUxl9kymdaEiABEiABEiABEiABEkiIBGipkRB7NZg2FVTXADMhd5pqaMa1Goug6t1eA3c6i/X3 ltyZLqj9dUuhZYiQdHeSVDJk2Aj56fcZUvmOimbZT8QkgNgVJB7ROBrfjvtBsLzqCy+/bpbM/EXj JkCa/+9ts3X+afHBh3L3XTVNMFBbFsqwgrgcWC42WNcTrN7x3Q8TTFDKHTt2SttP29ii/G5TpUpp Ju2wOnny2RflkYcfNLEWfp8+M8xapP79fvN7XsTKJX/NmC5/z5whJcro/vQ/3JLUuPse+WfWn5Ij Vy65o1p1E38DrieImZFNV4WBVKlZU+bNniWzp00z55Mli97XQ7vPO8vvqmw6cfKk2BgVNnaFW+Uc B7CKQb907NJN6ta5T+ZrzBRYzURWwHPEN2Nc4wIxLGbMnG0seGreWS2yxbnSR3a8uTIGuRPZ8Rdk sUxGAiRAAiRAAiRAAiRAAgmWQPRmLQkWSyJoWFkNAKnLoapZhntj5+lk+CUNbhkSFgvA/eLNo9wa GHP27NlySN0ecoRPim9edd+D68NajfmQL18+9ws4UncQma9v06961EMvFWvytpRas1tWaswLO7HF pBcrVdh4DVitAquQdOnW07V8KM691OQ5s/KI84ZwJcFqJF26hbl7YPnW1i1bSPFiRV3JypUpbSwD cD/cyxm3wZXIsVO39r1yf537jBIECokWGvQSVg7BCIKbIu3En36WEV+PNlkqV6oon7f7VDKoC4in JFPDGl/LqOYrWFDKqmvJzKlTzQfHTqnTsKGcOXNafp882XxwDe4mFRyBQKHcyJItm1nytUrNWs7s XvdRH0+xyi7ENPns49byabuOJgnYgw2WVIXYdObA8eejDz8wy+vawKAPNqhnYmEg6GuScK6+8jqK kfw61r4bM9L0NVZJgcBy56PW77uW1I2M24ktO5jxFkz9bHme28iOP8/8PCYBEiABEiABEiABEiCB xEYgicYY8HhVn9gQJNL2Hj8i8kBBkVMeAToxUZ26RqSomu97mZynfneLAXZ+cDGZMWOGzJkzR9J7 mYA7qSJ4Y5EiRaRp06ZmEu8sQ/buEGmkMSvOXnJmUYWLHs7Ua3kKyCmNi4BlVqFgsAFA3ROHHWGl DNwrU6aMbpc3/7dFHn7sKcHEeubvU8yKKGfOnDWxK9wS6gHO13vwURN/A8qTQJYFNr+NW5E8edT0 hHBfSa0uIggo6UsOK6KzV31dDTuPpVivXb1qXE28pbx27apRWoSGppZ0GTJ4SxL0ubTa1Owp/SeH y9CpU6ddsU/8p755Ff0A1x5//X0ztf89BOa8cP5CpOvgv1SNbetjvAXK5+96VMefvzJ5jQRIgARI gARIgARIgAQSMoGozcASMpHE0rbMuqxl5Toic9VVw+n5ARXXj8N0LUyNKZHS/8oXDRo0kJrqsnD6 9Gm/1EJCQnQZzewR00CfNn64yKXLEa9VuVckq7pF6Ot0WC1kKB3RcsEzE1w68AkkiF2QMWPECT3i aExQqwkEGcUb+UaPPBSoKNd1WFwEa6HhyuTYyRq+NKzjVITddPq0BlJqpEmbNkI+5wm4lGTPmct5 Ksr7qE8gAWsbXDNQWuf1dOn8t8OZNtA+gpXagKWB0kbmerDjLdgyozP+gr0H05EACZAACZAACZAA CZBAQiMQxLQkoTWZ7XERaPicyEJ1/bjg8fr/pyEiT70uUkJdBbxYayC/tbZwlRVw51TEFAgQOnGw yBVoUhwCaxHULYpWD46SzG4atX647967dTlX/5P5Q4cOG2uQ8hog8/3m75oVVjzLup3HoWq9kkHj h566cjtrEXZv1AP1ocQcgbg+/mKupSyJBEiABEiABEiABEiABGKOAN1PYo5l/Cvp/DmRx8uJ7Nqh sS08ql+zrsiXk0R9FNwuRF6Z4ZbddRB6/YocC2krMltXxfAMFJFVl1idukkE1iRRCXzgukvC3Dmm hi23U7EBhUYW/yFXEiZ4tooESIAESIAESIAESIAESCDOEaBSI851yS2u0JgBIn1baYAApw9KeB3+ 117kjY/0lbzvOA9Rqq3GfJAx/UT6fyxy2SNAKKw03uss8nqbgMFKo3TvBJLpgnbXGcWIradOKDaa iKCgsMyAywktNGKDMMskARIgARIgARIgARIgARKICgEqNaJCLSHlgbXG8zVFNmtwUA/9gmlmB3UP eaKpSKoYUmxcVd+JaT+KtH/FuyIlXwGRCUtFMmWllUZCGmdsCwmQAAmQAAmQAAmQAAmQAAnEAoHg 1p6MhRuzyDhCIHUakZbdRdKEeq9Qp3dFRqs1x7kzYcuvek8V+CyCgl6+JPLDUN8KjRA1B2jVSwNH qPsJ3U4CM2UKEiABEiABEiABEiABEiABEkjkBKjUSOQDwDT/ngdFnmmu1hheIj8i1ka/T0U+VmuN XbqcKxQTkVkFGGmvqHXGwT0ibd8Q6f6edwsN3PrJt0XqPqrLuTJ+LYclCZAACZAACZAACZAACZAA CZBAYAJ0PwnMKHGkuHhe5INnROZNi7gaiSWQXq05XvpQpPFrGilSg3hC+ZBUtRFJEQgDn3C5rn4s 5qMBH04dF5kyVmRUD5Fjug8liadAtVb1Hg1M+rNIxsyeV3lMAiRAAiRAAiRAAiRAAiRAAiRAAl4J UKnhFUsiPXlSlQ7NGomsWuBbsQE0KVULUfsJkVr1RUpWFMlTUKNHwn1FFRuXLooc2C2yabUuFztb VzcZr64rftYghUKjlJYx+FeRHHnodqI4KCRAAiRAAiRAAiRAAiRAAiRAAsERwJSSQgJhBGAlMVCX WK2hygooLnzJJbXEmP6TSLs3RZ6qJlIzu0j19GGfGhrg8/FKIp+8osuyjvOv0EiuSpA7NEipD4XG nn375ZdpM6TPwOEyeeofcuDgYV81irXzLT/tJCPH/GDKnzl7rnTq3j/W7hWo4AFDvpEJk1X5Ewvy bsvPZM26jbFQcsQiV6xeJ0uWr4p44RacmT7rb9m+U5VuDvlnwWL5bfos9aq6Yer14pvvy1FYFfmR 36bPlm59B8mFCxdl8q/T5fSZs35Sx/ylrdt3yrQZqjR0yL79B01dLlxUxWK4nD13zpw7dvyEPRWp 7a0cF5GqWBCJd+3ZJ280byMXL6nL3C2W2XMXSPsvevu8q/P6iZOnBGNu4ZLlPtPzQvAE4tKYnRHN /zOG/H1SVuy6+TwHT4EpSYAESIAESCBxEfAzc01cINjacAIZs6gbiCosnnxHJG1KN68Sv4wuq1+J 5/KsvjLAUyWluq088qLIoKleLTQWLF4mH7b9Qn6f+ZcpZeZf86T1Z51l2co1vkqN1PnTp8+YiYTn BNezkEoVykqxooXM6dNnz8nho8c8kwR9vHjZSnn13dZBp/dMeETvfSqWJs/HT5wMevI3+ruJ0rP/ EM/qBX08S/vyzznzgk4fkwl//GmqbNiksWHC5feZc2TwyG8lc6ZMGps2ieTMnk0qli8tadKErfbj q62Llq6Q7FmzyMlTp42i6aROTG+lnNFxMPbHyYJ+szJjzj+mLqvXbrCnVFG1yZxLlVKf5ShIZMZF FIqP1SyXVJlxRp/ZG9e9+bzF6q0F/XP0mG9FkvN6arVyw5jLmUOVw5RoE4hLYxbjLzr/Z3SYckzm bbkQbSYsgARIgARIgAQSOgEqNRJ6D0elfanT6golA0U6jxEpoBP6FDpMoIiICcEKJzlyaPnDRbqM 1KVbVYnisdIJ3jh/NXSU3FOrugwf0F1aNXtTBvXpIhXKlZaBw0bLNcTrcMjBw0fM5NJxSq5duyZ4 AwrBW2rnpBP58cP3igYwxbUzZ8PesuMHKN7qXrp0WfAmHNLooQZSrXJFs+/8s//AIbcJJa5dvXrV 7T44hzflKBOfY8dPyvkLF0y9PN8e7z94yKRFnkCC++zcvVecb+RtHlgbHD5yTPbuO6BhTdw5IQ3O 7dY32OfOnbdZvG5heeDN+gDtATN8wBd1sWLL9mybvR6ZLZROYOJLvPU50qKfUSfUE2/qwcOX/Lt4 uXz7wyR59YWnpWb1yiZZntw59fgZCU2VypThra1o5w619ihXpqSvoiOc91VfJPTFDRwxNtEG9Ocp ZWKldKniZnfdhs32lKxYtdbsLw/f4mDt+o2SK2d2l5IG57zVxfm8wCLKqSxBHiue4wK8wfmKYxw4 y4LFiy8LK/Txjl175NLly7Z4ty3q6ctiBmxgyeWvf52FoT34XrGCfJ7j155ztsWmxxbX/T1b+D7Z 6ac9vq6nTJlCXtMxly9PLnM7+z2Ecbx7r/c2oi54jtEftt7Yegquez6POAcLIyv4vkMfen6vYuw5 8+K6/U5FXvusYVxifPoSb+MbjKEQtIK2Osu290Kb3J6D/QfM97PN52977vwF8z3p2S5f9cZ9MB7B 3ynB3t/feEV5+D8D945p+e/QZTlxTuNXeQiGw85jV2TjgcvatzcvXrl2Qw6cCvve3nL4suw/GbZ/ UM9dvnpDTl24LjjvT86qteaxs9cE+sJ1+y7J8fD7o+y1ey/J4dMR64Pyth25Ioc8rvmqD9LjPhv2 X9YxjiMKCZAACZAACfgmwGUmfLPhlYbPiNxZV2TslyIT9M38aTXJv6K/jhw/kIKCBNVZcv2TWt9+ P64uK6+0FMmeO4Iyw5a1cs16SZY0qbz58vP2lOv4NzW5xw/DLJkzGTeCLj2/NIoCJMRb9k6ftZL0 6dPJanWlgDXBHWppsVLdHSAlihWW9h9/IPv0B/jHn+sytip9vhouRQoVkC/atzHm4nhrum3HLnPt +6+/ks49+kvZ0iXlpecam3OXdeLyUfuuZhKAEwUL5JOOn7aUlClSCCbJw74ZJ99pPittO/WSGtUq Sbq0acybdZx/54NP5fFHHpBnnnjE/Iju3GOAqw1lS5eQT1r+T5IlU0sWL7Jn7z55s8XHrvT1at8t r730rEmJCeDn3fq5JoIhISHS9sMWpt1IMOvv+TJq7HjX5AVWKB80e0NCkrt/DcxdsEiGjBwrzd9+ RWpVr+JWiy9V2WTdVNCO9h+/L6VLFJOZaiUwRi047ASiaqUK0lLLhvVDZATKlg7d+romSWjDZ62b ScniRU0xsKzx1eeYNL6tdbpTeS9cssKkxzhq1eItQVudsn7jZvly6Dfy1GMPSf2697oubdi8Rb7o 9ZXpQ19txfhAO0uXLKZv5N0nQK6Cwnf81RdJ/HGDVcmK1WvNWLCKAbD+rE0LM94KF8wva1RpAeUf ngn0P/bteEf5eA6swsZfXezzAs6b/tsqDzWoKy8++wSKcIlzXFS5o7x06zPIpAVjCMYSztuy7rqz qsxfuNRcwzPZrcNH5rkFux79BrvGERK83OQpeeD++0xaTCydz0TWLJnl808+EGwhg0aMkXn/LjH7 GB8YZ3eUL2OOvf0Z+e2PsmBRWD3wfHdp96Fky5pZmrVqK02eeVwa1q9jsm3ess08P/26dTCKIGdZ gZ4tuCBZ1zDUCd81TvF3HRN3jFs891Dcwm0lfbq0snXbTjPOYGXz1qsvmHGNMlfp92OfgSOMUhbH d1arbFxXRnzVQ79nVCHtEHwHpk4dKp+2ambO4hl55/1PpKnyxncHWNo+Qj8+0/hRebRhPZO21Wdd 5NEH75eHH7jfHGNc9f5ymPw4apC5N+psx0teVcj07tLWceewXV/je6NaS3XtM1BGD+0raN9Mtdz6 9oefxLJfrhZ5fbWNY0cMEDwHcFe7rpwwzlHPB+vXlheecR+fzpvPVZcy5Icg/btvvCS1alT1We+f tf/GO1z7qlbW76//hX1/Bbp/oPEKi6H3P/rcKBNRn8r6jLRu/makvxuR1ymr9lySB/rvldOqhIDU LpFafmmWW0KSJZHdx69Kvb57ZI9uIan0ZcK0FnnkziKhMmvDeWk8ZL/UKhoqC7ZekBZ1M8nnj2aR wp/skHqlU8ufeh2SL3Nymdosj5TImcIcO//AguS3NWfl3KUbLoVG36ezSZdpx13H79+fSbo+kdVk gwtNwy9VCRde1yLZQmRO63ySLV0yr/Xp3jirvD7moHy/+IzJj/r/8EYuaVA2jbMa3CcBEiABEiAB F4GwX6OuQ+6QgAeBTPqjpEUnkV9UMdBa40mU1UluulRhy7/C6gJzb4wizF3xwT7O4RpcTNLoD6Li OqFs0U3LULP4j3p7dTfRHC7Zsm2H5MuXR5J7TLYzZsxgfshCoYE3ex269pXiOnn4emAvY8lxVa0z uutkySlZNe3Y4f3Nj/rNW7bLuvWbJL+WPbRfV5Os46etjELD5sGb0Q6q+BgzrJ8kDZ+s2WvY4u1y sSKFzI/xrjpJ26NvOOGiEEgwSXz39ZdMMkwKoNBAGzqqEqJM6eIyakgf6dXlM0Edf/hpis/i/tu6 w0wAx+mP/bdfe0H+VFcOuEJAsMXED9YtI77qKbn1Df13Eyaba5jQIjbIE48+aHi0/+h9nTCvE7iC OAUTHCg0MFH0VGggHSZHmKwWLVzQTG4wyUbZ36iy5KknHjaTkM9VyQOrgQk//+YsOqj9foNHmrfP X/bsJKMG99FJcjkzwYVVSrB9vnK1Tvq+aBeWv1J56aMTMby1tbJ95y7prMqw7NmySONGDe3pCFtv bUWitWodAc5p0/j/gR2ovsFwg2UAFAUYj5jYY+I9ftJUU9fKFcvJuo3/mX0oAjE5fPrxh82bZrw1 hrUKLBQqabpAdTGF6B8oBjE5fu7JR+0ps/UcF8tWrDYKDVhQYeL50AN1ZY7GkXAK3KWGf9nDPJvJ VUlnXZa2bN0uuIbnB3kbqFJprFrM4I0+6tn+iz5G0ThyYE8Z0KOjOQ/FBATuaP8uWmaeUTzXde6p Kb0HDPVreQRF4ND+3cwznzFjejOZhuKhetU7ZO78Ra4qQ1GSO1eOCAoNJPD3bOGZhEIDzzTagwmr 04Im0HVXBRw723fukW4dPzF9UbRIQZk09XdzFc9BL20v3FW+HtRb8JxsVCWUL6lX526jPII1BgTP PJRKd99ZTX79Y5ZRaHz2YXPB98mLqrj9fuIvbu5Zvsq15zHG0EfdP//YnnJt/Y1vKAQhUG5AMJ4g UOJBoDiFYsgqXDGOoWTDc9DoofoaA2e2V0s1kzk8P+oEpQkUfV8NG+1mfeSsNywx5i1cIm+oEh0K 6ffffU2WLl/tstZDmb7uH2i8Ii8sPx5W5RDGKxQxUNhAERIdgUVF/b575T5VZBzqW0SWtS0gC7df kPaqbIBMXnFG8mcOkV09CsveXoWlWI4U8unPR91uCcXCnp6FpVOjLK7z+09eM+lXdShgFBbfzPdt WQKFyYiXcsjJL4sahUrLCUek82NZ5MzAYkZR0n/WCR1r6pWqdb1f61qjcKjs711E/vuikFxWi47H Bu1z3Rc7zvoMnHNSJiw9KzNb5pXjA4rKy7UyyFNDD8jJ85F9o+J2Cx6QAAmQAAkkYAKYglJIIDCB rOoy8lJztdjQN6ST9Idnx29EXmwpcrdOCkvdIZK/kH4K6mooFXRVlAYiz7XQQKJDRSZqQMif9fNG G5Fc+XxaZzgrcOLkScmgb3b9Cdwv8NbxrVeaGNN6KDpgTYEf0vihaeVpnWhjAlO+bCkzEcXkz5/g B3CpEkXNm3Bf6V598RkzgcSb8of0LaYzhoGvPN7Oow34QV377prGNB4Tj0IF8sp8nbT5EigTUEco fO67605jKWLvjzeqHdRy4rxOfPBmP1WqlLJt+y5T1CqNswBrEUziwQOTCkyInK41f81bKAOHj5aP PnjX7byvutjzKBtv4h9TVx1MQkoWKyK1dbJp3SFsukBbvLHGJKfJ048ZhUNoaCq11mliJmFoR7B9 /qxOyOFGYvK/8kJ4/p2u28OiBnJMYx5AaRBZwYSrnFrUBJJA9Q2GG/qqydOPm/GIt+L3KVe8qYdA WYE311C0LVMlUhVV4EDZkjlTRsMesUPwlrqE9keguti2NH3+SfO236lQ9DYuUqhlEmTG7H+Mm9Dz Tz0mbd7XODwOeUvZw+IAzyYsMaybCtqBN/IZM6SXPapERH0x0YY7gq3nO6+/aJRGObJnle46uX8x /K383PkLJbueCwlJbsqDVQ7yQhHqS15v+py5F5Sir734rLFogWtFvdr3mDJwX4y9Bfrc1a9zj9di /D1bsJbBswXrK4x/WFvAesJKoOs2nXMLhWL+vLlNX8CiAu4dcNPZHm4lhOcijVpgQDHXNNyKzJnf 7teoWsmMgWWr1phTUOJUVKsWPBvL9RysF8qpJRr6G5YyKG/lGlVgBylQoqGPnOPFZvU3vpEe42C1 soO7EpR1YL90RVg9waxqpZtufxgjYAKLuIYN6phbbNrsW5kDxQes6KDoQ/9DcA8rznojTd+u7aVG lTvMeEyfLuz/Hqf7m6/7BxqvuB/Kv/++u8z3boP7w6zC4DoVHVmjLh5wzWh6Z3rZfPCynNd4VhXy pZTxS8+YYmElMfODvHL6oj4bh65oeKyksnznJbdb9nwqm2RJm0xSIGB3uLR5IJNkTpNMiqsSpFHF tDJ93Xl7KcK2YJYQebBcGpO/ceW0aoyZRF5R5UMy/VX5+B1pTXq4paCuF6/ckCEvZJeMqZNK3kzJ peeT2WTl7ktG4WELdtZn7KLTUihriKTSusG9pXGltHJVfV2W7LipnLb5uCUBEiABEiABEHC3OycT EghEAO4EBdQVAJ9YksIFCwRcHQP+yZBMOlGxkkPfMkOOHD1uT5lJgT2AogQ/oP1JGrjI+BFMjJwW HDlzZHN7A+gna4RLtg1D1WXFCiaoUBD4EsRHcEqObFldsScQRBUrpEDZg0mW0zd8/4GDOmHJ6sxq JjDOE9ZtwakUcl73tY+ys4W7Btg04GLN2u25QNtTOrnEBBVtsoLJFybmuEcqjXMB8dXnWbNkMtft OMABJn7If/DQYaPYwjkcfz24t7z/cUfp0muA9NEJjX0jjOv+BJNfWBr4mvw689r+9VXfYLjBTcIp YLMg3KWjYP68ZqK0Vl1poGhp/tbLJikUVct0cgjFDhQaYfyCe17A21O8jQu4F0GR8fuff8nU32ea 8QY3KEyirWCCbMWOvaPhz+YXvb8yygW4gyDOjBVvzKAYwQcCxQikp1orOOXUmbDJnPOc3XeOB0zA IYcOHzXKSzwnUHIVLpTfKBhhweBN/D1bGFu2fTYvxr+dRAe6bvM4t87vgAyq/IFg7J3U7wcIXEqs 2Em4PXZuoQSoVqWiYIUfjAsoQFuqJQnkwKEjUqZkcWdy0w5n7BG3i14O/H1fBhrfsECa888C2Vhx q6TRfoA123sfdTCWWlA2VqpY1nVHJw9rIQXLPF8CiyMrcOXDOEN7rTjrDWUR3BDxDEGJiDHhKb7u H2i8opy0jvLwPYN7XHcGufC8WRDHmzWOBuTtcWHPNfaPnLlm3Dmw/9uac/LS1weMMgFKChvzAtes pE8V8Z1W9vTJ7WXJmSGZIN6FL8mgCgorqs+Q5MnskRpqOvZtXXNluFl2YVVYQHYdv+LK5KwP4nJA 4CbjlMPaRgoJkAAJkAAJeCNw838Zb1d5jgRuAwFYI9ilN2ENYQXBO0eM/t68EcZbTAgmJ3aisleD yEHwJveATjSCkRs3ImfOijfjCHJnJ8F79Y2bnbzh7SMm5bC+wNs5yLnzvt905QtvQw99E+2c+Pqr N4IDOgVv/OACAoGJPixSWmgsDExmYEr+1z//mmuYAGOii4mRjXOBt4xIZxUliC0As+z+g0aqK0xb Y4pvMnv5g3KsoC9WrFrnVvaevQf85rd5nVsojDAB36sBHfEWF4KghmCaL28eDd4ZxtRXn18Pn+Tg 7b+NsXBKJ4HInzdP2HhBmc/pZBz9A/eSNu2+MHFQmr35Mi55FWdbdykzlFc2PFCn1wzhJwON0WC4 QUEHtwyrSEN/5wxXbKEfYTEy5bcZRpGFvodg8vqnxjjBqgsP1rvPnAtUF3/Pi69xgdgL+CCY6rBR 35ngvtX1bbcV9CPGHcQGksSzibgziE0D1xQoKxDfBO5AkALh6VGf3DnVOkwF8SxgTYHvBYz1TPrW 3ipwTIIAf/CMZkhfwqSy9ciTK6c5rn1PLXVBWSj7VGkGfnbVG88i/T1beXPnijD+4cZmJdB1my6Y bdFCBU0yuGtY1vPVdcKf3H/f3cp3gCxU5U1SneDbZwOBSfeEf2fa/Oiz2nffaQ7hMuRcwQXPYmQk 0PiG+9S48ZNNvJNqqiTD9zi+Ayaq2xoUC7b/I3NPm3a3uhyJVDWHsICD4iyvKvm8CVhCodFN3VUK qXUHlMJYYjcYCTRegykjKmnK5A77Llz0aX5xKgtsWS1+OCx1S6WWMa/mktQpkkhbdT0Z/e9pe/mW bsuG13W7BgktrC4vkI1qXQKBNcZWtSTxlLuLhUrujMll1Cve+8wzPY9JgARIgARI4KaqnSxIII4Q qKG+7vhBjICQCBCHH9P40Ym3s5hQwpwdMTfwwxfBHjFRgd/66HETjCk1JsaBxE5e8JYWE9/ISP/B X5ugb3h7Cx9/68KRL28uU8ykKb8b640p02a6WUtkDX/rjnti9QHE9kAb+g0aYdxP0A4EIbWxB7zV CW+qf9FJLGISTJ76h4mob++fVCe5CLSJD3z6//jzb1cRlSqUM8qW4Tr5RN6FS5bLxx26ySaHSXbJ 4kWMO08ujSvQSSdB3lZXQYFwccCkDX7hUPCgbEwaRil/lI3leBFUsmb1Kq77e+5A2QNXIecHkwm4 UIzTpUo3qmk53hhDwQIFBN6kB9vnE3+ZpnEvNhk2/TQ/3owiv6dgjME0HRYlVvnjmcazrWs0Jgsm Xs43t8gDHs62QPESqL7BcAMTLDmL8sAVcR9gJm8FQQdxbwS7tYq0EtqPECgDECgXEqguJpGPP97G Bcb4G83bmNU+8CYariQpwxV5thg8mxiveDbHfD/RKKrwbOJzWSeaWNYUfTzKEZMGE22wHaDPGBQ4 cCtp066rTNMAwZCaNaqYSTAsD6BgnDl7rjR5rblhYO/ruR3y9TgzVtE/w1Upin63Fil1761l6jhb g+jCzcOX+Hu2wNiOf1gYzFFFIuImWAl03aYLZouJf3W1vPhSLbJ6aawYBBW1QXF95YerGSwVMI7u u6uGS0GG5xOxI/5WpQ6e23HjfzZMYYUDQfDPf/V7Av2HvvhJn6vISKDxDWUqvv/g3mS/w6qoogNx guy4jcz9nGmnacwNrAIEN7z+Q742Y84qSp3psG8Vhlh9BbEzRo4Ji9/imc7bcaDx6i2P8xy+e/B9 71ScOq9jf5fGrkCgTfuBFUPZPCmMm8jzIw7IJlUQYIWT6l13uywbNFaoiT9x4vw1+WvzeRn890nP Ym/ZcZnwujb95qCp5+LtF6Xl+CNSp2Rq47LirSJPV0lnXGm+W3xasCrLsLknJX2zrbJ+f5gFR+uJ R6Tr7zctMr2VwXMkQAIkQAKJiwAtNRJXf8eL1sLiod1H76lJ8AhXBHtUHG9pP2j2umkDJkaddRUD rKLQum0Xcw7XW7V40+zf9BI2hxH+YKKLt8yY+P+nEydvge6QCW/DrWUDjuFbfUMVK4hmD8GkEm/+ IfnUGgBuCQjAhw98upHeSim1PsA5TPYQfwKxHzrqai0I/Nfqs84mGa4jYJ0vgT88TLZ/1GCRaAOC E9o39G/oBL2vTuLfbfmZmeAimKD1O0cAxNa6CggmdZhEQODnfa/G53AKTLXbtm5uXDNgko3VUzzl Pn2Ti0ngJ7qCDAKOYtKEwKJ4m43VDlAv+Oc/rMEjvUkS7TtMMD/t2MPtMoJ7wmKit963Y/d+5hrM yDu3a20sSnDCX5/bwvCmubuuzAEFGBQQaIOd8Ns0dgsGq9dtMJYGxYoWsqddW8+2rlWlhtNKIwns rlUQi8Qp6KePNTaJv/pi0hiIG/oNb8thlg9BkFbEC7Bi37rbt/Y4j2ejnFod/KdBZ+3b7ug+L57j 4r13XjUrr9hVhDA5RVuczwrcC6Ckg2Bct2r+htl/7OEHzAopdsxDsWAtKDDB7PxZa+nRf7B82PYL k7649ssruuQpBP11SIOgjtCgt1D4oF1NNN4GFBW+BJN3jFUIeH6sq4xYgZIAiisogBCjxJf4e7YK qHISsX3GfP+TGf9ggVgfCPoLCXTd3tPJzp7ztm3x9qsad2epbNi4RQpouxs/2lC69R3kLak5h3Lr 3FvTBNesq/ysgDuUZV9/O97lsva/N5uKtY5r+tyTuhpMX6M4AWcoHBcvWxWWXcsMJMGMbygv4E5l A4dCuYFVmjB2oiOIPQPlM8YI+gNxgmAV5G25XtwLcUWsMhmrBeE7LBgJNF4DlfGfurIh8DBcYHx9 Rw1VhQQ+VrASCIJnzmmdV54ackAqddplLiGmxsDnw9wTv9ItFB7FPt1h4mnUL5NG5m8Jc/Py1nXe ztn7RWdr3FL0z9w2+eSJQfulcuewusIS48e3wl4CeLv3a3dnkO1Hr0jz7w8bFxrE68BKKtZCZca6 c0ap82nDzNGpHvOSAAmQAAkkIAJJ9A3BTTvyBNQwNiVhEMCP0AMaPyOH+qjDVcKbwN0DptLegtV5 S+88h+EP835fS6g60zr3YcWAe3r78Ys6Yxk/6/vtzId9/NBGXZ2TGLQB4uuHrbno+INAhyjfWQYu oz14A55Of8B7XrPZ4WICn3Jf1226QFuYdadM6d4nMVU2Yp/ARSE0PI6GZ1289Tm4wmy8XZv3TLwE WIN4LnHpWU6wx7atKP/1ps+qMqhGsFlNOm/1dRbgjRtW1YElDRRuWL0lRYoQl9uTM29k9wPVJTLl gfnly1fc3DawwgYmiHbpz6tXr7ksI5xlI+YLXIp8PbeoJybT3p6xYMa5816IE3PlytUI9cCz/64u 7Qr3BwQA9ifB3BNWZZg8+5JA133ls+fRDsTggRLLWlTAJe8fteD5VlcG8fVMQ+mGJWL79/jcFuW2 xfjz9X2F7xpYekT2O9J5A2/j23k9NvbRX7hvsN8BGG/I4+s7J1Ad/Y1Xf3nxXRctthowFIJgoE7R psjRs9dMMNBw3avz8m3ZR3DTFGpG4gxO6q8itg1ZNaCpU/mB8xDnubAz/EsCJEACJJBYCdBSI7H2 fDxpN2JXwE3DnwSrCPBWBiYBUflB6e+HrwkGp/X2Jd4maZFtg68f6miPp2uEZz18TV480wU69lRo IH1MlY0+CdWPLwnEC29QfTHyVaa/82grrAkwicdb3chKoPoG4oaApzElgeoSmftgLHsbz7YMf9fx Bt2f+KtnMOPcWTYUJ57KEwRA/VqXIoa71hO6ckkgCeae/hQaKD/Q9UB1QBvw3QMrKsTyOX36rHEr e/WFp70qNGCB0nfgCGMZ9ZHH6jTOe/kbfzHxHPkr31mPmNxHf0Wm7v7GWzD1imr+qPz/46yPpzLD XsOEP1s639+hNt2t3Pqqq686+GoDzlNIgARIgARIwEmAlhpOGtwnARKItwTwlnXxspVSRoN4RmYy E2yDEXsFK1pY//9g80U1HeIYwJrBBoKNajm3Oh9W8Fmvy8nCBSMuy04N+rpt+06zxCni9MQnQdBk LO+aUi1dShYr6gqW7NkGWFlgqdriRQu73Eo80/CYBEiABEiABEiABOI7ASo14nsPsv4kQAIkQAIk QAIkQAIkQAIkQAIkkEgJuDthJlIIbDYJkAAJkAAJkAAJkAAJkAAJkAAJkED8I0ClRvzrM9aYBEiA BEiABEiABEiABEiABEiABEhACVCpwWFAAiRAAiRAAiRAAiRAAiRAAiRAAiQQLwlQqREvu42VJgES IAESIAESIAESIAESIAESIAESoFKDY4AESIAESIAESIAESIAESIAESIAESCBeEqBSI152GytNAiRA AiRAAiRAAiRAAiRAAiRAAiRApQbHAAmQAAmQAAmQAAmQAAmQAAmQAAmQQLwkQKVGvOw2VpoESIAE SIAESIAESIAESIAESIAESIBKDY4BEiABEiABEiABEiABEiABEiABEiCBeEmASo142W2sNAmQAAmQ AAmQAAmQAAmQAAmQAAmQAJUaHAMkQAIkQAIkQAIkQAIkQAIkQAIkQALxkgCVGvGy21hpEiABEiAB EiABEiABEiABEiABEiABKjU4BkiABEiABEiABEiABEiABEiABEiABOIlASo14mW3sdIkQAIkQAIk QAIkQAIkQAIkQAIkQAJUanAMkAAJkAAJkAAJkAAJkAAJkAAJkAAJxEsCVGrEy25jpUmABEiABEiA BEiABEiABEiABEiABKjU4BggARIgARIgARIgARIgARIgARIgARKIlwSo1IiX3cZKkwAJkAAJkAAJ kAAJkAAJkAAJkAAJUKnBMUACJEACJEACJEACJEACJEACJEACJBAvCVCpES+7jZUmARIgARIgARIg ARIgARIgARIgARJITgQkEBUCm3fsi0o25iEBEiABEiABEiABEiABEiABrwRKFMrj9TxPkoA/Aklu qPhLwGskQAIkQAIkQAIkQAIkQAIkQAIkQAIkEBcJ0P0kLvYK60QCJEACJEACJEACJEACJEACJEAC JBCQAJUaARExAQmQAAmQAAmQAAmQAAmQAAmQAAmQQFwkQKVGXOwV1okESIAESIAESIAESIAESIAE SIAESCAgASo1AiJiAhIgARIgARIgARIgARIgARIgARIggbhIgEqNuNgrrBMJkAAJkAAJkAAJkAAJ kAAJkAAJkEBAAlRqBETEBCRAAiRAAiRAAiRAAiRAAiRAAiRAAnGRAJUacbFXWCcSIAESIAESIAES IAESIAESIAESIIGABKjUCIiICUiABEiABEiABEiABEiABEiABEiABOIiASo14mKvsE4kQAIkQAIk QAIkQAIkQAIkQAIkQAIBCVCpERARE5AACZAACZAACZAACZAACZAACZAACcRFAlRqxMVeYZ1IgARI gARIgARIgARIgARIgARIgAQCEqBSIyAiJiABEiABEiABEiABEiABEiABEiABEoiLBKjUiIu9wjqR AAmQAAmQAAmQAAmQAAmQAAmQAAkEJEClRkBETEACJEACJEACJEACJEACJEACJEACJBAXCVCpERd7 hXUiARIgARIgARIgARIgARIgARIgARIISIBKjYCImIAESIAESIAESIAESIAESIAESIAESCAuEqBS Iy72CutEAiRAAiRAAiRAAiRAAiRAAiRAAiQQkACVGgERMQEJkAAJkAAJkAAJkAAJkAAJkAAJkEBc JJA8LlaKdYqfBH76ZZqp+E9Tfnc1oHTJYmb/yUYPid13XeQOCZAACZAACZAACZAACZAACZAACUSD QJIbKtHIz6wkIBs2bZFOPfq7kXiyUUPZsHmLOYfrECg1qNwwKPiHBEiABEiABEiABEiABEiABEgg BghQqREDEBNzEbDOsJYZUGQ8+dhDXnEEmw6Zr169KkmSJJFkyZJFKOva9etyXT/J9RrSUGKOwPjJ v0r2rFmk9j01Y67QGCrpwoWLMnvuAtl34KA8WK+25M+bO8olT5/1t4SGppJ7a9UIqoyFS1bI5q3b 5OXnnwoqPRPdfgLXrl2THydNlSp3VJASxQrf/gqxBiRAAiRAAiRAAiRAArFGgDE1Yg1twi8YFhhQ aMACo/1H7/tUaIAElB1IA0Ee66piTjj+wHCoRZsO8vI7reTc+QuOKyJXVNnx9nsfyxvN2sily5fd rvEgcgQWLF4mazdscmW6cuWK/PzrdJkY7kLkuhBHdrr0+lLGjZ8sm7dsk4sXL0arVtP//FvmzlsU dBm//DZdkOf0mbNB52HC20sA3xW//jFLNv239fZW5Bbe3fOZvoW35q1IgARIgARIgARI4LYSoFLj tuKP3zf/aUpYDA1vLiXGMsNjghzmftLQNNpad3gSgPVFs7deFkyyx/4wye3yJFWGnDl7Tt56tYmk SpnS7RoPIkdg9LgJMnXan65MISEh0v3zj+XzT1q6zsWVHYyFbTt2Se2775S+XdtL8aK39s37Rx+8 K53btpb06dLGFSSsBwlEIOD5TEdIwBMkQAIkQAIkQAIkkEAJJPtcJYG2jc2KRQLWSgMuJ/feFdGM v1OPASamhqc7SumSxU2tbLwNe+ysajZ1gdh34JDMX7hEKlUsJ5kyZpBDh49K/8EjpWTxovLis0+Y 5LDq2LV7ryxduca4pCCd0yVl1Zr1cu3adbfJ6N59B2SPfrJny+K8pdv+yZOnZNXaDbJJrQLg6uIs d/fe/bJ3335JpxPclavXyc49e12uEHCbWbdhs2zUt8Pp07cYVQ4AACmPSURBVKUzLg5uBXs5OHfu vKxYvVa27dwlqVKllLRp0rhSgTHcLuBys2jZSmOdkjVLZnMd+ZZpuw8cOiyZM2eUkOTuMX99teHS pcuyZv1GZbtUkiVPJigPbj5p0qTWso6IKNOMyvGEMti4eatkzpRRdu7eY9qaMUN6r23atWefLFm+ SlA2+g5cIOnS3myLOeH4s3f/AW33Otm9Z7+kSJHCZ9ojR4/JqnUbZOny1VIwfz5JmiyppNVyU2oe CK4v0WunTp3WfsooybVNVnz1lcv9JHzcYhyhv48dO6HjIqvN7toeO35Czp47JznCr9l+SZI0qSxf tVaO6nVcc449V2bd2X/wkGzZtlNyZHdPs2PXHm3/PsmZI5tJDuuCTRqHZq2OIYyFdGlvKlEwDmBZ kyZ1qKR0KPTwHOFaBu0b22eZMmWQ/7bukKUr1kjhgvklqdbTKTZd1iyZBH23VPvu2vUbpq892+Bv