forked from mpatacchiola/dissecting-reinforcement-learning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmontecarlo_prediction.py
127 lines (110 loc) · 4.65 KB
/
montecarlo_prediction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
#!/usr/bin/env python
#MIT License
#Copyright (c) 2017 Massimiliano Patacchiola
#
#Permission is hereby granted, free of charge, to any person obtaining a copy
#of this software and associated documentation files (the "Software"), to deal
#in the Software without restriction, including without limitation the rights
#to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
#copies of the Software, and to permit persons to whom the Software is
#furnished to do so, subject to the following conditions:
#
#The above copyright notice and this permission notice shall be included in all
#copies or substantial portions of the Software.
#
#THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
#IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
#FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
#AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
#LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
#OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
#SOFTWARE.
#In this example I will use the class gridworld to generate a 3x4 world
#in which the cleaning robot will move. Using the Monte Carlo method I
#will estimate the utility values of each state.
import numpy as np
from gridworld import GridWorld
def get_return(state_list, gamma):
counter = 0
return_value = 0
for visit in state_list:
reward = visit[1]
return_value += reward * np.power(gamma, counter)
counter += 1
return return_value
def main():
env = GridWorld(3, 4)
#Define the state matrix
state_matrix = np.zeros((3,4))
state_matrix[0, 3] = 1
state_matrix[1, 3] = 1
state_matrix[1, 1] = -1
print("State Matrix:")
print(state_matrix)
#Define the reward matrix
reward_matrix = np.full((3,4), -0.04)
reward_matrix[0, 3] = 1
reward_matrix[1, 3] = -1
print("Reward Matrix:")
print(reward_matrix)
#Define the transition matrix
transition_matrix = np.array([[0.8, 0.1, 0.0, 0.1],
[0.1, 0.8, 0.1, 0.0],
[0.0, 0.1, 0.8, 0.1],
[0.1, 0.0, 0.1, 0.8]])
#Define the policy matrix
#This is the optimal policy for world with reward=-0.04
policy_matrix = np.array([[1, 1, 1, -1],
[0, np.NaN, 0, -1],
[0, 3, 3, 3]])
print("Policy Matrix:")
print(policy_matrix)
env.setStateMatrix(state_matrix)
env.setRewardMatrix(reward_matrix)
env.setTransitionMatrix(transition_matrix)
utility_matrix = np.zeros((3,4))
#init with 1.0e-10 to avoid division by zero
running_mean_matrix = np.full((3,4), 1.0e-10)
gamma = 0.999
tot_epoch = 50000
print_epoch = 1000
for epoch in range(tot_epoch):
#Starting a new episode
episode_list = list()
#Reset and return the first observation and reward
observation = env.reset(exploring_starts=False)
for _ in range(1000):
#Take the action from the action matrix
action = policy_matrix[observation[0], observation[1]]
#Move one step in the environment and get obs and reward
observation, reward, done = env.step(action)
#Append the visit in the episode list
episode_list.append((observation, reward))
if done: break
#The episode is finished, now estimating the utilities
counter = 0
#Checkup to identify if it is the first visit to a state
checkup_matrix = np.zeros((3,4))
#This cycle is the implementation of First-Visit MC.
#For each state stored in the episode list check if it
#is the rist visit and then estimate the return.
for visit in episode_list:
observation = visit[0]
row = observation[0]
col = observation[1]
reward = visit[1]
if(checkup_matrix[row, col] == 0):
return_value = get_return(episode_list[counter:], gamma)
running_mean_matrix[row, col] += 1
utility_matrix[row, col] += return_value
checkup_matrix[row, col] = 1
counter += 1
if(epoch % print_epoch == 0):
print("")
print("Utility matrix after " + str(epoch+1) + " iterations:")
print(utility_matrix / running_mean_matrix)
#Time to check the utility matrix obtained
print("Utility matrix after " + str(tot_epoch) + " iterations:")
print(utility_matrix / running_mean_matrix)
if __name__ == "__main__":
main()