-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
219 lines (174 loc) · 8.08 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
from dataloader import GraphTextDataset, GraphDataset, TextDataset
from torch_geometric.data import DataLoader
from torch.utils.data import DataLoader as TorchDataLoader
from Model import Model_baseline, ModelGAT, ModelGATv2
import numpy as np
from transformers import AutoTokenizer
import torch
from torch import optim
import time
import os
import pandas as pd
import argparse
print("cuda available : ", torch.cuda.is_available())
# Define contrastive loss
CE = torch.nn.CrossEntropyLoss()
def contrastive_loss(v1, v2):
logits = torch.matmul(v1,torch.transpose(v2, 0, 1))
labels = torch.arange(logits.shape[0], device=v1.device)
return CE(logits, labels) + CE(torch.transpose(logits, 0, 1), labels)
# Run the model you want passing it as an argument
parser = argparse.ArgumentParser()
parser.add_argument('--model', type=str, default='Base', nargs='?',
help="model type from 'Base', 'GATbase', 'GATv2', 'GATScibert'")
args = parser.parse_args()
MODEL = args.model
nb_epochs = 5
batch_size = 16
learning_rate = 2e-5
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
#Define and instantiate each model
if MODEL =='Base':
# Baseline model provided
print("Baseline Model")
model_name = "baseline"
text_model_name = 'distilbert-base-uncased'
tokenizer = AutoTokenizer.from_pretrained(text_model_name)
gt = np.load("./data/token_embedding_dict.npy", allow_pickle=True)[()]
val_dataset = GraphTextDataset(root='./data/', gt=gt, split='val', tokenizer=tokenizer)
train_dataset = GraphTextDataset(root='./data/', gt=gt, split='train', tokenizer=tokenizer)
model = Model_baseline(model_name=text_model_name, num_node_features=300,ninp=768, nout=768, nhid=300, graph_hidden_channels=300) # nout = bert model hidden dim
model.to(device)
elif MODEL =='GATbase':
# DistillBert Text Encoder and GATConv used in Graph Decoder
print("GAT Base Model")
model_name = "gatbase"
text_model_name = 'distilbert-base-uncased'
tokenizer = AutoTokenizer.from_pretrained(text_model_name)
gt = np.load("./data/token_embedding_dict.npy", allow_pickle=True)[()]
val_dataset = GraphTextDataset(root='./data/', gt=gt, split='val', tokenizer=tokenizer)
train_dataset = GraphTextDataset(root='./data/', gt=gt, split='train', tokenizer=tokenizer)
model = ModelGAT(model_name=text_model_name, num_node_features=300, nout=768, nhid=300, graph_hidden_channels=300)
model.to(device)
### Uncomment to load previously saved model
#save_path = os.path.join('./', f'{MODEL}model.pt')
#checkpoint = torch.load(save_path)
#model.load_state_dict(checkpoint['model_state_dict'])
elif MODEL == "GATv2":
# DistillBert Text Encoder and GATv2Conv used in Graph Decoder
print("GATv2 Model")
model_name = "gatv2base"
text_model_name = 'distilbert-base-uncased'
tokenizer = AutoTokenizer.from_pretrained(text_model_name)
gt = np.load("./data/token_embedding_dict.npy", allow_pickle=True)[()]
val_dataset = GraphTextDataset(root='./data/', gt=gt, split='val', tokenizer=tokenizer)
train_dataset = GraphTextDataset(root='./data/', gt=gt, split='train', tokenizer=tokenizer)
model = ModelGATv2(text_model_name, num_node_features=300,ninp=768, nout=768, nhid=300, graph_hidden_channels=300)
model.to(device)
elif MODEL =='GATScibert':
# SciBert Text Encoder and GATConv used in Graph Decoder
print("GAT Scibert Model")
model_name = "gatscibert"
text_model_name = 'allenai/scibert_scivocab_uncased'
tokenizer = AutoTokenizer.from_pretrained(text_model_name)
gt = np.load("./data/token_embedding_dict.npy", allow_pickle=True)[()]
val_dataset = GraphTextDataset(root='./data/', gt=gt, split='val', tokenizer=tokenizer)