TPvii3uh3OU6PvHcptOxlSpVKmcVjNWVr7aCw2rtj5QpU8ipM2dM/8LRDOPSKei3zVu3m3F0/MRJ vY+Oi3A2V9X95JffZki50iX1O6OIM5vbfqBxaL5jwsc3LIQypE/vNsZQmL9nGNej+z0ViIe/Zxr3 p5AACZAACZAACZBAQifgPhNK6K1l+2KMgMtKw0cMDetq4u2GUHT4stSw6V976Rkzaf9q2Cjzdn7I 12PNpWZvNjVbWGx82O4LweTdCqw3en/R1kzUca7XgKFSt/bd8uoLT9skMv7nX3XiuFVGfNXTdc65 8+/i5fLl0G+cp6RCudLy0fvvmMnhJLVOWbF6vZmEYyIF5Uit6lVk+87d0q5zL6OAsJkfuP8+ebmJ 7zgMmFyP/m6iTW62D9TTPOGxG3p/OUwncunlkCoboNi4/767pGSxIuItX6vmb0rVShVMGf7acObs WenZf4hJBwUP9p9/qpE82rC+9FOlUdFCBaSNthUKhxGjv5fyZUvJmnUbXXW8s1olee+d18wxJryf deppJrA2QeU7ypvJ7MMP3C8vPPO4Pe22HaVWIjNmz3U7Z+vgdlIPoDSwjP6ev1DwadfmPePyhP5F PZ2CfrqjQllzyldfOdNjwtl30AijNGnZ7A3nJdf+L9NmyDJVEIwe2tecQ79ky5pZlRWHjUURTmLs tW3TQooWLmjSOP9s2bZDhowcK5+2amZ42mudVfGXO1cOM762bt8pHb7o4zZ+imhfdPy0pU6ikxvl FfqqdYu3NE5EeVuE9B4wzOR/751XXX2GOqA8SO177pRQj9g0tm+rV6koi5etMunwBwqsPl3bSWi4 AiLQmPbFd/DIb+WfBYslmSpTMG6xff9/r7vGZ6C24plGW8uWLmGUhLaCUMD1+aKdUXbA/axD176y UxVDVnCfzz5sEfQqS4HGIRRZbdp1FTznVqCo6/DxB5I3Ty5zytuz6HyGY+J7KhAPf8+0rTe3JEAC JEACJEACJJCQCbi/wkvILWXbYpQA3lb7WqIV1zZs+i/g/fwpNmCx8OqLz8gBnTh26zvI+MY/88Qj LoVFdz2HH/uYxH739VfyuU7+4KbQXieG0ZHvJ/4iBQvkk+EDuptJbP0695i3xv/pxNQK7oPgg4P6 dDEKlwv6BrdT9/7mbfmAHh1NPig0MOFZtHSFzea2hRUEJutlShWXof26yjC9X83qlU3sBlyzsl8t Vp576jEZObCnvKLKmf/0zTTyQYEBxczQ/t3M2/j+g0YKLAog/tqAieGPowYZpQzeYmMfCg1fcvTY cVM/3KeSKgsQNPPU6TMm+bfqHoQ38lBejBnWT/p162AsZ3yVhfOwrJjzz79SVxU0Y4b2kyHadvD+ fuIUtwm9LQMch3/Zwxw2ff5JU18wQ+wPTM6fUgUZyvmyZyfJlTO7QOGAe1jx7Ct7HlsoNGD9AysQ uJhUq1zRednvPtqN/hg3YoBRVly8dElm/TXfa54aVSuZif0//y52XYei4/yFC1Kvzt0mdkxHHT9p dMIMpdxYLfP1ps8Zl5uvv/3RlSfYnbOq8OvZ6VMZO7y/S0HhLS+Uc13afWja8PZrL5jJ++AR35qk wY5pT76wfIBC45EH7zfP5deDehsFAILQQhAnJ9i2bt6y3dQP/fvsk48KxiKUXBA8V3u0D955/UX5 Xp//np0/M+e/m/Cz2Qb6E8w47N53sGECRRL6GYra81p/KG0gwTzDMfk95YtHZJ/pQGx4nQRIgARI gARIgATiGwEqNeJbj8WD+kKhAYWF5zKvzqr7Uog40yCGAsznYSmAH+6PPhQ2+cZbWsRYaFi/jnkr jze0sGBoopNrvFXF5CeqMrB3ZxNbIn36dObt+6MN65minG+EceLdN5pKlsyZzFv0LWrqj0ltszdf Ni4GeGsPCw1s4QLgTZauCHtDjgkTzOoz6P3eee1FeePl540riM2DCf/DD9Q1bilwE7Fv1vFmHm+N 4RKCGCR4I75u42aTLdg22Hv428JqBPXDfR57uIFJumzF6rCtuhegf2CVAXcQKBV8WTvYe8A9BZPt N3TSDvcCuPY0UMUR5KAqsIIVTGrxtryxuj+hHFjM4N7gAPcNpzj7yp6/rgoNWOTAAqOdWljcUb6M vRTUFveuo6vEwIoC1iywjoALjjcBm2rhVhFwZ4LMg/uPjlsoPLaoogrKgf+9/pLkzZ3LuBLBKgfl 2v72Vq6vcxhD+fPlkRCNk+JPMEZRb7ThvrvuNIoyuOFAIjOmnXzPnw8L4nr69FnzTMBdpocqWHp3 aRtebvBthUIR9UP/PqJjDLwWLl1uysHKNVBmYgv3GqyGU0UVfXCJCUYCjUN8x8CiBEo1WMaAkQmI rFYa9euGjddAz3BMf0/54xFMm5mGBEiABEiABEiABBIqAbqfJNSevQXtgkWGN7FxNPxZYnjL5+3c c+oa8UWvr+Tpxx82kxqkQRwNSLEiBc3W/ilSKOx4i8YvgBIkKgKXDLiooAz4ymOyCbmuMQesQJng jGGBt+6QL3SFjqQOU3/kxWod3gQxD2Dub039kQaT0Lr31nJLnis83oI9aSdSr7zb2p5ybbfv2G0m ecG0wZUpwA7cI6zky5Pb7OJtO6wcoECyrh42TYH8ee2uz+1SVYr8MfMvjW2yXye+l12MUWYwgnSw YIHSyylQCECgJIDCAeLZV+ak/rGrYkDxVKZUCXs66G2eXDnd0qLdO9QFyZfcf9/dxsoFMVegrJj/ 7xKj6IDCY6sq6CBFChdwy16sSCGj0IMbRGQEsTuCEZTvFDxP6Bv0a7Bj2pNvUW0DxsTcBYvMB8qG u+6sZhQBYB2ZtubJfZMxFHqZ9HlB/BAIxsCvf/wpCxYtU8uc4xrP5ZJXSx9n+zz3/Y3DnbvCvmM8 l4PFsT0X6BmGVRUkpr6n/PHwbBuPSYAESIAESIAESCAxEaBSIzH1dgy2FQFCo6O08Oe+4qxmipAU 5hBva62EhoYFHbx48ZI9ZbZ2qU+8HbZyTQMGOuXaVfdj5zX4v3/Uvquk1vz36YQZb7uRf+jX45zJ IuwjqCPkxecaG4sLm+CC1i+LTsS8CYJdYmIeWcmaObMcPnJM3lWze6eARSG16ohqG5xlBbOPgJKY 0B7UQKVOOayBIf0Jgoj2+Wq4sbKAhQcsLOBGMk8n+cEK7g0FEKxjnILgkJDUqVM7T/vchxvL+o3/ yYSffzNKM58JvVxImhShK4MXvOVPHRoqcEHB+ILrCRQdkNSO8ewMFGsn8DYoKtJaSw/sQzyPw84G 99fz+cF4hSDYZlTGNPLCagIuYXBDgVvPwiXLjTsULGu6dvgoqLbadvsjPOaHn4yrFhQoUATCmghu Wc74F6iPLwk0DtOkCfsOgbuJLwn0DMf095Q/Hr7qyPMkQAIkQAIkQAIkkBgIJE0MjWQbY48Alm71 FLOcq7qfQLy5oNg8WAo2KoI38jBFx5tWp2A1EAgCLEIwOXNaSuDt7nZHYEGTyPEHb1bhvvCyxkpo 8vTjcre+YXauQOFI6rZr33hjEnNntcquD1a1gFuJN8GypJjY7gy3OkEaTMj6adBKrPzgS0rrRByC e9p7Ib4GJnWYZEWmDYibEB0pWaKoUQpglRkIVmkY+s1Yv0Va9wbEJ2ik7kRoAyb7kZVCBfKaIJIw 8bdi61G8qLsFgr3u3CJNWw0qiWCUk6f+ESHgqDNtTOxDEVNHJ99wJ/l73kLTZuuCVbRwWH1tvAjc D8qKlWvWGYsjKHCssgNxFayc1BVfPBU79lowW6e7DJ4NrFYCRRWUglEZ07gnVjtZr25QuXJkl8cf ecDEukAfI+go6hpMW4Op+wqNrYExDwVK/br3mngoUHyCVTASaBzCEifM3cU9Js60GbNN0FfcI9Az HFvfU/7a5+2ZxncahQRIgARIgARIgAQSMgFaaiTk3o3FttkVTKy1hnU5sbe0E7bSJYrZU2YLCw3k wXWbxi1BEAeYINZTf/vps/6WYd+MM8u+Qnnx51/zpGrlCq6YFEXVnB7xOEZ/P1EqlC1tJpMILoqJ mzex5t2//jHLuIVAyTDm+5+8JXU7ByUKYiwM/+Y7s7Ro/rx5zMots/6eL882ftQEwnTLoAf31qou U6fNNC4rz2iaFDoZw+T64OEjumRtY8/kruN7alaXKZqvbZfexrogvS4ti6Ur4f/fuW1rCbYNRTRW AZQAYIiYAVFx13lTYzdgJZnu/QabSTqUNDmzZ3PV1duOrd+48ZONQgP95rkSird8nucQ3BRBQbGC yEMN6uhypqflh5+mmIku3DsCSfJkyc0SrFg15oNPOkkfLau3rqyBuCCxJffXvkt+mz5LMC4QJwXj GFKkUH4TEwKrcWBSCoXAX6r4QJBcBAyFwKIFE/bZmjdTxvS6DGx2YwFhLkbxD+qSXN06Cuv9YSmD eBRw84JEZUwjH1yK0C8IKot4NHBVWqdL0cLVCu4nwbQV5QSSfPqMQQkDJQNYQFEEXsEqNQKNQ/TN g/Vra3/NloHDR5vYJxir+G6oVaOqqV6gZzi2vqd8sfH2TI8Y84P8rYF5u33+sbE885WX50mABEiA BEiABEggPhOgUiM+995trrt1QQlTUhR3KSk8FRy2mmEKjTDLjmCtNMLnfbYI1xYrYcA1BJMxTAAx mcFyowjWaQWBNzt07WPM1Kf/+bdRLuDNvI3JYdPZLSbkzz3ZSCboSg1YUhJvap9/+jEZ++Nkm0S3 EY3A4e+PZR77DRwh4yf9aqw9kBfuFbBG8CYIMtrhkw9k0IgxMlInHhAoWz5p+T8PBYP7/TC5bf/R e4IlboeP+s7kg6VD87dfcb1dD9wGMRPObaoIgck+3BAQBBSuA0n0A7ETbpzzJbBi6d/9c7UoWG8s RDBRvPeuGvLy2y19ZdElRmtqIM9NZoUMrJKBNmOlDEwWfYm3MQBFzJuvNDGuIwOGfGOyYiKOYKE3 45S4s3OWnzRZWLuQtr0uEfth2y7SsUd/+apXJ7d4KchjWTjzexsH7tcjHmF84QPFVd1773IlwPhp //H7aqUzUiZO/s2MH3BBPyJgqJWPP3hHlykeJuPGh63wgWsnVZljxdbTX5/ZtNhi9ZYfdNUZWFDg +amnyx8/8eiDJklwYzoi38oVy5kypqiizS63C4Vfq2ZvusoN1FbbjiR+XHywTPP+Awddzyb6HgrN VWvcrZxsWebmjj/BjMMXnnlCrqq7GhQm8zWwKwT3gDIPEswzHBPfU7YN/nigPlAieT7TsPiBpQYC 41JIgARIgARIgARIIKESSKJmx/y1k1B79xa0y+lqAiWHL4VGsOmiUmWY4cPNw/749ywDgRYxyn1Z aHimxyMBKw2Yt0M5ERnBBOKU1gereviqj2d5mFQi1keaNMHFgrD5ke/y5SsCaw1PCaYNSIP8KVKE BF1X533mLVyik6hdgqV2bfwAKCqw5GXzt152vdF25rH7CKKKQKxgHF1BHJFQjWuCFSrismCC+W6r tpJeFRZ2CVLP+mL8nNP2YPUdX4LxDmWMM86Mr7Tezs+eu0BGjP5esEoOJuYn1HrJ33iNypjGfWEV hTHty3oimLZ6q7/zXGSfbWde7Ac7DtEW9IkvhVEwz3BMf095tgXH3p5pKH+hpKKQAAmQAAmQAAmQ QEIlQKVGQu3ZW9gua4GBLcS6lcD1xLqn2OogloK9bs9xGz8J4E08LFow2atUvqwcOHRIY5hsN8qj /j06mtgM8bNlMV9rvOmfo8qEDZu3yEcfvBvpJWRjskZOpUZU3I5isi4siwRIgARIgARIgARIgASi S4BKjegSZH4XAavcwAmr4MA+LDjM9rGoBQY1mfknThJAUMip6jqyb/9BE6gUwROf0n4O1iomTjYq FiqFALCI+YCglk6Xkli4VcAi4f4Dyym4hPizCAlYEBOQAAmQAAmQAAmQAAmQQBwgQKVGHOgEVoEE SIAESIAESIAESIAESIAESIAESCDyBCIXMCDy5TMHCZAACZAACZAACZAACZAACZAACZAACcQKASo1 YgUrCyUBEiABEiABEiABEiABEiABEiABEohtAlRqxDZhlk8CJEACJEACJEACJEACJEACJEACJBAr BKjUiBWsLJQESIAESIAESIAESIAESIAESIAESCC2CVCpEduEWT4JkAAJkAAJkAAJkAAJkAAJkAAJ kECsEKBSI1awslASIAESIAESIAESIAESIAESIAESIIHYJkClRmwTZvkkQAIkQAIkQAIkQAIkQAIk QAIkQAKxQoBKjVjBykJJgARIgARIgARIgARIgARIgARIgARimwCVGrFNmOWTAAmQAAmQAAmQAAmQ AAmQAAmQAAnECgEqNWIFKwslARIgARIgARIgARIgARIgARIgARKIbQJUasQ2YZZPAiRAAiRAAiRA AiRAAiRAAiRAAiQQKwSo1IgVrCyUBEiABEiABEiABEiABEiABEiABEggtglQqRHbhFk+CZAACZAA CZAACZAACZAACZAACZBArBCgUiNWsLJQEiABEiABEiABEiABEiABEiABEiCB2CZApUZsE2b5JEAC JEACJEACJEACJEACJEACJEACsUKASo1YwcpCSYAESIAESIAESIAESIAESIAESIAEYpsAlRqxTZjl kwAJkAAJkAAJkAAJkAAJkAAJkAAJxAoBKjViBSsLJQESIAESIAESIAESIAESIAESIAESiG0CVGrE NmGWTwIkQAIkQAIkQAIkQAIkQAIkQAIkECsEksdKqSw0wRPYvGNfgm8jG0gCJEACJEACJEACJEAC JHDrCJQolOfW3Yx3SjAEktxQSTCtYUNIgARIgARIgARIgARIgARIgARIgAQSDQG6nySarmZDSYAE SIAESIAESIAESIAESIAESCBhEaBSI2H1J1tDAiRAAiRAAiRAAiRAAiRAAiRAAomGAJUaiaar2VAS IAESIAESIAESIAESIAESIAESSFgEqNRIWP3J1pAACZAACZAACZAACZAACZAACZBAoiHA1U8STVcH 2dCL50UYOzZIWEwWkUASkdBQPa1bCgmQAAmQAAmQAAmQAAmQAAnEMgGufhLLgONd8Q1LiBzaFe+q zQrHEQJpMojM2KGKjdRxpEKsBgmQAAmQAAmQAAmQAAmQQEImQEuNhNy7UWnbudMi5y6ptUZUMjMP CZxSBBw8HAckQAIkQAIkQAIkQAIkQAK3hgBjatwazrwLCZAACZAACZAACZAACZAACZAACZBADBOg UiOGgbI4EiABEiABEiABEiABEiABEiABEiCBW0OA7ie3hnP8vwvjPsb/PozpFtDLJKaJsjwSIAES IAESIAESIAESIIFIEqBSI5LAEmVyKDSyZ9cFLWjYkyj731ejDx8Uue7rIs+TAAmQAAmQAAmQAAmQ AAmQQOwToFIj9hnH/zukSakrWmzXFS3SxP+2sAUxR+DeXLpSjio2aLERc0xZEgmQAAmQAAmQAAmQ AAmQQKQI8NV7pHAxMQmQAAmQAAmQAAmQAAmQAAmQAAmQQFwhQKVGXOkJ1oMESIAESIAESIAESIAE SIAESIAESCBSBKjUiBQuJiYBEiABEiABEiABEiABEiABEiABEogrBBhTI670RDyux+I9q2XS+umy ZO8aOXLueDxuSeKqerY0maVa3vLSuMwDUj1fhcTVeLaWBEiABEiABEiABEiABEggQRCgUiNBdOPt a0TPf4bL2FW/SLI0IZI0RVIJTZtGkug/StwmcEOje56+fEFm7vtX/vhvrrxY8TFpc8+bcbvSrB0J kAAJkAAJkAAJkAAJkAAJeBCgUsMDCA+DJwCFxrj1UyUkY0q5kTyJXNP1Pa9duxp8AUx5ewno0580 eTJJmTrE9CMqQ8XG7e0S3p0ESIAESIAESIAESIAESCByBKjUiBwvpg4nAJcTWGiEZAuVa9evyY0b 18kmvhHQpVivQRWlfZcsTXLTn/cWqk5XlPjWj6wvCZAACZAACZAACZAACSRiAgwUmog7PzpNn7j2 D0mqb/iNQkNdGSjxlwBcUa4nU6sNdSFCv1JIgARIgARIgARIgARIgARIIL4QoFIjvvRUHKvn0n1r REJEp8NUaMSxrolSdUw/qt2W6dcolcBMJEACJEACJEACJEACJEACJHDrCVCpceuZJ4g7Hj1/QkTj aFASEAHtT9OvCahJbAoJkAAJkAAJkAAJkAAJkEDCJkClRsLu31htHa00YhXvLS+c/XnLkfOGJEAC JEACJEACJEACJEAC0SRApUY0ATI7CZAACZAACZAACZAACZAACZAACZDA7SFApcbt4c67kgAJkAAJ kAAJkAAJkAAJkAAJkAAJRJMAlRrRBMjsJEACJEACJEACJEACJEACJEACJEACt4cAlRq3hzvvSgIk QAIkQAIkQAIkQAIkQAIkQAIkEE0CVGpEEyCzxzyBlMlSSMOC90i1nOUlaZL4vcLK08UekG/qfSET G/aXjCnTRwvW2+WekTH1u0nRjAWiVQ4zkwAJkAAJkAAJkAAJkAAJkEBCIZA8oTSE7Yj/BAqlzysj 6naSbKkzSxL9B8GKHLN3L5SW83rckgamDUktH9zxsuw5c0BGb/w5WvdsXLS+tK32jinj0rXLEpI0 WbTKq5OvhpTMVFiKqVJj68ld0SqLmUmABEiABEiABEiABEiABEggIRCgpUZC6MUE0Ib0KdLK9w/0 luyps8ilq5dl4YFVsuLwBrlxQ+T+/DXluwa9bkkr86bNKU8VayBNSz8W7fs9WOBuU8aELX9I1R+f kiMXTkS7TBZAAiRAAiRAAiRAAiRAAiRAAiRwkwAtNW6y4N5tJDC4dntJExIqJy+dkTqTm8rV69dM bUpmKiTjG/aTclmLCxQOe88elNfLPmXsOKbtmCvPlmgo6UPSyueLB5r0qZKnlIcK3it35qooyw+v l1+3/yVnr5x3a1n9/LWkZu47JFWylKo4WS8/bZ0p129clwpZS5rykDhN8lB5r+JLsvjgalmkHwgU Lk8UuV8KZ8gnM3f/K3P2LDL5zEWPP++Ue1aKa90h2UOzmLK+Wj1W09+Q1MlTSYMCd0mt3JVk04kd Mm3H33Lg3BFXCf7a50oUvvN0sQclV5psqgRaKUsOrfW8zGMSIAESIAESIAESIAESIAESSNAEqNRI 0N0bfxpn40S889fnLoUGao9J/zfrJxsFQNksRY1So1n5JoJQG2+UeUqgxIACBEoNuK9MeuhLSR7u 5gHlRZvKr8lzf7Qy5aC88Q/2lVKZi2DXCGJ3vFn2aXlo6tvySOHaRiGCCyj3tTKNpYgqMKDUeFyV GR1rNA/LpH8fUCuM4xdPSYNfXhe4lnjK2+WfdbnQ3Je3muAzZM0Pki99To2vMcCtji0qvCBdlgyR CVumm2J8tc/zHnBtQcwOKG3GbZrqeZnHJEACJEACJEACJEACJEACJJDgCdD9JMF3cdxvIBQIsF6A FcP6Y1sjVHjAqm/l6d/fl+m75ruuIebGpetXpNfyr6XN/DDXlLENehhlwfRd8+TJae+pBcYMSZYk mYyq183kg2UEFBqnL5+V12e3k//91UnOXblgLDBgOdF/5Rj59N9+Ji3SPPtHS+m8ZLCxEPm8RjMT 36PPilHm/KYT2yVzqgwyuHYHV52cO0/81lx2nd5vTg1c/Z3Jc1nrO7ZBT1NHWFU0nfmJfLNhkknz WbW3jQLFluGtffYats1VEQKFBurf6Nd35djFk87L3CcBEiABEiABEiABEiABEiCBREGAlhqJopvj diNLafBLyIWrFyNVUSg6rNtGDnUNQVwOWE+0md/blNNp8WC5J3cVo7SA68iC/Suk/HeN3O4xf/9y 4wpSOXsZmbp9jgbg3G2uX7l+VTYc32b23zDuLknk771LZMzGX8y556e3luXPTRJYj3iTbaf2yPmr F8wluMygLLiJIBDpeW3n67Pammsrj2yQ8llLSJXsZaW+KlZgzWHF2T57DltYjdTIWcGU0+i3/zFW hxMO90mABEiABEiABEiABEiABBIVASo1ElV3x83GWuVB6pBUQVcQVh1WoYFM9+apZvLCemJNkykR yrk7d2WZpLEz3r/jJY2LUd8oQJzLxdrVViJk1BNQOEDgQuJZdqhamKRIGiKwwggk9+apapJgZRWn rDy80dwDihUrnu2z57GFQgOySIOpHj5/zOzzDwmQAAmQAAmQAAmQAAmQAAkkRgJUaiTGXo9jbUZM ClgvwAUFwTpXH93kVsNHC9eRajnKyW8aUNMG7bwh193SnLx02hxjCdiv14e5dOBEhhTp5NTlM7Lq yEZ5u9wz8mrpxgIrjEUHVwmsKerpyio5U2d1K8vz4MyVc+bU/nOH5fed/7gu27Kve9TFlcBj52i4 iwgUIU7JkDKtOTylQVKteLbPnnduscTr/fnulFl7FjpPc58ESIAESIAESIAESIAESIAEEg0BxtRI NF0dtxu6WWNUQAbVbmcsH2xtseJJR41nAcUG4lz4kn/2LzOXoLD4RpUaX64aaz7rj22RkKTJ1S3l tFpaVDdpRv+/vfuJsWuK4wB+ZtrOdLSmlFGqJZXQFqFlURUJTfxPiiCxIjUriYiEiIgNsRMbEX8W EhtBREgE9SchFiQ2NESpSP2Plko7Uv03Zp57LjPmMW+8N0dz7p35nAUz8+6559zP6eZ9c+7vbH0p 3PL2fWU9jn/fszhDtmgTg4d4vGxsB4qjZsfuG/+/++BQGB4ZbipsWl7Y4j/xVZfY4jPF12XG2oZl 55U/xpNW2mn3f/Do+GswD15wV9O92unvGgIECBAgQIAAAQIECMwUATs1ZspK1vw5bn3ngfDGNU+W r4W8f8Oz4eNd28LcrrllvYn4msj2oe/Ha1xM9qgHfj9Y7Mb4PKwZWFXe570fPyzDgzOPObXcmfHI lqfDtuIkldOLQqE3rroqnLhwSVhZHLkaTzeZ2L7Y83UYaYyUu0biSSpPbX0xbC52Z9x5zs3FUa7L witXPVHuJFm35KyyVkec1+OfPDfxFi1/jnP8qNgxsnZgdXh542PFcbJbw6lHnRwG+o4uTzCZuAuk 5U2KD+KulliwdN3xZ4VVRT2SZy5/KFzy0mBZaHWqfj4jQIAAAQIECBAgQIDATBOwU2OmrWhNnyce S3pDcdrID3t3ljsrYh2LGFDEo1vjDodrX73tP59s01v3lIHDgqIYZzxyNQYa8bWUwbfuLWtexJNS 4okk8bSVeJTr8iOPL0KGreV9x14hibUsnv/i9TIgiIFDfD0lhgjxNJUd+3aVfTau2FAGGjEAuenN u1vO6889H80f31zMMQYbPXPmlcfUDhyxuKyLEe8fDaZqjWJuE9um4vSUOLeBvsUh7tjQCBAgQIAA AQIECBAgMNsEuoovSs3flGabgOdtFrjwhBB27ghFaYq/28LeIlkoClL2LRj/2xkPXxHmHNsz/vv/ +UN3V3dYf8KasG/4QBFSfDatHQhxB8bP+3dP+spKPIEkFhT99h8FO//5DPE0lb1FPY0YdIy1WBT0 pP6lIRb7jLVAUtqK/mXhu70/tv36SspY7fYd2XUofHr75vYub/PfSns3cxUBAgQIECBAgAABAgQ6 F/D6SedmehxmgdHGaHn8asowsQhoqxZ3RPzXrojY99/1NkK54+PLPd+0unVHf//q1+87ut7FBAgQ IECAAAECBAgQINAs4PWTZg+/ESBAgAABAgQIECBAgAABAjUREGrUZKFMkwABAgQIECBAgAABAgQI EGgWEGo0e/iNAAECBAgQIECAAAECBAgQqImAUKMmC2WaBAgQIECAAAECBAgQIECAQLOAUKPZw29t ChzTd1RoDI+2ebXL6iAQ1zOuq0aAAAECBAgQIECAAIG6CAg16rJSFZvnmiWrQxj++6jTik3PdKYj UKxnua7T6asPAQIECBAgQIAAAQIEMggINTKgz4Qhr155cWjsG7VbYyYs5l/PENczrqtGgAABAgQI ECBAgACBuggINeqyUhWb5wUrzg3Xrby0CDZGKjYz0+lUIL52Mjo0XK5nXFeNAAECBAgQIECAAAEC dRGYW5eJmme1BHp7e8Od5w+Wk3ph2xuh+4g5IczrCl3z5GTVWqnWsylrohSvnIwWwdT1Ky8r1zOu q0aAAAECBAgQIECAAIG6CAg16rJSFZxnf39/uGP9YFi/dG14bfu7YctPn4VfhvZUcKamNJlALAq6 5rjV4cpTLgzrT14b4npqBAgQIECAAAECBAgQqJOAUKNOq1XBuS5a1B8uOm1dWLf87HDo0KEKztCU phLo6ekJfX3zw/z586e6zGcECBAgQIAAAQIECBCopIBQo5LLUq9JxS/EY1+KR0cd81qX1evu9qpQ XdbKPAkQIECAAAECBAgQmFxAqDG5i79OU8AX5WnC6UaAAAECBAgQIECAAAECHQsINTomm4UdGo0Q 9u+bhQ/ukacUaNiVM6WPDwkQIECAAAECBAgQOOwCQo3DTjwDBvitqJVx8bIQurpmwMN4hP9N4LeD IRR5l0aAAAECBAgQIECAAIFcAkKNXPJ1GzcGGxoBAgQIECBAgAABAgQIEKiQgEqBFVoMUyFAgAAB AgQIECBAgAABAgTaFxBqtG/lSgIECBAgQIAAAQIECBAgQKBCAl4/qdBiVGIqY3UzlM+oxHKYBAEC BAgQIECAAAECBAi0FhBqtLaZnZ8MnPjnc8cTTzQCnQos6FdQtlMz1xMgQIAAAQIECBAgMG2BrkbR pt1bRwIECBAgQIAAAQIECBAgQIBAJgE1NTLBG5YAAQIECBAgQIAAAQIECBBIExBqpPnpTYAAAQIE CBAgQIAAAQIECGQSEGpkgjcsAQIECBAgQIAAAQIECBAgkCYg1Ejz05sAAQIECBAgQIAAAQIECBDI JCDUyARvWAIECBAgQIAAAQIECBAgQCBNQKiR5qc3AQIECBAgQIAAAQIECBAgkElAqJEJ3rAECBAg QIAAAQIECBAgQIBAmoBQI81PbwIECBAgQIAAAQIECBAgQCCTgFAjE7xhCRAgQIAAAQIECBAgQIAA gTQBoUaan94ECBAgQIAAAQIECBAgQIBAJgGhRiZ4wxIgQIAAAQIECBAgQIAAAQJpAkKNND+9CRAg QIAAAQIECBAgQIAAgUwCQo1M8IYlQIAAAQIECBAgQIAAAQIE0gSEGml+ehMgQIAAAQIECBAgQIAA AQKZBIQameANS4AAAQIECBAgQIAAAQIECKQJCDXS/PQmQIAAAQIECBAgQIAAAQIEMgkINTLBG5YA AQIECBAgQIAAAQIECBBIExBqpPnpTYAAAQIECBAgQIAAAQIECGQSEGpkgjcsAQIECBAgQIAAAQIE CBAgkCYg1Ejz05sAAQIECBAgQIAAAQIECBDIJCDUyARvWAIECBAgQIAAAQIECBAgQCBNQKiR5qc3 AQIECBAgQIAAAQIECBAgkElAqJEJ3rAECBAgQIAAAQIECBAgQIBAmoBQI81PbwIECBAgQIAAAQIE CBAgQCCTgFAjE7xhCRAgQIAAAQIECBAgQIAAgTQBoUaan94ECBAgQIAAAQIECBAgQIBAJgGhRiZ4 wxIgQIAAAQIECBAgQIAAAQJpAkKNND+9CRAgQIAAAQIECBAgQIAAgUwCQo1M8IYlQIAAAQIECBAg QIAAAQIE0gSEGml+ehMgQIAAAQIECBAgQIAAAQKZBIQameANS4AAAQIECBAgQIAAAQIECKQJCDXS /PQmQIAAAQIECBAgQIAAAQIEMgn8ATbyKkIruU3mAAAAAElFTkSuQmCC " id="image138" x="1269.5" y="652.5" /> + transform="translate(72.124878,-378.59497)" /> diff --git a/docs/browser/intro-summary.md b/docs/browser/intro-summary.md index 8aebab064d1..cbb0f594f87 100644 --- a/docs/browser/intro-summary.md +++ b/docs/browser/intro-summary.md @@ -41,7 +41,7 @@ * *GitHub*: * [`Action: 3. Create Certificates`](certs.md#create-certificates){: target="_blank" } * [`Action: 4. Build Loop`](build-yml.md#build-the-loop-app){: target="_blank" } - * _Apple_: [Set up `Internal TestFlight Group`](tf-users.md#set-up-users-and-access-testflight){: target="_blank" } + * _Apple_: [Set up `Internal TestFlight Group`](tf-users.md#testflight-users-overview){: target="_blank" } * Phone: [Install the *Loop* app using the *TestFlight* app](phone-install.md){: target="_blank" } ???+ question "FAQs (click to open/close)" diff --git a/docs/browser/other-apps.md b/docs/browser/other-apps.md index d4edab10a57..13d02fcd603 100644 --- a/docs/browser/other-apps.md +++ b/docs/browser/other-apps.md @@ -397,7 +397,7 @@ Please do not remove an existing app if you have trouble building a new one. You ## Add Users to *TestFlight* for App -Once the first build completes, you will be able to configure *TestFlight* for the app - follow the template for setting up *TestFlight* for Loop found in [Configure to Use Browser: Set Up Users and Access (TestFlight)](../browser/tf-users.md#set-up-users-and-access-testflight). +Once the first build completes, you will be able to configure *TestFlight* for the app - follow the template for setting up *TestFlight* for Loop found in [Configure to Use Browser: *TestFlight* Users Overview](../browser/tf-users.md#testflight-users-overview). ## Install on Phone diff --git a/docs/browser/phone-install.md b/docs/browser/phone-install.md index 4d15e563a5d..4e8ff18daeb 100644 --- a/docs/browser/phone-install.md +++ b/docs/browser/phone-install.md @@ -1,12 +1,10 @@ ## General Installation Information -This is only available with _Loop 3_. +**The *Loop* app must be built at least every 90 days when using a browser to build.** With version 3.4.0 and later, the build is automatic (once a month or with a new release). It is recommended you manually install the new build using *TestFlight* at your convenience. -**The *Loop* app must be built at least every 90 days when using a browser to build.