-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdfa_plotremotecontent_sg.m
227 lines (204 loc) · 12.4 KB
/
dfa_plotremotecontent_sg.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
function out = dfa_plotripcontent(index, excludeperiods, remdecodes, ripdecodes,trials, varargin)
%
% define defaults
appendindex = 0;
box_thresh = .9; % proportion of posterior density in box to be considered box ripple
armthresh = .5;
v=1;
posterior = 0;
tet=[];
span = 'full'; % vs rips
% process varargin if present and overwrite default values
if (~isempty(varargin))
assign(varargin{:});
end
d = index(1);
e = index(2);
post_path = '/mnt/stelmo/anna/';
switch v
case 3
linposfile = sprintf('%s%s/filterframework/decoding/%s_%d_%d_shuffle_0_linearposition_v2.nc', post_path, animal,animal, d, e);
postfile = sprintf('%s%s/filterframework/decoding/%s_%d_%d_shuffle_0_posterior_acausalv2_full2state.nc', post_path, animal,animal, d, e);
case 2
linposfile = sprintf('%s%s/filterframework/decoding/%s_%d_%d_shuffle_0_linearposition_v2.nc', post_path, animal,animal, d, e);
postfile = sprintf('%s%s/filterframework/decoding/%s_%d_%d_shuffle_0_posterior_acausal_v2.nc', post_path, animal,animal, d, e);
otherwise %v1
linposfile = sprintf('%s%s/filterframework/decoding/%s_%d_%d_shuffle_0_linearposition.nc', post_path, animal, d, e);
postfile = sprintf('%s%s/filterframework/decoding/%s_%d_%d_shuffle_0_posterior_acausal.nc', post_path, animal,animal, d, e);
end
if posterior % only load if required
postposbins = 1+ncread(postfile,'position');
acausal_post(:,:,1) = ncread(postfile,'state1_posterior'); %causal
acausal_post(:,:,2) = ncread(postfile,'state2_posterior'); %causal state2_
acausal_post(:,:,3) = ncread(postfile,'state3_posterior'); %causal
posteriorts = ncread(postfile,'time');
post_combined = sum(acausal_post,3);
classifiercurves = [sum(acausal_post(:,:,1),1); sum(acausal_post(:,:,2),1)];
if v<3 % need to also load non-classifier for movemnt times and stitch together
postfile2 = sprintf('%s%s/filterframework/decoding/%s_%d_%d_shuffle_0_posteriors_v2.nc', post_path, animal,animal, d, e);
v2posterior = ncread(postfile2,'posterior');
nanrows = isnan(v2posterior(:,1));
post_combined(nanrows,:) = nan;
v2cols = post_combined(1,:)>0;
v2posterior(:,v2cols) = post_combined(:,v2cols);
post_combined = v2posterior;
clear v2posterior v2cols
end
clear acausal_post
end
if isempty(remdecodes) || length(remdecodes{d})< e || isempty(remdecodes{d}{e}) || ~exist(linposfile)
out.success = 0;
else
out.success=1;
linpos = ncread(linposfile,'linpos_flat')+1;
linvel = ncread(linposfile,'linvel_flat');
linposts = ncread(linposfile,'time');
q = remdecodes{d}{e};
q.riptimes = [q.starttime, q.endtime];
% generate a list of all riptimes, maxarm, amt content
[maxpost,maxseg] = max(q.arm_prop');
maxseg = maxseg-1; % adjust so that box = 0 and arms are 1-8
%% what do those rips represent?
valtrials = trials{d}{e}.leavehome>0; % since lockouts are included, set xlim to exclude the zeros that come with lock trials
nonlocktrials = valtrials & cellfun(@isempty,trials{d}{e}.lockstarts);
converter(8:15) = fliplr([1:8]);
outers = converter(trials{d}{e}.outerwell(nonlocktrials)); %translate from 8-15 to 1-8
outerarm = nan(1,length(nonlocktrials));
outerarm(nonlocktrials) = outers;
% calculate and store "previous" - outer visit even if during lockout
prevarm = nan(length(nonlocktrials),1);
prevarm(nonlocktrials) = [0 outers(1:end-1)];
lastlockouter(trials{d}{e}.locktype>0) = cellfun(@(x) x(find(x(:,2)>3,1,'last'),2),trials{d}{e}.duringlock(trials{d}{e}.locktype>0),'Un',0);
if length(lastlockouter) == length(nonlocktrials) & ~isempty(lastlockouter{end})
lastlockouter{end} = []; % last trial was a lockout where he went out - discard this info bc will cause indexing error below
end
prevarm(1+find(~cellfun(@isempty,lastlockouter))) = converter(cell2mat(lastlockouter(~cellfun(@isempty,lastlockouter))));
% calculate and store goals/prevgoals