train_dataset = GraphTextDataset(root='./data/', gt=gt, split='train', tokenizer=tokenizer)
model = ModelGAT(model_name=text_model_name, num_node_features=300, nout=768, nhid=300, graph_hidden_channels=300) # nout = bert model hidden dim
model.to(device)
### Uncomment to load previously saved model
#save_path = os.path.join('./', f'{MODEL}model.pt')
#checkpoint = torch.load(save_path)
#model.load_state_dict(checkpoint['model_state_dict'])
val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=True)
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
# Defining optimizer
optimizer = optim.AdamW(model.parameters(), lr=learning_rate,
betas=(0.9, 0.999),
weight_decay=0.01)
epoch = 0
loss = 0
losses = []
count_iter = 0
time1 = time.time()
printEvery = 50
best_validation_loss = 1000000
for i in range(nb_epochs):
print('-----EPOCH{}-----'.format(i+1))
# Train model
model.train()
for batch in train_loader:
input_ids = batch.input_ids
batch.pop('input_ids')
attention_mask = batch.attention_mask
batch.pop('attention_mask')
graph_batch = batch
x_graph, x_text = model(graph_batch.to(device),
input_ids.to(device),
attention_mask.to(device))
current_loss = contrastive_loss(x_graph, x_text)
optimizer.zero_grad()
current_loss.backward()
optimizer.step()
loss += current_loss.item()
count_iter += 1
if count_iter % printEvery == 0:
time2 = time.time()
print("Iteration: {0}, Time: {1:.4f} s, training loss: {2:.4f}".format(count_iter,
time2 - time1, loss/printEvery))
losses.append(loss)
loss = 0
# Evaluate model on valdation set
model.eval()
val_loss = 0
for batch in val_loader:
input_ids = batch.input_ids
batch.pop('input_ids')
attention_mask = batch.attention_mask
batch.pop('attention_mask')
graph_batch = batch
x_graph, x_text = model(graph_batch.to(device),
input_ids.to(device),
attention_mask.to(device))
current_loss = contrastive_loss(x_graph, x_text)
val_loss += current_loss.item()
best_validation_loss = min(best_validation_loss, val_loss)
print('-----EPOCH'+str(i+1)+'----- done. Validation loss: ', str(val_loss/len(val_loader)) )
if best_validation_loss==val_loss:
print('validation loss improoved saving checkpoint...')
save_path = os.path.join('./', f'{MODEL}model.pt')
torch.save({
'epoch': i,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'validation_accuracy': val_loss,
'loss': loss,
}, save_path)
print('checkpoint saved to: {}'.format(save_path))
print('loading best model...')
checkpoint = torch.load(save_path)
model.load_state_dict(checkpoint['model_state_dict'])
model.eval()
graph_model = model.get_graph_encoder()
text_model = model.get_text_encoder()
test_cids_dataset = GraphDataset(root='./data/', gt=gt, split='test_cids')
test_text_dataset = TextDataset(file_path='./data/test_text.txt', tokenizer=tokenizer)
idx_to_cid = test_cids_dataset.get_idx_to_cid()
test_loader = DataLoader(test_cids_dataset, batch_size=batch_size, shuffle=False)
graph_embeddings = []
for batch in test_loader:
for output in graph_model(batch.to(device)):
graph_embeddings.append(output.tolist())
test_text_loader = TorchDataLoader(test_text_dataset, batch_size=batch_size, shuffle=False)
text_embeddings = []
for batch in test_text_loader:
for output in text_model(batch['input_ids'].to(device),
attention_mask=batch['attention_mask'].to(device)):
text_embeddings.append(output.tolist())
# Make predictions
from sklearn.metrics.pairwise import cosine_similarity
similarity = cosine_similarity(text_embeddings, graph_embeddings)
solution = pd.DataFrame(similarity)
solution['ID'] = solution.index
solution = solution[['ID'] + [col for col in solution.columns if col!='ID']]
solution.to_csv('submission.csv', index=False)