** With version 3.4.0 and later, the build is automatic. It is recommended you manually install the new build using *TestFlight* at your convenience. +After you [Build the *Loop* App](../browser/build-yml.md#build-the-loop-app) with a browser and you get the email that it is availble in *TestFlight*, you are ready to install on as many phones as you and your family members need. -After you [Build the *Loop* App](../browser/build-yml.md#build-the-loop-app) with a browser and it has automatically uploaded to the *TestFlight* app, you are ready to install on as many phones as you and your family members need. - -* If you later need to add an adult family member to your list, refer to [Set Up Users and Access (TestFlight)](../browser/tf-users.md#set-up-users-and-access-testflight). +* If you later need to add an adult family member to your list, refer to [*TestFlight* Users Overview](../browser/tf-users.md#testflight-users-overview). * Children (under 13 in US, varies by country) cannot use *TestFlight* with their ID. When you use [*TestFlight* for a Child](#testflight-for-a-child), you will need to use your ID on their phone (not the whole phone - just the Media & Purchase portion), so send the *TestFlight* invitation to the email associated with your ID. @@ -26,7 +24,11 @@ To install *TestFlight*, refer to the GIF below: ## Install App with *TestFlight* -Once you get an email that the *TestFlight* processing completed, you can install the app on your phone. Note this can be half-hour to an hour after the build displays the green check mark on your browser. +Once you get an email that your app is available to test on iOS and watchOS, you can install the app on your phone from *TestFlight*. + +* Note this can be half-hour to an hour after the build displays the green check mark on your browser +* Once the app is on your phone, you can choose to install the watch version using your phone *Watch* app +* If you did not already add your email to your *TestFLight* group for your app, go and do it now using these [instructions](tf-users.md#configure-testflight-group-for-the-app){: target="_blank" } The first time you use *TestFlight* on any phone associated with a given email, you must `Redeem` the code sent to that email inviting you to test the app. The GIF below is for someone who has never used *TestFlight*. @@ -40,11 +42,12 @@ The first time you use *TestFlight* on any phone associated with a given email, If you already have the _Loop_ app on the phone, you'll see the warning about possible loss of data. Don't worry, all your settings remain. Go ahead with the installation. -* If you are building _Loop_ 3.x over _Loop_ 2.x, you will be required to go through [Onboarding](../loop-3/onboarding.md) - ### Subsequent Times on Phone * Open the *TestFlight* app and find the name you used for your *Loop* app in the [Create *Loop* App in App Store Connect](../browser/prepare-app.md#create-loop-app-in-app-store-connect) step +* If you have previously used *TestFlight* on this phone and don't see the latest build, sometimes quitting and restarting *TestFlight* will bring that new build into the list of available apps +* Most people will just tap install to get the most recent build + * If you have more than one version number available in *TestFlight* you can choose which version to install by tapping on the `Previous Builds` row and then selecting the desired version * Tap on Install * If you already have the *Loop* app installed on this phone, you will be warned that the app already exists on your phone and that you might lose data * Click Install again (your pump connection and all your data will be fine) @@ -56,15 +59,17 @@ If you already have the _Loop_ app on the ## Automatic Update, Build, Install -The instructions on the [Configure to Use Browser](intro-summary.md) page will, unless you make a change, automatically take the following actions for released versions 3.4.0 and later: +The instructions on the [Configure to Use Browser](intro-summary.md){: target="_blank" } pages will automatically take the following actions for released versions 3.4.0 and later: -* Update the version of your fork within a week of the change - * When an update to the default `branch`, typically `main`, is detected, a new build is created automatically and uploaded to *TestFlight* -* Build the app at least once a month and upload to *TestFlight* +* Update the version of your fork within a week of a new release release + * Automatically create a new build and upload it to *TestFlight* + * This is only for the `default` branch, typically `main` +* Build the app at least once a month and upload it to *TestFlight* -It is already true that, unless you make a change, the default setting will: +Unless you make the recommended one-time change to [Disable Automatic Install from *TestFlight*](#disable-automatic-install-from-testflight), the default setting for each app found in *TestFlight* is to: * Install each new build from *TestFlight* on the phone as soon as it is detected +* That's fine for some apps, like *LoopFollow*, but you do not want an app that controls your insulin delivery to install when you are not paying attention ### Recommendation @@ -92,10 +97,10 @@ When you are ready to install, just open the *TestFlight* app and click Install ### Previous Builds -If you tap on the bottom row that says `Previous Builds`, highlighted by the dashed-green rectangle, you can view and choose an older (or lower version number) build (as long as it has not expired). +If you tap on the row that says `Previous Builds`, highlighted by the dashed-green rectangle in the graphic above, you can view and choose an older (or lower version number) build (as long as it has not expired). * In some cases, you need to do this to see the newest build -* For example, it you build version 3.5.0 (`dev` branch) accidentally and then switched to 3.4.x (`main` branch), *TestFlight* shows you the 3.5.0 version on the screen and you need to go to previous builds to find your newer 3.4.x build +* For example, if you built version 3.5.0 (`dev` branch) and then switched to 3.4.x (`main` branch), *TestFlight* shows you the most recent 3.5.0 version as the default build to install and you need to go to previous builds to find your newer 3.4.x build ### Unexpected *TestFlight* Beta Expiration @@ -122,7 +127,9 @@ If you tap on the bottom row that says `Previous Builds`, highlighted by the das ## *TestFlight* for a Child -The adult (*Apple Developer Account* owner) can log into Media & Purchase (see steps below) without affecting the child *Apple* ID associated with a phone (and thus their health records used by the *Loop* app). After the adult installs or updates the app using *TestFlight*, they probably should reverse those steps to remove their credentials from Media & Purchase. +Minor children are not allowed to install or use the *TestFlight* app. + +An adult, who is a member of the [Internal *TestFlight* Group](tf-users.md#configure-testflight-group-for-the-app){: target="_blank" :} can log into Media & Purchase (see steps below) without affecting the *Apple* ID associated with a phone (and thus the health records used by the *Loop* app for the minor child). After the adult installs or updates the app using *TestFlight*, they probably should reverse those steps to remove their credentials from Media & Purchase. Media & Purchase affects access to the App Store, Books, Music and Podcasts. @@ -134,7 +141,7 @@ On the Child phone: * Tap on Media & Purchases * Tap on Sign Out, and confirm * Sometimes the phone requires a reboot before you can sign in with a different ID -* Sign in with the adult (*Apple Developer* Account owner) *Apple* ID and password +* Sign in with the adult *Apple* ID email and password * Install or Update the app from *TestFlight* on child phone * Repeat the process to sign out the adult and (if needed) sign back in the child diff --git a/docs/browser/prepare-fork.md b/docs/browser/prepare-fork.md index db75e09704a..97307054fb3 100644 --- a/docs/browser/prepare-fork.md +++ b/docs/browser/prepare-fork.md @@ -21,7 +21,9 @@ * If you already have a fork, you cannot proceed, see [Already Have a LoopWorkspace](#already-have-loopworkspace) 1. Now your screen should look like the graphic below * Your username will be automatically filled in as the owner (`Owner`) - * LoopWorkspace is the repository name (`Repository Name`) + * LoopWorkspace is the repository name (`Repository Name`) highlighted with the blue rectangle + * Do not rename the repository to something else + * It needs to match the original repository name or automatic building will not work * Leave the selection that says "`Copy the main branch only`" checked * Click on the green `Create fork` button diff --git a/docs/browser/tf-users.md b/docs/browser/tf-users.md index bb2020a1d12..8200d536b6b 100644 --- a/docs/browser/tf-users.md +++ b/docs/browser/tf-users.md @@ -1,42 +1,58 @@ -## Set Up Users and Access (TestFlight) +## *TestFlight* Users Overview -> You repeat this step if you need to add a User to your account. For example, you want to add another adult who can install the app on your child's phone or you want a spouse or friend to have a copy of the app on their phone as backup for a trip. +There are two parts to this. -> As a developer, you are already included as a user with the Role of Account Holder, Admin. But you will need to add yourself to the TestFlight group for your App. +* A user must be registered under your [Your App Store Connect User List](#your-app-store-connect-user-list) before they can be added to a *TestFlight* internal test group for any app + * As a developer, you are already included as a user with the Role of Account Holder, Admin +* Once the first build for a given app completes, you will be able to configure the [*TestFlight* Internal Testing Group](#configure-testflight-group-for-the-app) for that app + * You must add yourself to the *TestFlight* Internal Testing Group for each app -Once the first build completes, you will be able to configure *TestFlight* for the app. +## Your App Store Connect User List -!!! tip "Add Each Users One Time" - Once you add a user to have access to your TestFlight for this app, you don't need to do it again - it remains available to them across rebuilds and different versions for that app. +!!! tip "Step 1: add user for access for any of your apps" + Before you can select someone for the *TestFlight* Internal Testing group for any app, you must first add them to your App Store Connect User list. -You are configuring a private capability for your family using an Internal Testing group. You need the *Apple ID* email address for each adult installing from your build. When building for a child, you will use your own *Apple ID*, not theirs. See [*TestFlight* for a Child](phone-install.md#testflight-for-a-child). + As a developer, you are already included as a user with the Role of Account Holder, Admin. -1. First you need to add the email address(es) to your *App Store Connect* Access Users list: +You are configuring a private capability for your family using an Internal Testing group. You need the *Apple ID* email address for each adult installing from your build. When building for a child, you will use an adult's *Apple ID*, not theirs. See [*TestFlight* for a Child](phone-install.md#testflight-for-a-child). - * Open this link: [Users and Access](https://appstoreconnect.apple.com/access/users){: target="_blank" } - * You must provide a role for each person - `Customer Support` is a good choice - * Once you have added them here, you'll be able to select them in the `TestFlight` group for your app +First you need to add the email address(es) to your *App Store Connect* Access Users list: - ![add email and role for your users](img/add-users.png){width="700"} - {align="center"} +* Open this link: [Users and Access](https://appstoreconnect.apple.com/access/users){: target="_blank" } + * You must provide a role for each person - `Customer Support` is a good choice + * Once you have added them here, you'll be able to select them in the `TestFlight` internal test group for each of your apps + +![add email and role for your users](img/add-users.png){width="700"} +{align="center"} + +## Configure *TestFlight* Group for the App + +!!! tip "Add user for each app" + Once you add a user to have access to your TestFlight internal test group for an app, you don't need to do it again - it remains available to them across rebuilds and different versions for that app. + +1. Open this link: [App Store Connect / Apps](https://appstoreconnect.apple.com/apps){: target="_blank" } to view your apps; log in if needed. -1. Open this link: [App Store Connect / Apps](https://appstoreconnect.apple.com/apps){: target="_blank" } to view your apps; log in if needed. Then select your *Loop* app. Click on the `TestFlight` tab then click the blue plus button (:material-plus-circle:) next to `Internal Testing` to add a group. + * Select your *Loop* app + * Click on the `TestFlight` tab + * **If you already have an Internal Testing Group for this app, skip to Step 4** + +1. Click the blue plus button (:material-plus-circle:) next to `Internal Testing` to add a group. ![open TestFlight tab for your app](img/setup-testflight-01.png){width="700"} {align="center"} 1. Fill out the name you want for the `Internal Testing` group * Be sure to check the box `Enable automatic distribution` - * Click `Create` when done (this can always be modified later) + * Click `Create` when done ![add email and role for your users](img/setup-testflight-02.png){width="700"} {align="center"} -1. As soon as you create the group, you'll be asked who should be included +1. You can add or remove emails to the Internal Test Group as any time * Click in the box beside each person you want to include * Each person in this group will get an email each time you update (build again) using the *GitHub* Browser Build method * Click `Add` when you are done - * If building for a child, you will send the invitation to yourself because you will install for your child: See [TestFlight for a Child](phone-install.md#testflight-for-a-child) + * If building for a minor child, you will send the invitation to yourself or another person because a minor child is not authorized to use *TestFlight*: See [TestFlight for a Child](phone-install.md#testflight-for-a-child) ![select your users for the testing group](img/setup-testflight-03.png){width="700"} {align="center"} diff --git a/docs/faqs/algorithm-faqs.md b/docs/faqs/algorithm-faqs.md index b1b4b1092f1..50e88ef3905 100644 --- a/docs/faqs/algorithm-faqs.md +++ b/docs/faqs/algorithm-faqs.md @@ -108,5 +108,5 @@ There is more detail about the Loop Algorithm at the bottom of the Operate tab. * [Algorithm Overview](../operation/algorithm/overview.md) * [Bolus Recommendations](../operation/algorithm/bolus.md) * [Blood Glucose Prediction](../operation/algorithm/prediction.md) - * [Automatic Adjustments](../operation/algorithm/temp-basal.md) + * [Automatic Adjustments](../operation/algorithm/auto-adjust.md) diff --git a/docs/faqs/glossary.md b/docs/faqs/glossary.md index 14a3fed56c9..d444d8011c0 100644 --- a/docs/faqs/glossary.md +++ b/docs/faqs/glossary.md @@ -158,6 +158,8 @@ When Google Translate is selected: **Monterey**  (Monterey): operating system for Mac, macOS 12.x +**MPC**  (MPC): model predictive control; the type of control algorithm used by Loop + **NFC**  (NFC): Near-Field Communication is used for scanning devices such as Libre sensors **Nightscout**  (Nightscout): a personal website used to view your glucose and diabetes management data, `Loop` can upload to `Nightscout` diff --git a/docs/loop-3/displays-v3.md b/docs/loop-3/displays-v3.md index 9a64ba86d54..6766d731b71 100644 --- a/docs/loop-3/displays-v3.md +++ b/docs/loop-3/displays-v3.md @@ -64,7 +64,7 @@ Below the chart you will see an explanation of the variables Loop takes into acc * [Carbohydrates](../operation/algorithm/prediction.md#carbohydrate-effect){: target="_blank" } * [Insulin](../operation/algorithm/prediction.md#insulin-effect){: target="_blank" } -* [Glucose Momentum](../operation/algorithm/prediction.md#blood-glucose-momentum-effect){: target="_blank" } +* [Glucose Momentum](../operation/algorithm/prediction.md#glucose-momentum-effect){: target="_blank" } * [Integral Retrospective Correction](../operation/algorithm/prediction.md#insulin-effect){: target="_blank" } (or [Retrospective Correction](../operation/algorithm/prediction.md#retrospective-correction-effect){: target="_blank" }) * Suspension of Insulin Delivery diff --git a/docs/operation/algorithm/auto-adjust.md b/docs/operation/algorithm/auto-adjust.md new file mode 100644 index 00000000000..a812c01a4ed --- /dev/null +++ b/docs/operation/algorithm/auto-adjust.md @@ -0,0 +1,162 @@ +## Calculated Dose + +The *Loop* algorithm takes one of [four actions](#four-possible-actions) depending upon the glucose prediction, target range and glucose safety threshold when Closed Loop operation is enabled. + +The recommended insulin dose (positive or negative) is calculated first, including all safety checks, and then the insulin delivery adjustments are applied based on the dosing strategy, while respecting the maximum Temp Basal and maximum Bolus values in the user's [Therapy Settings](../../loop-3/therapy-settings.md){: target="_blank" }. The automated dosing (increase or decrease) is updated with every CGM value - typically every 5 minutes. + +If a decrease in insulin dose is recommended, this is