nolockgoals = trials{d}{e}.goalwell(nonlocktrials);
goalarm = nan(length(nonlocktrials),3); %initialize [currgoal prevgoal preprevgoal]
goals(nolockgoals>0) = converter(nolockgoals(nolockgoals>0))'; %translate from 8-15 to 1-8
goals(nolockgoals==0) = 0;
if any(goals)
goalbounds = [[1; 1+find(diff(goals')~=0)], [find(diff(goals')~=0); sum(nonlocktrials)]];
if goalbounds(end,1)>sum(nonlocktrials)
goalbounds(end,1)=sum(nonlocktrials);
end
eachgoal =goals(logical([1; diff(goals')~=0]));
tmpgoals = nan(length(goals),2);
for g = 1:length(eachgoal)
if g==2
tmpgoals(goalbounds(g,1):goalbounds(g,2),1) = eachgoal(1);
elseif g>2
tmpgoals(goalbounds(g,1):goalbounds(g,2),1) = eachgoal(g-1);
tmpgoals(goalbounds(g,1):goalbounds(g,2),2) = eachgoal(g-2);
end
end
goalarm(nonlocktrials,:) = [goals',tmpgoals];
end
% assign each ripple to a trial
riptrials = zeros(length(maxpost),1);
for tr = 1:length(valtrials)
intrial = find(isExcluded(q.riptimes(:,1),[trials{d}{e}.starttime(tr) trials{d}{e}.endtime(tr)]));
riptrials(intrial) = tr;
end
armlist = [outerarm(riptrials)',prevarm(riptrials),goalarm(riptrials,:)]; %[future past currgoal prevgoal prevprevgoal]
valtrials = trials{d}{e}.leavehome>0 & cellfun(@isempty,trials{d}{e}.lockstarts);
taskphase = nan(length(trials{d}{e}.starttime),1);
taskphase(find(valtrials)) = label_trial_interval(trials{d}{e},(valtrials));
%% generate plot
epstart = linposts(1);
epend = linposts(end);
% correct for uneven gaps between segments
nodatarows = sum(post_combined(:,1:100),2)==0;
correction = cumsum(nodatarows);
linposcorr = double(linpos)-correction(linpos);
bounds = .5+find(diff(correction(~nodatarows))>0);
figure; hold on; set(gcf,'Position',[109 19 1788 756]);
switch span
case 'full'
% load eeg data and plot if specified
if ~isempty(tet)
ax1=subplot(6,1,[2 3]); hold on;
patch([q.riptimes'; fliplr(q.riptimes)'],repmat([-1000 -1000 1000 1000]',1,length(maxseg)),'k','FaceAlpha',.1,'EdgeColor','none');
patch([ripdecodes{d}{e}.riptimes'; fliplr(ripdecodes{d}{e}.riptimes)'],repmat([-1000 -1000 1000 1000]',1,size(ripdecodes{d}{e}.riptimes,1)),'r','FaceAlpha',.1,'EdgeColor','none');
plot(q.riptimes(q.max_state(:,1),1),-1000*ones(1,sum(q.max_state(:,1))),'b.');
plot(q.riptimes(q.max_state(:,2),1),-1000*ones(1,sum(q.max_state(:,2))),'r.');
for t = 1:length(tet)
eeg = loadeegstruct([post_path,animal,'/filterframework/'],animal,'eeg',d, e,tet(t));
eegtimes = geteegtimes(eeg{d}{e}{tet(t)});
eeginds = find(eegtimes>=epstart & eegtimes<=epend);
plot(eegtimes(eeginds),1000*(t-1)+eeg{d}{e}{tet(t)}.data(eeginds),'k');
end
end
ylabel(['tets=',num2str(tet)]); ylim([-1000 3000]);
ax2=subplot(6,1,[4:6]); hold on
colormap(flipud(bone)); imagesc(posteriorts, [1:sum(~nodatarows)], post_combined(~nodatarows,:),[0 .3]); set(gca,'YDir','normal');
plot(linposts,linposcorr,'m.','Markersize',11)
patch([q.riptimes'; fliplr(q.riptimes)'],repmat([0 0 113.5 113.5]',1,length(maxseg)),'k','FaceAlpha',.1,'EdgeColor','none');
% label trial types (lockout, search, repeat, error)
plot([trials{d}{e}.starttime(~nonlocktrials),trials{d}{e}.endtime(~nonlocktrials)]',repmat(114,sum(~nonlocktrials),2)','Color',[.5 .5 .5],'Linewidth',2)
plot([trials{d}{e}.starttime(trials{d}{e}.outersuccess==1),trials{d}{e}.endtime(trials{d}{e}.outersuccess==1)]',repmat(114,sum(trials{d}{e}.outersuccess==1),2)','Color',[1 1 0],'Linewidth',2)
plot([trials{d}{e}.starttime(~nonlocktrials),trials{d}{e}.endtime(~nonlocktrials)]',repmat(114,sum(~nonlocktrials),2)','Color',[.5 .5 .5],'Linewidth',2)
plot([trials{d}{e}.starttime(taskphase<=1),trials{d}{e}.endtime(taskphase<=1)]',repmat(115,sum(taskphase<=1),2)','Color',[0 0 0],'Linewidth',2)
plot([trials{d}{e}.starttime(taskphase>0 & mod(taskphase,1)>0),trials{d}{e}.endtime(taskphase>0 & mod(taskphase,1)>0)]',repmat(115,sum(taskphase>0 & mod(taskphase,1)>0),2)','Color',[1 0 0],'Linewidth',2)
plot(trials{d}{e}.starttime,repmat(116,1,length(nonlocktrials)),'k.')