always applied using a temporary basal rate that is less than the scheduled basal rate. + +!!! abstract "Temporary Basal Duration" + All temporary basal rate commands are issued for a duration of 30 minutes. If communication with the pump is lost, the last issued temporary basal rate will last for at most 30 minutes before the pump reverts to the user’s scheduled basal rates. + + The *Loop* app may enact a new temporary basal rate every 5 minutes based on incoming glucose readings. + +**Dosing Strategy: Temp Basal Only** + +If the Looper has selected Temp Basal Only Dosing Strategy and an increase in insulin dose is recommended, that increase is converted to a temporary basal rate that exceeds the current scheduled basal rate. + +**Dosing Strategy: Automatic Bolus** + +If the Looper has selected Automatic Bolus Dosing Strategy and an increase in insulin dose is recommended, then an automatic bolus, which is less than the recommended dose, is delivered promptly. + +### No Automatic Dosing + +If glucose is entirely below the correction range but above glucose safety level, no automatic increase in insulin delivery will be enacted. The Looper can tap on the manual bolus tool and get a recommendation, but no automatic bolus or high temp basal will be issued automatically until the glucose level is higher than the minimum value of the correction range. + +The Pre-Meal button or a named override can be configured with a correction range lower than the scheduled correction to assist in getting insulin delivered automatically after meals. + +## Four Possible Actions + +With each new glucose reading, *Loop* implements one of four possible actions: [**decrease** basal rate](#decrease-basal-rate), [**increase** basal rate](#increase-basal-rate) or [**bolus automatically**](#deliver-automatic-bolus-with-scheduled-basal), [set **zero** basal rate](#zero-the-basal-rate), or [**resume** scheduled basal rate](#resume-basal-rate). + +!!! info "Automatic Bolus" + + If you are using an Automatic-Bolus Dosing Strategy in closed Loop mode and *Loop* predicts you need an **increase** in insulin; this **increase** is provided as a percentage of the recommended bolus instead of an increased temporary basal. The default percentage is 40%. + + If you add the Algorithm Experiments option of [Glucose Based Partial Application](../../loop-3/features.md#glucose-based-partial-application-gbpa){: target="_blank" }, the percentage varies from 20% when glucose is lower to 80% when glucose is higher. + +### Decrease Basal Rate + +If the eventual glucose is less than the correction range and all of the predicted glucose values are above the suspend threshold, then *Loop* will issue a temporary basal rate that is lower than the current scheduled basal rate to bring the eventual glucose up to the correction target. + +![decrease basal rate example](img/decrease.png) + +### Increase Basal Rate + +or + +### Deliver Automatic Bolus with Scheduled Basal + +If the eventual glucose is greater than the correction range and all of the predicted glucose values are both above the suspend threshold and equal to or above the correction range, then the *Loop* app takes action to safely bring the eventual glucose down to the correction target. Refer to [Dosing Strategy](../../loop-3/settings.md#dosing-strategy){: target="_blank" }. + +* Temp Basal Only Dosing Stategy: *Loop* will issue a temporary basal rate that is higher than the current basal rate +* Automatic Bolus Dosing Stategy: *Loop* will restore the pump to scheduled basal rate if a current temp basal is running and issue an automatic bolus + +![increase basal rate or AB example](img/increase.png) + +### Zero the Basal Rate + +If the minimum predicted glucose goes below the suspend threshold, then *Loop* will issue a temporary basal rate of zero units per hour, regardless of the eventual glucose. + +![suspend basal rate example](img/suspend.png) + +### Resume Basal Rate + +There are three situations where the *Loop* algorithm will resume the current scheduled basal rate. + +If the eventual glucose is within the correction range, and all of the predicted glucose values are above the suspend threshold, then *Loop* will resume the current scheduled basal rate. + +![first resume basal rate example](img/resume2.png) + +If the eventual glucose is above the correction range, and the predicted glucose values have a temporary excursion below the correction range but still above the suspend threshold, then *Loop* will resume the current scheduled basal rate. + +![second resume basal rate example](img/resume.png) + +If the *Loop* algorithm does not have ALL of the data it needs to make a prediction, it will let the remaining temporary basal rate run its duration (maximum of 30 minutes), and then the basal rate will default back to the current scheduled basal rate, thus returning to the same therapy pattern that they would receive using a traditional insulin pump. + +## Determine the Recommended Bolus + +In the scenario where *Loop* will either increase basal rate or issue an automatic bolus, *Loop* calculates a “dose” in the same way doses are calculated in both open-loop and traditional insulin pump therapy. It's also the same math many people on multiple-daily injection therapy use. The benefit of *Loop* (and all other close-loop algorithms) is that it does this math every 5 minutes, and is far less prone to error than humans doing the math. *Loop* also does its math based on predicting into the future, which traditional pumps and humans, do not always have the time or inclination to do. + +The amount of insulin needed, or dose, is calculated using the desired reduction in glucose and the user’s ISF. For the *Loop* algorithm, the desired reduction in glucose is the delta between the eventual glucose and the correction target: + +$$ \mathit{dose} = \frac{\mathit{BG_{eventual}} - \mathit{BG_{target}}}{\mathit{ISF}} $$ + +!!! info "Loop Dose Calculation" + + A major difference between traditional pump therapy and how the *Loop* calculates dose is that in pump therapy the current glucose is used to estimate the dose, whereas in the *Loop* algorithm the eventual and minimum glucose predictions are also used in determining dosing decisions. + + +* Temp Basal Only Dosing Stategy: see [Determine the Temporary Basal Rate](#determine-the-temporary-basal-rate) +* Automatic Bolus Dosing Stategy: the amount of the automatic bolus is reduced from the recommended dose as explained in [Automatic Bolus](../../loop-3/settings.md#automatic-bolus){: target="_blank" } + +### Determine the Temporary Basal Rate + +When a recommended dose is calculated and the Dosing Strategy is set to Temp Basal Only, *Loop* converts the dose into a basal rate using the Loop’s temporary basal rate duration of 30 minutes: + +$$ \mathit{BR_correction} = \frac{\mathit{dose}}{30 \mathrm{min}} = \frac{\mathit{dose}}{\frac{1}{2} \mathrm{hr}} = \frac{2 \times \mathit{dose}}{\mathrm{hr}} $$ + +where $\mathit{BR_correction}$ is the basal rate ( $\mathrm{\frac{U}{hr}}$ ), which is the amount of insulin needed over the next 30 minutes to bring the eventual glucose to the correction target. The basal rate, however, is the amount of basal rate needed beyond the user’s scheduled basal rate. As such, the required basal rate can be determined by: + +$$ \mathit{BR_required} = \mathit{BR_scheduled} + \mathit{BR_correction} $$ + +Finally, *Loop* compares the $BR_{required}$ with the user-specified maximum temporary basal rate $BR_{max}$ setting to determine the temporary basal to issue: + +$$ \mathit{BR_temp} = \max(\min( \mathit{BR_required}, \mathit{BR_max} ), 0) $$ + +After running the temporary basal calculation described above, *Loop* checks whether there is already an appropriate basal running with at least 10 minutes remaining. If so, *Loop* will not reissue the temporary basal. However, if the recommended temporary basal differs from the currently running temporary basal — or the current scheduled basal, when no temporary basal is running — then *Loop* will replace the current basal rate with the recommended temporary basal rate. + +As mentioned at the beginning of this section, the process of determining whether a temporary basal should be issued is repeated every 5 minutes. + +### Temporary Basal Rate Calculation Example + +To illustrate how the *Loop* calculates the temporary basal rate when there is a recommended bolus, consider the calculation for the following scenario: + +* $\mathit{BG_eventual} = 200 \mathrm{\frac{mg}{dL}}$ +* $\mathit{BG_target} = 100 \mathrm{\frac{mg}{dL}}$ +* $\mathit{ISF} = 50 \mathrm{\frac{\frac{mg}{dL}}{U}}$ +* $\mathit{BR_scheduled} = 1 \mathrm{\frac{U}{hr}}$ +* $\mathit{BR_max} = 6 \mathrm{\frac{U}{hr}}$ (set by user in Loop) + +First, calculate the dose: + +$$ dose = \frac{\mathit{BG_eventual} - \mathit{BG_target}}{\mathit{ISF}} = \frac{200 \mathrm{\frac{mg}{dL}} - 100 \mathrm{\frac{mg}{dL}}}{50 \mathrm{\frac{\frac{mg}{dL}}{U}}} = 2 \mathrm{U} $$ + +Then, convert the dose into a basal rate to be issued for the next 30 minutes: + +$$ \mathit{BR_correction} = \frac{2 \times \mathit{dose}}{\mathrm{hr}} = \frac{2 \times 2 \mathrm{U}}{\mathrm{hr}} = 4 \mathrm{\frac{U}{hr}} $$ + +Next, calculate the required basal rate: + +$$ \mathit{BR_required} = \mathit{BR_scheduled} + \mathit{BR_correction} = 1 \mathrm{\frac{U}{hr}} + 4 \mathrm{\frac{U}{hr}} = 5 \mathrm{\frac{U}{hr}} $$ + +Lastly, compare the required basal rate to the maximum temporary basal rate, and find that *Loop* will enact a temporary basal rate of $5 \mathrm{\frac{U}{hr}}$ for 30 minutes since this temporary basal rate is below the maximum temporary basal rate of $6 \mathrm{\frac{U}{hr}}$, which was set by the user in *Loop* app settings. + +$$ \mathit{BR_{temp}} = \max(\min( \mathit{BR_{required}}, \mathit{BR_max}), 0) = \max(\min( 5 \mathrm{\frac{U}{hr}}, 6 \mathrm{\frac{U}{hr}} ), 0) = 5 \mathrm{\frac{U}{hr}}$$ + +### More Temporary Basal Examples + +Consider the following values as fixed values for our calculation: + +* $\mathit{BG_target} = 100 \mathrm{\frac{mg}{dL}}$ +* $\mathit{ISF} = 50 \mathrm{\frac{\frac{mg}{dL}}{U}}$ +* $\mathit{BR_scheduled} = 1 \mathrm{\frac{U}{hr}}$ +* $\mathit{BR_max} = 6 \mathrm{\frac{U}{hr}}$ + +The table below shows the $\mathit{BR_temp}$ for different $\mathit{BG_eventual}$. $\mathit{BR_temp}$ should never turn negative and should never be greater than $\mathit{BR_max}$. + +| $\mathit{BG_eventual}$ $\mathrm{(\frac{mg}{dL}})$ | $\mathit{dose}$ $\mathrm{(U)}$ | $\mathit{BR_correction}$ $\mathrm{(\frac{U}{hr}})$ | $\mathit{BR_required}$ $\mathrm{(\frac{U}{hr}})$ | $\mathit{BR_temp}$ $\mathrm{(\frac{U}{hr})}$ | +|--------------------------------------------------:|-------------------------------:|---------------------------------------------------:|-------------------------------------------------:|---------------------------------------------:| +| 300 | 4.0 | 8.0 | 9.0 | 6.0 | +| 200 | 2.0 | 4.0 | 5.0 | 5.0 | +| 100 | 0.0 | 0.0 | 1.0 | 1.0 | +| 90 | -0.2 | -0.4 | 0.6 | 0.6 | +| 75 | -0.5 | -1.0 | 0.0 | 0.0 | +| 50 | -1.0 | -2.0 | -1.0 | 0.0 | + +## Algorithm Section Menu + +* [Algorithm Overview](overview.md) + * [Bolus Recommendations](bolus.md) + * [Glucose Prediction](prediction.md) + * [Automatic Dosing Adjustments](auto-adjust.md) diff --git a/docs/operation/algorithm/bolus.md b/docs/operation/algorithm/bolus.md index 3eeb5d8b4f7..ea0607fa503 100644 --- a/docs/operation/algorithm/bolus.md +++ b/docs/operation/algorithm/bolus.md @@ -1,25 +1,36 @@ -## Loop Manual Bolus +## Recommended Bolus -Loop will recommend bolus insulin corrections when the eventual blood glucose is greater than the correction target and the active insulin plus any active 30-minute temporary basal will not be sufficient to cover the predicted excursion above correction target. +The *Loop* app will recommend bolus insulin corrections when the eventual glucose is greater than the correction target and the active insulin plus any active 30-minute temporary basal will not be sufficient to cover the predicted excursion above correction target. -These recommendations are not proactively sent to the Loop user through any notification or banner alert; the recommendation is only viewable when the user clicks on the bolus tool. Note that Loop never issues a bolus command automatically while using the default Temp Basal [Dosing Strategy](../../loop-3/settings.md#dosing-strategy); all boluses are initiated by the user unless the [Automatic Bolus](../../loop-3/settings.md#automatic-bolus) dosing strategy is enabled. With automatic bolus enabled, each automatic bolus is limited to 40% of the recommended amount or the maximum bolus setting, whichever is smaller. +These recommendations are not proactively sent to the *Loop* user through any notification or banner alert; the recommendation is only viewable when the user clicks on the bolus tool. Note that *Loop* never issues a bolus command automatically while using the default Temp Basal Only [Dosing Strategy](../../loop-3/settings.md#dosing-strategy); all boluses are initiated by the user unless the [Automatic Bolus](../../loop-3/settings.md#automatic-bolus) dosing strategy is enabled. With automatic bolus enabled, each automatic bolus is limited to 40% of the recommended amount or the maximum bolus setting, whichever is smaller. -The bolus dose calculation is identical to the dose equation given in the basal recommendations section, with the exception that: +The recommended bolus calculation is described in [Determine the Recommended Dose](auto-adjust.md#determine-the-recommended-bolus){: target="_blank" }, with these exceptions: -* the insulin contribution from the currently running temporary basal set by Loop is removed or subtracted from the recommended bolus amount, and +* the insulin contribution from the currently running temporary basal set by *Loop* is removed or subtracted from the recommended bolus amount, and * the delta is calculated for the top of the correction range, rather than the average of the correction range. -For recently saved carbohydrates where the projected carbohydrate absorption will outlast the insulin activity duration (e.g., very slow-digesting meals like pizza or pasta), Loop’s algorithm will inherently decrease the initial meal bolus — to prevent hypoglycemia events that often occur after these meals — by only recommending enough bolus to prevent minimum predicted glucose from going below the suspend threshold. As described above, the Loop algorithm computes the recommended bolus such that predicted glucose will not dip below the suspend threshold. This may result in future blood glucose levels predicted above correction range, but will prevent a hypoglycemia event shortly after the meal (as it sometimes occurs for people giving a "pizza bolus" in traditional pump therapy). Loop will then later make corrections by issuing a command to temporarily [Increase Basal Rate](temp-basal.md#increase-basal-rate) or provide an automatic bolus. In effect, this algorithm behavior mimics traditional pump therapy of “extended” or “dual wave” bolusing, but with the benefit of added information about actual carbohydrate absorption effects as time goes by. +### Slow Absorption Time (Extended Bolus) -Finally, Loop checks that the result of the calculations is below the maximum single bolus the Loop user specified in their settings. If the calculated bolus is less than the maximum single bolus setting, then the recommended bolus will be displayed in Loop’s bolus tool. +For recently saved carbohydrates with longer absorption time, e.g., very slow-digesting meals like pizza or pasta, Loop’s algorithm provides an initial meal bolus less than the simple grams divided by carbohydrate ratio calculation for [Carbohydrate Effect](prediction.md#carbohydrate-effect){: target="_blank" }. + +The *Loop* algorithm computes the recommended bolus such that predicted glucose will not dip below the Glucose Safety Limit. This may result in future glucose levels predicted above correction range, but will prevent a hypoglycemia event shortly after the meal. + +* As time progresses after the meal, when appropriate, *Loop* modifies insulin delivery +* A decrease in recommended insulin amount is always provided as a decreased Temporary Basal rate +* An increase in recommended insulin amount is delivered based on the user-selected [Dosing Strategy](../../loop-3/settings.md#dosing-strategy){: target="_blank" }: + * Temp Basal Only: [Increase Basal Rate](auto-adjust.md#increase-basal-rate){: target="_blank" } + * Automatic Bolus: 40% of the recommended amount +* In effect, this algorithm behavior mimics traditional pump therapy of “extended” or “dual wave” bolusing, but with the benefit of added information about actual carbohydrate absorption effects as time goes by + +Finally, *Loop* checks that the result of the calculations is below the maximum single bolus the *Loop* user specified in their settings. If the calculated bolus is less than the maximum single bolus setting, then the recommended bolus will be displayed in Loop’s bolus tool. !!! info "Bolusing safety feature" - If the current blood glucose, or any predicted blood glucose, falls below the suspend threshold, Loop will not return a recommended bolus. When the minimum blood glucose rises above the suspend threshold, the bolus tool will provide a recommended bolus. + If the current glucose, or any predicted glucose, falls below the Glucose Safety Limit, *Loop* will not return a recommended bolus. When the minimum glucose rises above the Glucose Safety Limit, the bolus tool will provide a recommended bolus. ## Algorithm Section Menu * [Algorithm Overview](overview.md) * [Bolus Recommendations](bolus.md) - * [Blood Glucose Prediction](prediction.md) - * [Temp Basal Adjustments](temp-basal.md) + * [Glucose Prediction](prediction.md) + * [Automatic Dosing Adjustments](auto-adjust.md) diff --git a/docs/operation/algorithm/img/mixed-meals.svg b/docs/operation/algorithm/img/mixed-meals.svg new file mode 100644 index 00000000000..5806955c5e1 --- /dev/null +++ b/docs/operation/algorithm/img/mixed-meals.svg @@ -0,0 +1,1914 @@ + +image/svg+xmlLinear Absorption ModelNon-Linear Absorption Model diff --git a/docs/operation/algorithm/img/mixed_meals.png b/docs/operation/algorithm/img/mixed_meals.png deleted file mode 100755 index 315ccf7d32f..00000000000 Binary files a/docs/operation/algorithm/img/mixed_meals.png and /dev/null differ diff --git a/docs/operation/algorithm/overview.md b/docs/operation/algorithm/overview.md index 9b85860201a..894abe4d0f7 100644 --- a/docs/operation/algorithm/overview.md +++ b/docs/operation/algorithm/overview.md @@ -1,34 +1,39 @@ -## Loop Algorithm +## The *Loop* Algorithm -Loop’s algorithm for adjusting insulin delivery is oriented around making a blood glucose prediction. Every five minutes, triggered by new blood glucose data, it generates a new prediction. Both [bolus recommendations](bolus.md) and [temporary basal rate adjustments](temp-basal.md) are set based on this [prediction](prediction.md). +The *Loop* algorithm for adjusting insulin delivery is oriented around making a glucose prediction and modifying delivery to bring that prediction within target range without going below the Glucose Safety Limit. Every five minutes, triggered by new glucose data, it generates a new prediction. Both [bolus recommendations](bolus.md) and [temporary basal rate adjustments](auto-adjust.md) are set based on this [prediction](prediction.md). + +!!! abstract "Glucose Prediction" + The *prediction* is a calculation based on the known parameters of current and historical glucose values, current and historical insulin delivery using any entered carbs. Loop's model predictive control (MPC) calculation includes the user's therapy settings modified by active overrides. This calculation is updated at the next glucose reading and the recommended insulin delivery may be updated. + + The predicted glucose shown assumes no changes to future insulin delivery, when in fact, the insulin delivery is likely to be modified based on actual glucose. In that sense, the glucose prediction shown in various charts in the *Loop* app are meant to communicate the reason for the current dosing from *Loop*. Especially in the case of very low or very high *predictions*, be assured that *Loop* will attempt to change dosing to prevent that future glucose from happening, while keeping the user above the Glucose Safety Limit. ## Algorithm Terminology This graph and legend illustrates terms commonly used in discussing Loop's algorithm, -and shows them in the context of historical and forecasted blood glucose in style similar to the +and shows them in the context of historical and predicted glucose in style similar to the status screen of Loop. ![Chart illustrating terms](img/terms_graph.png) | | | |---------|---------| -|Insulin activity duration|The insulin activity duration is the duration of the insulin activity curve, and describes the point at which the delivered insulin dose no longer affects blood glucose. The insulin activity duration is 6 hours for Loop's rapid-acting and ultra-rapid insulin models.| -|Correction range|The correction range is the blood glucose range Loop uses to determine corrective actions (e.g., between 90 and 120 mg/dL in the figure). NOTE: Loop’s correction range is a user setting and should not be confused with the target range, typically 70-180 mg/dL, used for the purpose of calculating the percent time in range.| +|Insulin activity duration|The insulin activity duration is the duration of the insulin activity curve, and describes the point at which the delivered insulin dose no longer affects glucose. The insulin activity duration is 6 hours for Loop's rapid-acting and ultra-rapid insulin models.| +|Correction range|The correction range is the glucose range *Loop* uses to determine corrective actions (e.g., between 90 and 120 mg/dL in the figure). NOTE: Loop’s correction range is a user setting and should not be confused with the target range, typically 70-180 mg/dL, used for the purpose of calculating the percent time in range.| |Correction minimum|The lower or minimum value of the user’s correction range, which is 90 mg/dL in the figure.| |Correction maximum|The upper or maximum value of the user’s correction range, which is 120 mg/dL in the figure.| |Correction target|The correction target is the average value of the correction range. In the overview figure, this is 105 mg/dL given that the correction minimum is 90 mg/dL and the correction maximum is 120 mg/dL.| -|Predicted blood glucose|Loop makes a prediction of blood glucose values out for a length of time equal to your insulin action duration. The predicted blood glucose is the basis for how Loop makes its insulin delivery recommendations and actions.| -|Eventual blood glucose|The last value of the predicted glucose curve, in other words the very last blood glucose predicted at the end of your insulin action duration. In the figure above, this is 85 mg/dL.| -|Minimum predicted blood glucose|The lowest blood glucose value at any point in time within the prediction. In the figure above, this is 77 mg/dL.| -|Delta|The delta is the difference between the eventual blood glucose and the correction target. In the overview figure, the eventual blood glucose is 85 mg/dL and the correction target is 105 mg/dL, which means that the delta is -20 mg/dL. | -|Suspend Threshold|The suspend threshold is a safety feature of the Loop algorithm. If any predicted blood glucose is below this threshold, the Loop algorithm will issue a temporary basal rate of 0| -|CGM data|Blood glucose readings made by a continuous glucose monitor.| -|Insulin sensitivity factor|A configuration value that provides an estimate of how much blood glucose will drop given a unit of insulin.| -|Active insulin|Active insulin, often referred to as Insulin-on-Board (IOB), is the remaining amount of insulin activity from boluses and temporary basal rates relative to a user’s scheduled basal rates. More specifically, it is the total amount of insulin activity due to all bolus and basal insulin delivered within the last N hours, where N is determined by the insulin activity duration. The amount of “active” insulin depends upon the insulin activity curve, and also accounts for the insulin withheld via basal suspensions. As such, it is possible that the active insulin can be negative. Negative active insulin will result in an increase in predicted blood glucose. The active insulin displayed in Loop's main display does not reflect the currently enacted temporary basal rate, as that basal rate may be canceled or modified before completion over the next 30 minutes. In others words, Loop doesn't count chickens before the eggs hatch...insulin delivery must be confirmed before being added to the active insulin reporting.| +|Predicted glucose|Loop makes a prediction of glucose values out for a length of time equal to your insulin action duration. The predicted glucose is the basis for how *Loop* makes its insulin delivery recommendations and actions.| +|Eventual glucose|The last value of the predicted glucose curve, in other words the very last glucose predicted at the end of your insulin action duration. In the figure above, this is 85 mg/dL.| +|Minimum predicted glucose|The lowest glucose value at any point in time within the prediction. In the figure above, this is 77 mg/dL.| +|Delta|The delta is the difference between the eventual glucose and the correction target. In the overview figure, the eventual glucose is 85 mg/dL and the correction target is 105 mg/dL, which means that the delta is -20 mg/dL. | +|Suspend Threshold (Glucose Safety Limit)|The glucose safety limit (called suspend threshold when this figure was generated) is a safety feature of the *Loop* algorithm. If any predicted glucose is below this value, the *Loop* algorithm will issue a temporary basal rate of 0| +|CGM data|Glucose readings made by a continuous glucose monitor.| +|Insulin sensitivity factor|A configuration value that provides an estimate of how much glucose will drop given a unit of insulin.| +|Active insulin|Active insulin, often referred to as Insulin-on-Board (IOB), is the remaining amount of insulin activity from boluses and temporary basal rates relative to a user’s scheduled basal rates. More specifically, it is the total amount of insulin activity due to all bolus and basal insulin delivered within the last N hours, where N is determined by the insulin activity duration. The amount of “active” insulin depends upon the insulin activity curve, and also accounts for the insulin withheld via basal suspensions. As such, it is possible that the active insulin can be negative. Negative active insulin will result in an increase in predicted glucose. The active insulin displayed in Loop's main display does not reflect the currently enacted temporary basal rate, as that basal rate may be canceled or modified before completion over the next 30 minutes. In others words, *Loop* doesn't count chickens before the eggs hatch...insulin delivery must be confirmed before being added to the active insulin reporting.| ## Algorithm Section Menu * [Algorithm Overview](overview.md) * [Bolus Recommendations](bolus.md) - * [Blood Glucose Prediction](prediction.md) - * [Temp Basal Adjustments](temp-basal.md) + * [Glucose Prediction](prediction.md) + * [Automatic Dosing Adjustments](auto-adjust.md) diff --git a/docs/operation/algorithm/prediction.md b/docs/operation/algorithm/prediction.md index 9b7bb677533..65785e68d3b 100644 --- a/docs/operation/algorithm/prediction.md +++ b/docs/operation/algorithm/prediction.md @@ -1,18 +1,25 @@ -## Blood Glucose Prediction +## Glucose Prediction -Loop uses an algorithm to maintain blood glucose in a correction range by predicting the contributions from four individual effects (insulin, carbohydrates, retrospective correction, and blood glucose momentum) at any time *t* to recommend temporary basal rate corrections and boluses. +Loop uses a model predictive control (MPC) algorithm to maintain glucose in a correction range by predicting the contributions from four individual effects (insulin, carbohydrates, retrospective correction, and glucose momentum) at any time *t* to recommend temporary basal rate corrections and boluses. $$ BG[t] = Insulin[t] + Carb[t] + RetrospectiveCorrection[t] + Momentum[t] $$ -Note that the [Momemtum](#blood-glucose-momentum-effect) term does not just add to the other effects as implied in the simple formula above; it is blended with the other terms as described in more detail in the [Momemtum](#blood-glucose-momentum-effect) section below). +Note that the [Momemtum](#glucose-momentum-effect) term does not just add to the other effects as implied in the simple formula above; it is blended with the other terms as described in more detail in the [Momemtum](#glucose-momentum-effect) section below). -You can see the individual contributions of these effects by tapping on the predicted blood glucose chart on Loop's status screen. Loop updates this blood glucose prediction every five minutes when a new CGM value has been received and the pump's status has been updated. +You can see the individual contributions of these effects by tapping on the glucose chart on Loop's main screen to view the [Predicted Glucose Chart](loop-3/displays-v3.md#predicted-glucose-chart){: target="_blank" }. *Loop* updates this glucose prediction every five minutes when a new CGM value has been received and the pump's status has been updated. -Just a note, this whole section is fairly technical. While perhaps not the most interesting topic for many readers, if you are seeking the detailed view of the Loop algorithm this discussion is quite useful. If you want a more surface understanding, the overview and temporary basal recommendations sections alone are probably sufficient. +Just a note, this whole page is fairly technical. While perhaps not the most interesting topic for many readers, if you are seeking the detailed view of the *Loop* algorithm this discussion is quite useful. If you want a more surface understanding, the overview, bolus and temporary basal recommendations pages alone are probably sufficient. ## Overview -Before we delve into each of the four individual effects, a general overview figure may be a helpful start. There are four effects summed together to produce Loop's final predicted blood glucose curve. Each individual effect, along with their combined effect, is illustrated in the figure below. Insulin, from boluses and temporary basals, will have a decreasing effect on the prediction. Carbohydrates will have an increasing effect on the prediction. Blood glucose momentum effect can have a positive or negative effect, depending on how blood glucose is trending in the most recent CGM values. As shown in the example below, blood glucose is trending slightly upwards at the time of the prediction. Therefore, the blood glucose momentum effect’s contribution is pulling up the overall prediction from the other three effects for a short time. Retrospective correction is lowering the prediction, indicating that the recent rise in blood glucose was not as large as had been predicted by Loop in the recent past. +Before we delve into each of the four individual effects, a general overview figure may be a helpful start. There are four effects summed together to produce Loop's final predicted glucose curve. Each individual effect, along with their combined effect, is illustrated in the figure below. + +* Insulin, from boluses and temporary basals, will have a decreasing effect on the prediction +* Carbohydrates will have an increasing effect on the prediction +* Glucose Momentum effect can have a positive or negative effect, depending on how glucose is trending in the most recent CGM values + * As shown in the example below, glucose is trending slightly upwards at the time of the prediction + * Therefore, the glucose momentum effect’s contribution is pulling up the overall prediction from the other three effects for a short time +* Retrospective Correction is lowering the prediction, indicating that the recent rise in glucose was not as large as had been predicted by *Loop* in the recent past ![combined effects curve](img/combined_effects.png) @@ -20,23 +27,30 @@ The sections below provide detailed information on each of the four contribution ## Insulin Effect -Most traditional pump users and caregivers are already familiar with the concept of an insulin activity curve, where the insulin’s effect is time-dependent. Insulin takes a little while to affect blood glucose. The insulin effect typically peaks around one hour after giving insulin and then gradually decays. +Most traditional pump users and caregivers are already familiar with the concept of an insulin activity curve, where the insulin’s effect is time-dependent. Insulin takes a little while to affect glucose. The insulin effect typically peaks around one hour after giving insulin and then gradually decays. ![insulin activity curve](img/insulin_activity_curve.png) -Loop 2.x provides users with two different classes of insulin models (i.e., an exponential model and the Walsh model). All of the exponential models have an insulin activity duration of 6 hours, whereas the insulin activity duration is customizable for the Walsh model. The rapid-acting and Fiasp insulin activity curves are modeled as exponential curves that match the shape of the insulin activity curves from insulin labeling, and as observed in both adults and children. +The *Loop* app uses an exponential model with insulin activity duration of 6 hours. The rapid-acting (Humalog, Novalog and Apidra types) and ultra-rapid (Fiasp and Lyumjev types) insulin activity curves are modeled as exponential curves to approximately match the shape of the insulin activity curves from insulin labeling, and as observed in both adults and children. + +The Afrezza model is added as a non-pump insulin. + +The Insulin Type is selected in the Pump Settings screen. All insulin types are modeled by selecting parameters in the exponential model. See also [Insulin Model Customization](../../version/code-custom-edits.md#insulin-model-customization){: target="_blank" } on the Code Customization page. -Loop 3 drops the Walsh model and, by default, does not include the concept of child versus adult for "rapid" acting insulin, i.e., Humalog, Novalog and Apidra. Loop 3 adds the concept of non-pump insulin to account for injections or inhaled insulin. The Afrezza model is added as a non-pump insulin. The Insulin Type is selected in the Pump Settings screen. All insulin types are modeled by selecting parameters in the exponential model. See also [Insulin Model Customization](../../version/code-custom-edits.md#insulin-model-customization){: target="_blank" } on the Code Customization page. +???