plot(repmat([0 epend],length(bounds),1)',repmat(bounds,1,2)','k:')
set(gca,'ytick',[4.5;bounds+6.5],'yticklabel',{'B','1','2','3','4','5','6','7','8'})
% % decide which rips to plot
% %rinds = ones(length(maxpost),1); % all rips
% homerips = isExcluded(q.riptimes(:,1),[trials{d}{e}.starttime, trials{d}{e}.RWstart]); % home rips
% centerrips = isExcluded(q.riptimes(:,1),[trials{d}{e}.RWstart, trials{d}{e}.leaveRW]); % center rips
% outerrips = isExcluded(q.riptimes(:,1),[trials{d}{e}.outertime, trials{d}{e}.leaveouter]); % outerrips
% armcenters = [4.5;bounds+6.5];
ylim([0 117]); xlabel(sprintf('%s d%d e%d',animal,d,e))
linkaxes([ax1, ax2],'x');
pan(gca,'xon'); zoom(gca, 'xon');
case 'rips'
numev = 5;
%candidates = find(q.max_state(:,2));
%ripind = candidates(randi(length(candidates),numev,1));
%ripind = [1007, 1017, 1019, 1022, 1031]; %desp
%ripind = [691 696 698 701 706]; %jaq
%ripind = [829 830 839 845 846]; %roqui
ripind = [1481 1484 1485 1486 1487]; %monty
width = .5;
eeg = loadeegstruct([post_path,animal,'/filterframework/'],animal,'eeg',d, e,tet);
eegtimes = geteegtimes(eeg{d}{e}{tet(1)});
for r = 1:numev
rstartend = [mean(q.riptimes(ripind(r),:))-width/2 mean(q.riptimes(ripind(r),:))+width/2];
ax1=subplot(6,numev,r); hold on;
postinds = posteriorts>=rstartend(1) & posteriorts<=rstartend(2);
plot(posteriorts(postinds),classifiercurves(1,postinds),'b');
plot(posteriorts(postinds),classifiercurves(2,postinds),'r');
patch([q.riptimes(ripind(r),:)'; fliplr(q.riptimes(ripind(r),:))'],[0 0 1 1]','k','FaceAlpha',.1,'EdgeColor','none');
ax2=subplot(6,numev,[r+numev,r+2*numev]); hold on;
patch([q.riptimes(ripind(r),:)'; fliplr(q.riptimes(ripind(r),:))'],[-1000 -1000 1000 1000]','k','FaceAlpha',.1,'EdgeColor','none');
if q.max_state(ripind(r),1)
plot(q.riptimes(ripind(r),1),-1000,'b.');
else
plot(q.riptimes(ripind(r),1),-1000,'r.');
end
eeginds = find(eegtimes>=rstartend(1) & eegtimes<=rstartend(2));
for t = 1:length(tet)
plot(eegtimes(eeginds),1000*(t-1)+eeg{d}{e}{tet(t)}.data(eeginds),'k');
end
inrips = logical(isExcluded(eegtimes(eeginds),q.riptimes));
plot(eegtimes(eeginds(inrips)),-500*ones(sum(inrips)),'k.'); % mark any other rips that occur in this window
ylim([-1000 3000]); if r==1; ylabel(['tets=',num2str(tet)]); end
ax3 = subplot(6,numev,[r+numev*3:numev:r+numev*5]); hold on;
colormap(flipud(bone)); imagesc(posteriorts(postinds), [1:sum(~nodatarows)], post_combined(~nodatarows,postinds),[0 .3]); set(gca,'YDir','normal');
linposinds = linposts>=rstartend(1) & linposts<=rstartend(2);
plot(linposts(linposinds),linposcorr(linposinds),'m.','Markersize',11)
patch([q.riptimes(ripind(r),:)'; fliplr(q.riptimes(ripind(r),:))'],[0 0 113.5 113.5]','k','FaceAlpha',.1,'EdgeColor','none');
plot(repmat(rstartend,length(bounds),1)',repmat(bounds,1,2)','k:')
set(gca,'ytick',[4.5;bounds+6.5],'yticklabel',{'B','1','2','3','4','5','6','7','8'})
ylim([0 117]); xlabel(sprintf('%s d%d e%d r%d',animal(1:3),d,e,ripind(r)))
linkaxes([ax1, ax3, ax2],'x'); if r==1; ylabel(['width=',num2str(width)]); end
if r==numev; ylabel(['cbar=.3']); end
pan(gca,'xon'); zoom(gca, 'xon');xlim(rstartend);
end
end
if appendindex
out.index = index;
end
end