+ info "What happened to . . . (Click to open/close)" + The Walsh model is no longer used - ignore it in the figure below. + + The concept of child versus adult for "rapid" acting insulin, i.e., Humalog, Novalog and Apidra, is no longer provided by default. If you prefer to add back in the child model, you must modify a [Build Time Flag](../../version/build-time-flag.md){: target="_blank" }. The child model is included in the figure below ![insulin models](img/insulin_models.png) ### Insulin Effect Remaining -The amount of insulin effect remaining, or percent of remaining active insulin after an insulin bolus is delivered, is modeled mathematically in Loop with an exponential decay curve. +The amount of insulin effect remaining, or percent of remaining active insulin after an insulin bolus is delivered, is modeled mathematically in *Loop* with an exponential decay curve. ![insulin percent remaining](img/insulin_percent_remaining.png) -If a user’s insulin sensitivity factor (ISF) is 50 mg/dL per 1 unit of insulin and the user gives 2 units of insulin, then the user’s blood glucose would be expected to drop 100 mg/dL within the 6 hours following the insulin delivery. This insulin effect can be visualized in several different ways: the expected active insulin, expected drop in blood glucose every 5 minutes after delivery, and the expected cumulative drop in blood glucose. The figures below use the Rapid Acting - Adult insulin model in Loop. +If a user’s insulin sensitivity factor (ISF) is 50 mg/dL (2.7 mmol/L) per 1 unit of insulin and the user gives 2 units of insulin, then the user’s glucose would be expected to drop 100 mg/dL (5.4 mmol/L) within the 6 hours following the insulin delivery. This insulin effect can be visualized in several different ways: the expected active insulin, expected drop in glucose every 5 minutes after delivery, and the expected cumulative drop in glucose. The figures below use the Rapid Acting - Adult insulin model. ### Active Insulin @@ -44,15 +58,15 @@ This figure shows that 2 units of insulin are given initially, and the correspon ![insulin remaining example](img/insulin_remaining_example.png) -The active insulin at any time is the product of original insulin delivered and the percent of insulin activity remaining. Knowing the expected active insulin over the next 6 hours, and the insulin sensitivity factor (50 mg/dL, in this case), Loop can calculate the expected drop in blood glucose from that dose of insulin as shown in the figure below. +The active insulin at any time is the product of original insulin delivered and the percent of insulin activity remaining. Knowing the expected active insulin over the next 6 hours, and the insulin sensitivity factor (50 mg/dL, in this case), *Loop* can calculate the expected drop in glucose from that dose of insulin as shown in the figure below. ![bg drop from 2 units](img/bg_drop.png) -NOTE: ISF is also a function of time, as set in the ISF schedule in therapy settings or in accordance with any overrides. Loop uses the ISF that applied at the time of an insulin dose to predict the expected change in blood glucose due to the insulin effect, and sums the effect from all still-active doses. +NOTE: ISF is also a function of time, as set in the ISF schedule in therapy settings or in accordance with any overrides. *Loop* uses the ISF that applied at the time of an insulin dose to predict the expected change in glucose due to the insulin effect, and sums the effect from all still-active doses. -### Expected Change in Blood Glucose for Each Loop Interval +### Expected Change in Glucose for Each *Loop* Interval -Lastly, taking the first derivative (i.e., the rate of change) of the cumulative drop in the blood glucose curve yields the expected change in blood glucose over the insulin activity duration. For each dose of insulin given, Loop calculates the expected discrete drop in blood glucose at each 5-minute period for the insulin activity duration, as shown below. +Lastly, taking the first derivative (i.e., the rate of change) of the cumulative drop in the glucose curve yields the expected change in glucose over the insulin activity duration. For each dose of insulin given, *Loop* calculates the expected discrete drop in glucose at each 5-minute period for the insulin activity duration, as shown below. ![rate of bg change](img/derivative.png) @@ -60,31 +74,31 @@ The insulin effect for a given dose can be expressed mathematically: $$ \Delta BG_{dose}[t] = ISF[t_{dose}] \times IA_{dose}[t] $$ -where $\Delta BG_{I}$ is the expected change in blood glucose due to insulin with the units (mg/dL/5min), ISF is the insulin sensitivity factor (mg/dL/U) at the time of the relevant dose, and IA is the insulin activity (U/5min) at time *t*. Insulin activity can also be thought of as a velocity or rate of change in insulin in the blood as it acts on glucose. Insulin activity explicitly accounts for active insulin from temporary basals and boluses, and implicitly accounts for scheduled basal which is assumed to balance out with EGP. +where $\Delta BG_{I}$ is the expected change in glucose due to insulin with the units (mg/dL/5min), ISF is the insulin sensitivity factor (mg/dL/U) at the time of the relevant dose, and IA is the insulin activity (U/5min) at time *t*. Insulin activity can also be thought of as a velocity or rate of change in insulin in the blood as it acts on glucose. Insulin activity explicitly accounts for active insulin from temporary basals and boluses, and implicitly accounts for scheduled basal which is assumed to balance out with EGP. -### Insulin Effect on Blood Glucose Over Time +### Insulin Effect on Glucose Over Time -For this example, assuming a user’s blood glucose was 205 mg/dL at the time of insulin delivery, Loop would predict a drop in blood glucose due to the two units delivered at 12 pm as shown in the figure below. +For this example, assuming a user’s glucose was 205 mg/dL at the time of insulin delivery, *Loop* would predict a drop in glucose due to the two units delivered at 12 pm as shown in the figure below. ![two unit example](img/two_units.png) ### Treatment of Scheduled Basal Rates -In traditional basal/bolus pump therapy, basal rates are set to accommodate the user's endogenous glucose production (EGP) that causes blood glucose to rise. If a user's basal settings were exactly right in traditional pump therapy, the user would have perfectly flat blood glucose all day, all other factors being equal. +In traditional basal/bolus pump therapy, basal rates are set to accommodate the user's endogenous glucose production (EGP) that causes glucose to rise. If a user's basal settings were exactly right in traditional pump therapy, the user would have perfectly flat glucose all day, all other factors being equal. -In reality, people with type 1 diabetes, and their caregivers, know that basal settings are never exactly right. Every day is a little different, and a myriad of factors that affect blood glucose (e.g., including stress, hormones, sleep, etc.) may affect insulin needs. Some people have different basal profiles to accommodate these variations. Some people regularly tune and adjust their basal rates, and/or do so at their endocrinology clinic visits. +In reality, people with type 1 diabetes, and their caregivers, know that basal settings are never exactly right. Every day is a little different, and a myriad of factors that affect glucose (e.g., including stress, hormones, sleep, etc.) may affect insulin needs. Some people have different basal profiles to accommodate these variations. Some people regularly tune and adjust their basal rates, and/or do so at their endocrinology clinic visits. -Since the Loop algorithm assumes that the user-set basal rates are correct, it calculates the effect of insulin relative to scheduled basal rates. If basal rates are not entirely correct, Loop can compensate a bit through the retrospective correction and blood glucose momentum effects, discussed later in this page. +Since the *Loop* algorithm assumes that the user-set basal rates are correct, it calculates the effect of insulin relative to scheduled basal rates. If basal rates are not entirely correct, *Loop* can compensate a bit through the retrospective correction and glucose momentum effects, discussed later in this page. Similarly, the *Loop* algorithm accomodates discrepanies in carbohydrate amounts and absorption times as will be disussed later in [Carbohydrate Effect](#carbohydrate-effect). -The insulin delivery chart below displays a bar-graph history of the temporary basal rates enacted by Loop. The display is relative to the scheduled basal rates entered in the Loop settings. A rate displayed in this chart as +0 would indicate that no temporary basal rate was set and that the basal rate being delivered was the scheduled basal rate. Positive values indicate a temporary basal rate was set above the scheduled basal rate (i.e., more insulin delivered), and negative values indicate that a temporary basal rate was set below the scheduled basal rate (i.e., less insulin delivered). +The insulin delivery chart below displays a bar-graph history of the temporary basal rates enacted by Loop. The display is relative to the scheduled basal rates entered in the *Loop* settings. A rate displayed in this chart as +0 would indicate that no temporary basal rate was set and that the basal rate being delivered was the scheduled basal rate. Positive values indicate a temporary basal rate was set above the scheduled basal rate (i.e., more insulin delivered), and negative values indicate that a temporary basal rate was set below the scheduled basal rate (i.e., less insulin delivered). ![Loop's temp basal chart](img/temp_basal_chart.png) -For example, if the user’s scheduled basal rate is 1 U/hr, and Loop gives a temporary basal rate of 3 U/hr, then it will calculate the expected drop in blood glucose due to +2 U/hr of insulin. +For example, if the user’s scheduled basal rate is 1 U/hr, and *Loop* gives a temporary basal rate of 3 U/hr, then it will calculate the expected drop in glucose due to +2 U/hr of insulin. -Similarly if Loop sets a temporary basal rate of 0 U/hr for 1 hour, then the insulin effect will also be relative to the current scheduled basal rate of 1 U/hr, and Loop would predict the user’s blood glucose to increase by the amount of change from -1 U/hr of insulin. If the user’s ISF is 50 mg/dL, then Loop would predict blood glucose to rise 50 mg/dL over the insulin activity duration (6 hours). +Similarly if *Loop* sets a temporary basal rate of 0 U/hr for 1 hour, then the insulin effect will also be relative to the current scheduled basal rate of 1 U/hr, and *Loop* would predict the user’s glucose to increase by the amount of change from -1 U/hr of insulin. If the user’s ISF is 50 mg/dL, then *Loop* would predict glucose to rise 50 mg/dL over the insulin activity duration (6 hours). -Here is a real-world example where Loop is setting many temporary basal rates over the course of the day. The light orange bars are the temporary basal rates delivered and the solid orange line is the active insulin at any given time during the day. +Here is a real-world example where *Loop* is setting many temporary basal rates over the course of the day. The light orange bars are the temporary basal rates delivered and the solid orange line is the active insulin at any given time during the day. ![Loop's temp basal chart over day](img/temp_basal_day.png) @@ -98,7 +112,7 @@ The active insulin taking into account boluses and variations from scheduled bas ### Total Insulin Effect (combining boluses and temporary basal rates) -The sum of all doses' effects on blood glucose are shown for the user in the 'Insulin' curve in the predicted glucose screen. +The sum of all doses' effects on glucose are shown for the user in the 'Insulin' curve in the predicted glucose screen. The total insulin effect at time *t* is the sum of effects from each active dose or temporary basal rate: @@ -106,17 +120,29 @@ $$ \Delta BG_{I}[t] = \sum_{dose=1}^{n} \Delta BG_{dose}[t] $$ ## Carbohydrate Effect -Carbohydrates will raise blood glucose, but the speed and degree to which they impact blood glucose are dependent on the type of carbohydrates. High glycemic index (GI) carbohydrates will raise blood glucose quickly over a shorter time, whereas low GI foods will raise blood glucose more slowly over a longer period. Foods like candy, juice, and fruits tend to be high GI foods, while pizza, burritos, and quesadillas are usually lower GI foods. Digestion issues like gastroparesis may also contribute to variations in carbohydrate absorption. +Carbohydrates will raise glucose, but the speed and degree to which they impact glucose are dependent on the type of carbohydrates. -Because carbohydrate absorption can be quite variable, Loop has a model that dynamically adjusts the expected remaining time of carbohydrate absorption. To start with, Loop allows the user to input a rough guess of how long they think the food or drink will take to absorb. The user’s guess is used as a middle of the road estimate, and Loop’s algorithm will shorten or lengthen it based on observed blood glucose change. +* High glycemic index (GI) carbohydrates will raise glucose quickly over a shorter time + * Foods like candy, juice, and fruits tend to be high GI foods +* Low GI foods will raise glucose more slowly over a longer period + * Foods like pizza, burritos, and quesadillas are usually lower GI foods +* Digestion issues like gastroparesis may also contribute to variations in carbohydrate absorption +* If the Looper is using one or more adjunctive therapy drugs such as Metformin, GLP-1, SGLT2i or Pramlintide, the expected absorption time for typical meals may need to be increased and prebolus times may need to be reduced -For all carbohydrate entries, Loop assumes carbohydrates will not start absorbing for 10 minutes, so there is a 10-minute period of no absorption that is modeled prior to the absorption modeled in the next sections. +Because carbohydrate absorption can be quite variable, *Loop* has a model that dynamically adjusts the expected remaining time of carbohydrate absorption. To start with, *Loop* allows the user to input a rough guess of how long they think the food or drink will take to absorb. The user’s guess is used as a middle of the road estimate, and Loop’s algorithm will shorten or lengthen it based on observed glucose change. + +For all carbohydrate entries, *Loop* assumes carbohydrates will not start absorbing for 10 minutes, so there is a 10-minute period of no absorption that is modeled prior to the absorption modeled in the next sections. ### Linear Carbohydrate Absorption -Loop takes a conservative view of how fast the remaining carbohydrates will absorb. Because it is safer to under-deliver insulin for long-duration meals, Loop starts out at a minimum rate of absorption based on extending the entered carbohydrate duration by 50%. Said another way, the minimum carbohydrate absorption rate is the total number of grams of carbohydrates over 150% of the entered duration. +!!! important "Loop no longer uses Linear Absorption" + The *Loop* app now uses a non-linear rather than linear absorption model for carbohydrates. This provides an improved prediction and thus better control. However, it complicates the explanation. + + The simpler-to-explain linear model documentation found here provides insight into how carbohydrate absorption is handled. Just remember that the actual calculations inside the *Loop* app use non-linear asborption and has done so since *Loop* version 2.0, see [Non-Linear Carb Model Introduced as Default](../../version/releases-version2.md#non-linear-carb-model-introduced-as-default){: target="_blank" } + +Loop takes a conservative view of how fast the remaining carbohydrates will absorb. Because it is safer to under-deliver insulin for long-duration meals, *Loop* starts out at a minimum rate of absorption based on extending the entered carbohydrate duration by 50%. Said another way, the minimum carbohydrate absorption rate is the total number of grams of carbohydrates over 150% of the entered duration. -Using this initial minimum absorption rate, the remaining carbohydrates are modeled to absorb linearly. For example, if the user enters a 72g carbohydrate meal, and selects an estimated absorption time of 4 hours, then Loop will forecast a 12g/hr absorption rate for the next 6 hours. This rate can be termed the minimum absorption rate, which can be represented mathematically as: +Using this initial minimum absorption rate, the remaining carbohydrates are modeled to absorb linearly. For example, if the user enters a 72g carbohydrate meal, and selects an estimated absorption time of 4 hours, then *Loop* will assume a 12g/hr absorption rate for the next 6 hours. This rate can be termed the minimum absorption rate, which can be represented mathematically as: $$ MAR[t] = \frac{CA[t]}{1.5 \times d} $$ @@ -124,13 +150,13 @@ where MAR is the minimum absorption rate (g/hr), CA is the number of carbohydrat ### Dynamic Carbohydrate Absorption -The linear model above is modulated by an additional calculation that uses recently observed blood glucose data to estimate how fast carbohydrates have been absorbing. The expected change in blood glucose due to insulin effects alone is compared to the actual observed changes in blood glucose. This difference is termed the insulin counteraction effect (ICE): +The linear model above is modulated by an additional calculation that uses recently observed glucose data to estimate how fast carbohydrates have been absorbing. The expected change in glucose due to insulin effects alone is compared to the actual observed changes in glucose. This difference is termed the insulin counteraction effect (ICE): $$ ICE[t] = \Delta BG_{O}[t] - \Delta BG_{I}[t] $$ -where, ICE (mg/dL/5 min) is the insulin counteraction effect, $\Delta BG_{O}$ is the observed change in blood glucose (mg/dL/5min) at time *t*, and $\Delta BG_{I}$ is the modelled change in blood glucose due to insulin alone (i.e. the insulin effect as described above mg/dL/5min). +where, ICE (mg/dL/5 min) is the insulin counteraction effect, $\Delta BG_{O}$ is the observed change in glucose (mg/dL/5min) at time *t*, and $\Delta BG_{I}$ is the modelled change in glucose due to insulin alone (i.e. the insulin effect as described above mg/dL/5min). -Insulin counteraction effects are caused by more than just carbohydrates, and can include exercise, sensitivity changes, or incorrectly configured insulin delivery settings (e.g., basal rate, ISF, etc.). However, since the effect of carbohydrates is often dominant (after insulin), Loop can still make useful ongoing adjustments to its carbohydrate model by assuming that the increase in blood glucose is mainly carbohydrate absorption in the period following recorded meal entries. +Insulin counteraction effects are caused by more than just carbohydrates, and can include exercise, sensitivity changes, or incorrectly configured insulin delivery settings (e.g., basal rate, ISF, etc.). However, since the effect of carbohydrates is often dominant (after insulin), *Loop* can still make useful ongoing adjustments to its carbohydrate model by assuming that the increase in glucose is mainly carbohydrate absorption in the period following recorded meal entries. The insulin counteraction effect is converted into an estimated carbohydrate absorption amount by using both the carbohydrate-to-insulin ratio and the insulin sensitivity factor that were current at the time of a recorded meal entry. @@ -144,9 +170,9 @@ $$ MAR[t = 12pm] = \frac{ 72g }{ 1.5 \times 4hr } = 12 \frac{ g }{ hr } = 1 \fra $$ MAR[t = 3pm] = \frac{ 72g }{ 1.5 \times 2hr } = 24 \frac{ g }{ hr } = 2 \frac{ g }{ 5min } $$ -Examining just the simple linear carbohydrate effect of these two meals: +The combined carbohydrate effect for these two meals is shown in the graphic below. The example in this section uses the linear absorption model, shown in the top part of the graphic. The subtle difference for the non-linear model, which is actually used in the *Loop* modeling, is shown in the bottom part of the graphic. -![combined meal entries](img/mixed_meals.png) +![combined meal entries](img/mixed-meals.svg) If we further expand this example, by assuming the following at 4pm: @@ -172,7 +198,7 @@ If the dynamically-estimated carbohydrate absorption of a meal entry up to the c ### Modeling Remaining Active Carbohydrates -After the estimated absorbed carbohydrates have been subtracted from each meal entry, the remaining carbohydrates (for each entry) are then forecasted to decay or absorb using the minimum absorption rate. Loop uses this forecast to estimate the effect (active carbohydrates, or carbohydrate activity) of the remaining carbohydrates. The carbohydrate effect can be expressed mathematically using the terms described above: +After the estimated absorbed carbohydrates have been subtracted from each meal entry, the remaining carbohydrates (for each entry) are then predicted to decay or absorb using the minimum absorption rate. *Loop* uses this prediction to estimate the effect (active carbohydrates, or carbohydrate activity) of the remaining carbohydrates. The carbohydrate effect can be expressed mathematically using the terms described above: $$ \Delta BG_{C}[t] = MAR[t] \times \frac{ISF[t_{meal}]}{CIR[t_{meal}]} $$ @@ -180,21 +206,21 @@ $$ \Delta BG_{C}[t] = MAR[t] \times \frac{ISF[t_{meal}]}{CIR[t_{meal}]} $$ !!! note "" - The retrospective correction effect allows the Loop algorithm to account for effects that are not modeled with the insulin and carbohydrate effects, by comparing historical predictions to the actual blood glucose. + The retrospective correction effect allows the *Loop* algorithm to account for effects that are not modeled with the insulin and carbohydrate effects, by comparing historical predictions to the actual glucose. -In addition to the modeled effects of insulin and carbohydrates, there are many other factors that affect blood glucose (e.g., exercise, stress, hormones, etc.). Many of these effects are active for a period of time. By observing its own forecast error, Loop can estimate the magnitude of these effects and, by assuming that they will continue for some short period of time, incorporate them into the forecast to improve forecast accuracy. +In addition to the modeled effects of insulin and carbohydrates, there are many other factors that affect glucose (e.g., exercise, stress, hormones, etc.). Many of these effects are active for a period of time. By observing its own prediction error, *Loop* can estimate the magnitude of these effects and, by assuming that they will continue for some short period of time, incorporate them into the model to improve prediction accuracy. -To do this, Loop calculates a retrospective forecast with a start time of 30 minutes in the past, ending at the current time. Loop compares the retrospective forecast to the actual observed change in blood glucose, and the difference is used to determine a blood glucose velocity or rate of difference: +To do this, *Loop* calculates a retrospective prediction with a start time of 30 minutes in the past, ending at the current time. *Loop* compares the retrospective prediction to the actual observed change in glucose, and the difference is used to determine a glucose velocity or rate of difference: $$ BG_{vel}=\frac{1}{6} \times \left(BG[0] - RF[0]\right) $$ -where BG*vel* is a velocity term (mg/dL per 5min) that represents the average blood glucose difference between the retrospective forecast (RF) and the actual blood glucose (BG) over the last 30 minutes. This term is applied to the current forecast from the insulin and carb effects with a linear decay over the next hour. For example, the first forecast point (t=5) is 100% of this velocity, the forecast point one-half hour from now is adjusted by approximately 50% of the velocity, and points from one hour or more in the future are not affected by this term. +where BG*vel* is a velocity term (mg/dL per 5min) that represents the average glucose difference between the retrospective prediction (RF) and the actual glucose (BG) over the last 30 minutes. This term is applied to the current prediction from the insulin and carb effects with a linear decay over the next hour. For example, the first prediction point (t=5) is 100% of this velocity, the prediction point one-half hour from now is adjusted by approximately 50% of the velocity, and points from one hour or more in the future are not affected by this term. The retrospective correction effect can be expressed mathematically: $$ \Delta BG_{RC}[t] = BG_{vel} \times \left(1-\frac{t-5}{55}\right) $$ -where BG is the predicted change in blood glucose with the units (mg/dL/5min) at time *t* over the time range of 5 to 60 minutes, and the other term gives the percentage of BG*vel* that is applied to this effect. +where BG is the predicted change in glucose with the units (mg/dL/5min) at time *t* over the time range of 5 to 60 minutes, and the other term gives the percentage of BG*vel* that is applied to this effect. The retrospective correction effect can be illustrated with an example: if the BG*vel* over the past 30 minutes was -10 mg/dL per 5min, then the retrospective correction effect over the next 60 minutes would be as follows: @@ -221,11 +247,11 @@ The example below that shows the retrospective correction effect when the BG*vel !!! note "" - The integral retrospective correction effect allows the Loop algorithm to account for longer term effects that are not modeled with the insulin and carbohydrate effects, by comparing historical predictions to the actual blood glucose. + The integral retrospective correction effect allows the *Loop* algorithm to account for longer term effects that are not modeled with the insulin and carbohydrate effects, by comparing historical predictions to the actual glucose. When Integral Retrospective Correction (IRC) is enabled in settings under Algorithm Experiments, this replaces the Retrospective Correction (RC). -* When _IRC_ is enabled the equation in [Blood Glucose Prediction](#blood-glucose-prediction) is modifed to: +* When _IRC_ is enabled the equation in [Glucose Prediction](#glucose-prediction) is modifed to: $$ BG[t] = Insulin[t] + Carb[t] + IntegralRetrospectiveCorrection[t] + Momentum[t] $$ @@ -235,23 +261,23 @@ The Retrospective Correction section of the [Predicted Glucose Chart](../../loop {align="center"} -## Blood Glucose Momentum Effect +## Glucose Momentum Effect !!! note "" - The blood glucose momentum effect incorporates a prediction component based on the assumption that recent blood glucose trends tend to persist for a short period of time. In other words, the best predictor of the future is the recent past. + The glucose momentum effect incorporates a prediction component based on the assumption that recent glucose trends tend to persist for a short period of time. In other words, the best predictor of the future is the recent past. -The blood glucose momentum portion of the algorithm gives weight or importance to recent blood glucose to improve the near-future forecast. Loop calculates the slope of the last 3 continuous CGM readings (i.e., the last 15 minutes) using linear regression. Using multiple points helps filter out noise in the CGM data while still responding fast to changing situations. That momentum slope (Mslope) is the approximate or average rate of change over the last 15 minutes, though it is normalized to 5 minutes so that the units are (mg/dL/5min). +The glucose momentum portion of the algorithm gives weight or importance to recent glucose to improve the near-future prediction. *Loop* calculates the slope of the last 3 continuous CGM readings (i.e., the last 15 minutes) using linear regression. Using multiple points helps filter out noise in the CGM data while still responding fast to changing situations. That momentum slope (Mslope) is the approximate or average rate of change over the last 15 minutes, though it is normalized to 5 minutes so that the units are (mg/dL/5min). -The momentum slope is then blended into the next 20 minutes of predicted blood glucose from the other effects (i.e., insulin, carbohydrates, and retrospective correction effects). This, in essence, makes the next 20 minutes of blood glucose prediction more sensitive to recent blood glucose trends. The blending of the recent trend slope into the next 20 minutes is weighted so that the first prediction point (5 minutes into the future) is highly influenced by the slope, and the influence of the slope gradually decays over the 20 minute time period. The momentum effect can be expressed mathematically as: +The momentum slope is then blended into the next 20 minutes of predicted glucose from the other effects (i.e., insulin, carbohydrates, and retrospective correction effects). This, in essence, makes the next 20 minutes of glucose prediction more sensitive to recent glucose trends. The blending of the recent trend slope into the next 20 minutes is weighted so that the first prediction point (5 minutes into the future) is highly influenced by the slope, and the influence of the slope gradually decays over the 20 minute time period. The momentum effect can be expressed mathematically as: $$ \Delta BG_{M}[t] = M_{slope} \times \left( 1 - \frac{t-5}{15} \right) $$ -NOTE: The term $\left(\frac{t-5}{15}\right)$ is also applied to the combined insulin, carbohydrates, and retrospective correction effects to get the delta blood glucose prediction. +NOTE: The term $\left(\frac{t-5}{15}\right)$ is also applied to the combined insulin, carbohydrates, and retrospective correction effects to get the delta glucose prediction. -The momentum effect can be illustrated with an example: if the last 3 blood glucose readings were 100, 103, and 106 mg/dL, then the slope would be 3 mg/dL per 5 minutes (0.6 mg/dL per minute). The amount of that recent trend or slope applied to the next 20 minutes of predictions (i.e., the next 4 predictions from the other effects) is roughly 100% (3 mg/dL per 5 min) at 5 minutes, 66% (2 mg/dL per 5 min) at 10 minutes, 33% (1 mg/dL per 5 min) at 15 minutes, and 0% (0 mg/dL per 5 min) at 20 minutes. +The momentum effect can be illustrated with an example: if the last 3 glucose readings were 100, 103, and 106 mg/dL, then the slope would be 3 mg/dL per 5 minutes (0.6 mg/dL per minute). The amount of that recent trend or slope applied to the next 20 minutes of predictions (i.e., the next 4 predictions from the other effects) is roughly 100% (3 mg/dL per 5 min) at 5 minutes, 66% (2 mg/dL per 5 min) at 10 minutes, 33% (1 mg/dL per 5 min) at 15 minutes, and 0% (0 mg/dL per 5 min) at 20 minutes. -Also, if the combined effect from the insulin, carbohydrates, and retrospective correction is assumed to be a constant 6 mg/dL/5min over the next 20 minutes, then the expected overall effect and the predicted blood glucose can be calculated as follows. +Also, if the combined effect from the insulin, carbohydrates, and retrospective correction is assumed to be a constant 6 mg/dL/5min over the next 20 minutes, then the expected overall effect and the predicted glucose can be calculated as follows. |Minutes relative to now (*t=0*)|Percent of Slope Applied to Momentum Effect|Momentum Effect (3mg/dL/5min)|Percent of Other Effects Applied Overall Effect|Other Effects (Insulin, Carbohydrate, and Retrospective Correction)|Overall Effect (mg/dL/5min)|Predicted BG (mg/dL)| |-------|-------|-------|-------|-------|-------|-------| @@ -262,21 +288,21 @@ Also, if the combined effect from the insulin, carbohydrates, and retrospective This example is illustrated in the figure below. -![blood glucose momentum graphic](img/momentum_graphic.png) +![glucose momentum graphic](img/momentum_graphic.png) -It is also worth noting that Loop will not calculate blood glucose momentum in instances where CGM data is not continuous (i.e., must have at least three continuous CGM readings to draw the best-fit straight line trend). It also will not calculate blood glucose momentum when the last three CGM readings contain any calibration points, as those may not be representative of true blood glucose momentum trends. +It is also worth noting that *Loop* will not calculate glucose momentum in instances where CGM data is not continuous (i.e., must have at least three continuous CGM readings to draw the best-fit straight line trend). It also will not calculate glucose momentum when the last three CGM readings contain any calibration points, as those may not be representative of true glucose momentum trends. ## Predicting Glucose -As described in the momentum effect section, the momentum effect is blended with the insulin, carbohydrate, and retrospective correction effects to predict the change in blood glucose: +As described in the momentum effect section, the momentum effect is blended with the insulin, carbohydrate, and retrospective correction effects to predict the change in glucose: $$ \Delta BG[t] = \Delta BG_{M}[t] + \left(\Delta BG_{I}[t] + \Delta BG_{C}[t]+ \Delta BG_{RC}[t] \right) \times min\left(\frac{t-5}{15}, 1\right) $$ -Lastly, the forecast or predicted blood glucose BG at time *t* is the current blood glucose BG plus the sum of all blood glucose effects $\Delta BG$ over the time interval $[t_{5}, t]$: +Lastly, the predicted glucose BG at time *t* is the current glucose BG plus the sum of all glucose effects $\Delta BG$ over the time interval $[t_{5}, t]$: $$ \widehat{BG}[t] = BG[t_{o}] + \sum_{i=5}^{t} \Delta BG[t_{o+i}] $$ -Each individual effect along with the combined effects are illustrated in the figure below. As shown, blood glucose is trending slightly upwards at the time of the prediction. Therefore, the blood glucose momentum effect’s contribution is pulling up the overall prediction from the other three effects for a short time. Retrospective correction is lowering the current prediction, indicating that the recent rise in blood glucose was not as great as had been predicted in the recent past. +Each individual effect along with the combined effects are illustrated in the figure below. As shown, glucose is trending slightly upwards at the time of the prediction. Therefore, the glucose momentum effect’s contribution is pulling up the overall prediction from the other three effects for a short time. Retrospective correction is lowering the current prediction, indicating that the recent rise in glucose was not as great as had been predicted in the recent past. ![combined effects curve](img/combined_effects.png) @@ -284,5 +310,5 @@ Each individual effect along with the combined effects are illustrated in the fi * [Algorithm Overview](overview.md) * [Bolus Recommendations](bolus.md) - * [Blood Glucose Prediction](prediction.md) - * [Temp Basal Adjustments](temp-basal.md) + * [Glucose Prediction](prediction.md) + * [Automatic Dosing Adjustments](auto-adjust.md) diff --git a/docs/operation/algorithm/temp-basal.md b/docs/operation/algorithm/temp-basal.md deleted file mode 100644 index 12c9253a33d..00000000000 --- a/docs/operation/algorithm/temp-basal.md +++ /dev/null @@ -1,140 +0,0 @@ -## Calculated Dose - -The Loop algorithm takes one of four actions depending upon the eventual blood glucose, predicted glucose, target range and glucose safety threshold when Closed Loop operation is enabled. - -The recommended insulin dose (positive or negative) is calculated first, then the Temp Basal or Automatic Bolus to be enacted is modified based on the recommended dose, dosing strategy, maximum Temp Basal and maximum Bolus settings. The automated dosing (increase or decrease) is updated with every CGM value - typically every 5 minutes. - -**Dosing Strategy: Temp Basal Only** - -All temporary basal rate commands are issued for 30 minutes, however they may be updated (re-issued) every 5 minutes. Said another way, Loop may enact a new temporary basal rate every 5 minutes. But, if communication with the pump is lost, the last issued temporary basal rate will last for at most 30 minutes before the pump reverts to the user’s scheduled basal rates. - -**Dosing Strategy: Automatic Bolus** - -If the Looper has selected Automatic Bolus Dosing Strategy and an increase in insulin dose is recommended, then the Four Actions discussion below applies to the automatic bolus decision. - -### No Automatic Dosing - -If glucose is entirely below the correction range but above glucose safety level, no automatic increase in insulin delivery will be enacted. The Looper can tap on the manual bolus tool and get a recommendation, but no automatic bolus or high temp basal will be issued automatically until the glucose level is higher than the minimum value of the correction range. - -The Pre-Meal button or a named override can be configured with a correction range lower than the scheduled correction to assist in getting insulin delivered automatically after meals. - -## Four Possible Actions - -Loop implements one of four possible temporary basal actions: **decrease**, **increase**, **suspend**, or **resume** a scheduled basal rate. - -!!! info "Automatic Bolus" - - If you are using an Automatic-Bolus Dosing Strategy in closed Loop mode and Loop predicts you need an **increase** in insulin; this **increase** is provided as a percentage of the recommended bolus instead of an increased temporary basal. The default percentage is 40%. - -### Decrease Basal Rate - -If the eventual blood glucose is less than the correction range and all of the predicted glucose values are above the suspend threshold, then Loop will issue a temporary basal rate that is lower than the current scheduled basal rate to bring the eventual blood glucose up to the correction target. - -![decrease basal rate example](img/decrease.png) - -### Increase Basal Rate - -If the eventual blood glucose is greater than the correction range and all of the predicted glucose values are both above the suspend threshold and equal to or above the correction range, then Loop will issue a temporary basal rate that is higher than the current basal rate to bring the eventual blood glucose down to the correction target. - -![increase basal rate example](img/increase.png) - -### Suspend Basal Rate - -If the minimum predicted blood glucose goes below the suspend threshold, then Loop will issue a temporary basal rate of zero units per hour, regardless of the eventual blood glucose. - -![suspend basal rate example](img/suspend.png) - -### Resume Basal Rate - -There are three situations where the Loop algorithm will resume the current scheduled basal rate. - -If the eventual blood glucose is within the correction range, and all of the predicted glucose values are above the suspend threshold, then Loop will resume the current scheduled basal rate. - -![first resume basal rate example](img/resume2.png) - -If the eventual blood glucose is above the correction range, and the predicted glucose values have a temporary excursion below the correction range but still above the suspend threshold, then Loop will resume the current scheduled basal rate. - -![second resume basal rate example](img/resume.png) - -If the Loop algorithm does not have ALL of the data it needs to make a prediction, it will let the remaining temporary basal rate run its duration (maximum of 30 minutes), and then the basal rate will default back to the current scheduled basal rate, thus returning to the same therapy pattern that they would receive using a traditional insulin pump. - -## Determining the Temporary Basal Rate - -To determine the corrective temporary basal rate to implement, Loop calculates a “dose” in the same way doses are calculated in both open-loop and traditional insulin pump therapy. It's also the same math many people on multiple-daily injection therapy use. The benefit of Loop (and all other close-loop algorithms) is that it does this math every 5 minutes, and is far less prone to error than humans doing the math. Loop also does its math based on predicting into the future, which traditional pumps and humans, do not always have the time or inclination to do. - -The amount of insulin needed, or dose, is calculated using the desired reduction in blood glucose and the user’s ISF. For the Loop algorithm, the desired reduction in blood glucose is the delta between the eventual blood glucose and the correction target: - -$$ \mathit{dose} = \frac{\mathit{BG_{eventual}} - \mathit{BG_{target}}}{\mathit{ISF}} $$ - -!!! info "Loop Dose Calculation" - - A major difference between traditional pump therapy and how the Loop calculates dose is that in pump therapy the current blood glucose is used to estimate the dose, whereas in the Loop algorithm the eventual and minimum blood glucose predictions are also used in determining dosing decisions. - -Loop then converts the dose into a basal rate using the Loop’s temporary basal rate duration of 30 minutes: - -$$ \mathit{BR_correction} = \frac{\mathit{dose}}{30 \mathrm{min}} = \frac{\mathit{dose}}{\frac{1}{2} \mathrm{hr}} = \frac{2 \times \mathit{dose}}{\mathrm{hr}} $$ - -where $\mathit{BR_correction}$ is the basal rate ( $\mathrm{\frac{U}{hr}}$ ), which is the amount of insulin needed over the next 30 minutes to bring the eventual blood glucose to the correction target. The basal rate, however, is the amount of basal rate needed beyond the user’s scheduled basal rate. As such, the required basal rate can be determined by: - -$$ \mathit{BR_required} = \mathit{BR_scheduled} + \mathit{BR_correction} $$ - -Finally, Loop compares the $BR_{required}$ with the user-specified maximum temporary basal rate $BR_{max}$ setting to determine the temporary basal to issue: - -$$ \mathit{BR_temp} = \max(\min( \mathit{BR_required}, \mathit{BR_max} ), 0) $$ - -After running the temporary basal calculation described above, Loop checks whether there is already an appropriate basal running with at least 10 minutes remaining. If so, Loop will not reissue the temporary basal. However, if the recommended temporary basal differs from the currently running temporary basal — or the current scheduled basal if no temporary is running — then Loop will replace the current basal rate with the recommended temporary basal rate. - -As mentioned at the beginning of this section, the process of determining whether a temporary basal should be issued is repeated every 5 minutes. - -## Temporary Basal Rate Calculation Example - -To illustrate how the Loop calculates the temporary basal rate to issue, consider the calculation for the following scenario: - -* $\mathit{BG_eventual} = 200 \mathrm{\frac{mg}{dL}}$ -* $\mathit{BG_target} = 100 \mathrm{\frac{mg}{dL}}$ -* $\mathit{ISF} = 50 \mathrm{\frac{\frac{mg}{dL}}{U}}$ -* $\mathit{BR_scheduled} = 1 \mathrm{\frac{U}{hr}}$ -* $\mathit{BR_max} = 6 \mathrm{\frac{U}{hr}}$ (set by user in Loop) - -First, calculate the dose: - -$$ dose = \frac{\mathit{BG_eventual} - \mathit{BG_target}}{\mathit{ISF}} = \frac{200 \mathrm{\frac{mg}{dL}} - 100 \mathrm{\frac{mg}{dL}}}{50 \mathrm{\frac{\frac{mg}{dL}}{U}}} = 2 \mathrm{U} $$ - -Then, convert the dose into a basal rate to be issued for the next 30 minutes: - -$$ \mathit{BR_correction} = \frac{2 \times \mathit{dose}}{\mathrm{hr}} = \frac{2 \times 2 \mathrm{U}}{\mathrm{hr}} = 4 \mathrm{\frac{U}{hr}} $$ - -Next, calculate the required basal rate: - -$$ \mathit{BR_required} = \mathit{BR_scheduled} + \mathit{BR_correction} = 1 \mathrm{\frac{U}{hr}} + 4 \mathrm{\frac{U}{hr}} = 5 \mathrm{\frac{U}{hr}} $$ - -Lastly, compare the required basal rate to the maximum temporary basal rate, and find that Loop will enact a temporary basal rate of $5 \mathrm{\frac{U}{hr}}$ for 30 minutes since this temporary basal rate is below the maximum temporary basal rate of $6 \mathrm{\frac{U}{hr}}$, which was set by the user in Loop app settings. - -$$ \mathit{BR_{temp}} = \max(\min( \mathit{BR_{required}}, \mathit{BR_max}), 0) = \max(\min( 5 \mathrm{\frac{U}{hr}}, 6 \mathrm{\frac{U}{hr}} ), 0) = 5 \mathrm{\frac{U}{hr}}$$ - -## More Examples - -Consider the following values as fixed values for our calculation: - -* $\mathit{BG_target} = 100 \mathrm{\frac{mg}{dL}}$ -* $\mathit{ISF} = 50 \mathrm{\frac{\frac{mg}{dL}}{U}}$ -* $\mathit{BR_scheduled} = 1 \mathrm{\frac{U}{hr}}$ -* $\mathit{BR_max} = 6 \mathrm{\frac{U}{hr}}$ - -The table below shows the $\mathit{BR_temp}$ for different $\mathit{BG_eventual}$. $\mathit{BR_temp}$ should never turn negative and should never be greater than $\mathit{BR_max}$. - -| $\mathit{BG_eventual}$ $\mathrm{(\frac{mg}{dL}})$ | $\mathit{dose}$ $\mathrm{(U)}$ | $\mathit{BR_correction}$ $\mathrm{(\frac{U}{hr}})$ | $\mathit{BR_required}$ $\mathrm{(\frac{U}{hr}})$ | $\mathit{BR_temp}$ $\mathrm{(\frac{U}{hr})}$ | -|--------------------------------------------------:|-------------------------------:|---------------------------------------------------:|-------------------------------------------------:|---------------------------------------------:| -| 300 | 4.0 | 8.0 | 9.0 | 6.0 | -| 200 | 2.0 | 4.0 | 5.0 | 5.0 | -| 100 | 0.0 | 0.0 | 1.0 | 1.0 | -| 90 | -0.2 | -0.4 | 0.6 | 0.6 | -| 75 | -0.5 | -1.0 | 0.0 | 0.0 | -| 50 | -1.0 | -2.0 | -1.0 | 0.0 | - -## Algorithm Section Menu - -* [Algorithm Overview](overview.md) - * [Bolus Recommendations](bolus.md) - * [Blood Glucose Prediction](prediction.md) - * [Temp Basal Adjustments](temp-basal.md) diff --git a/docs/version/development.md b/docs/version/development.md index 667ecb017c9..8de8175f12e 100644 --- a/docs/version/development.md +++ b/docs/version/development.md @@ -73,7 +73,16 @@ The code that feeds Loop data to remote services like Tidepool and Nightscout ha There is a lot of discussion about *branches* with *Loop* but the concept is simple. Basically, they are all slightly different versions of *Loop*...kind of like different edits of the same book. -To really understand what branches are, we should probably explain a little more about the software and how development works. You can watch a 30-minute long, classic Katie DiSimone [video explanation about branches](https://www.youtube.com/watch?v=cWqvYs4Azt0&t=4s){: target="_blank" } created when *Loop* Version 2.0 was newly released. Keep in mind while watching the video that `master` was the old name for the `main` branch. The information in this video is still generally useful with the last half focused on automatic-bolus - the automatic-bolus dosing strategy has now been incorporated into *Loop* `main` branch. *Loop* has moved on to using only one stable branch (`main`), with `dev` suggested for developers/testers. +To really understand what branches are, we should probably explain a little more about the software and how development works. You can watch a 30-minute long, classic Katie DiSimone [video explanation about branches](https://www.youtube.com/watch?v=cWqvYs4Azt0&t=4s){: target="_blank" } created when *Loop* Version 2.0 was newly released. Keep in mind while watching the video: + + +Details that are different: + +* The way the code is organized has changed: see [LoopWorkspace](#loopworkspace) +* The default branch name used to be `master` - but is now `main` +* `carthage` is no longer used to determine which submodules (frameworks) are pulled in to build Loop (see [LoopWorkspace](#loopworkspace)) + +The information in this video is still generally useful with the last half focused on automatic-bolus - the automatic-bolus dosing strategy has now been incorporated into *Loop* `main` branch. *Loop* has moved on to using only one stable branch (`main`), with `dev` suggested for developers/testers. ### `Loop` GitHub Information diff --git a/includes/tooltip-list.txt b/includes/tooltip-list.txt index 2c5a4f5f596..7e15e8d3cf3 100644 --- a/includes/tooltip-list.txt +++ b/includes/tooltip-list.txt @@ -72,6 +72,7 @@ *[modal]: message or alert appearing in front of app that must be acknowledged to return to app *[Modules]: the Loop code uses a number of modules to handle different components of the entire app *[Monterey]: operating system for Mac, macOS 12.x +*[MPC]: model predictive control; the type of control algorithm used by Loop *[NFC]: Near-Field Communication is used for scanning devices such as Libre sensors *[Nightscout]: a personal website used to view your glucose and diabetes management data, `Loop` can upload to `Nightscout` *[Onboarding]: familiarize new, and existing, Loop users with settings in Loop 3 and ensure the Therapy Settings are all entered and are within safety guardrails diff --git a/mkdocs.yml b/mkdocs.yml index 55fee9e9951..934697054c7 100644 --- a/mkdocs.yml +++ b/mkdocs.yml @@ -115,6 +115,7 @@ plugins: 'operation/loop-settings/services-v2.md': 'loop-3/services.md' 'operation/loop-settings/displays.md': 'loop-3/displays-v3.md' 'operation/loop-settings/rileylink.md': 'loop-3/rileylink.md' + 'operation/algorithm/temp-basal.md': 'operation/algorithm/auto-adjust.md' - unused_files: enabled: !ENV [CHECK_UNUSED_FILES, False] excluded_files: @@ -203,7 +204,7 @@ nav: - 'Algorithm Overview': 'operation/algorithm/overview.md' - 'Bolus Recommendations': 'operation/algorithm/bolus.md' - 'Glucose Prediction': 'operation/algorithm/prediction.md' - - 'Automated Adjustments': 'operation/algorithm/temp-basal.md' + - 'Automated Adjustments': 'operation/algorithm/auto-adjust.md' - Troubleshoot: - 'Troubleshooting Overview': 'troubleshooting/overview.md' - 'Loop App Crashes': 'troubleshooting/loop-crashing.md'