-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate_and_upload.py
111 lines (85 loc) · 3.37 KB
/
evaluate_and_upload.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
import argparse
import logging
import os
import sys
import boto3
import numpy as np
import pandas as pd
import torch
from datasets import Dataset, load_dataset
from pathlib import Path
from tqdm import tqdm
# sys.path.append(os.path.join(os.getcwd(), 'PIG-misc'))
# from similarity import embedder
from utils.evaluation import compute_metrics
def evaluate():
# set up variables
compute_metrics.BATCH_SIZE = 200
compute_metrics.OUTPUT_DIR = os.path.join(os.getcwd(), 'utils', 'evaluation')
compute_metrics.ROSTER_PATH = os.path.join(os.getcwd(), 'roster.csv')
compute_metrics.DATASET_DIR = os.path.join(DATASET_DIR, 'train')
compute_metrics.METADATA_PATH = os.path.join(DATASET_DIR, 'train', 'metadata.csv')
# load promptbook
promptbook = pd.read_csv(compute_metrics.METADATA_PATH)
promptbook = promptbook.fillna(np.nan).replace([np.nan], [None])
promptbook = promptbook.sort_values(['prompt_id', 'modelVersion_id'])
# compute metrics
try:
compute_metrics.compute_nsfw_score(promptbook)
compute_metrics.compute_clip_score(promptbook)
compute_metrics.normalize_metrics(promptbook)
except Exception as err:
print('[Error]:', err)
breakpoint()
# dump promptbook
promptbook = promptbook.sort_index()
promptbook.to_csv(compute_metrics.METADATA_PATH, index=False)
def upload_to_s3(bucket_name='modelcofferbucket', folder_path='./generated'):
s3 = boto3.resource('s3')
for path in tqdm(Path(folder_path).rglob('*.png')):
if path.is_file():
file_name = path.name
s3.meta.client.upload_file(
str(path),
bucket_name,
file_name,
ExtraArgs={"ACL": "public-read"}
)
print('Upload complete')
def set_s3_public(bucket_name='modelcofferbucket'):
s3 = boto3.client('s3')
bucket_name = 'modelcofferbucket'
objects = s3.list_objects(Bucket=bucket_name)
while True:
for obj in tqdm(objects['Contents']):
key = obj['Key']
s3.put_object_acl(ACL='public-read', Bucket=bucket_name, Key=key)
if objects['IsTruncated']:
objects = s3.list_objects(
Bucket=bucket_name,
Marker=objects['Contents'][-1]['Key']
)
else:
break
print('Set public complete')
if __name__ == '__main__':
DATASET_DIR = os.path.join(os.getcwd(), 'generated')
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
BUCKET = 'modelcofferbucket'
# splits = ['train']
# evaluate generated images
evaluate()
print('Evaluation complete')
# # upload generated images to s3
# upload_to_s3(bucket_name=BUCKET, folder_path=DATASET_DIR)
# set_s3_public(bucket_name=BUCKET)
# # upload generated images to hf dataset
# dataset_promptbook = load_dataset('imagefolder', data_dir=DATASET_DIR, split='train')
# dataset_promptbook.push_to_hub("NYUSHPRP/GEMRec-PromptBook")
# dataset_metadata = dataset_metadata = dataset_promptbook.remove_columns(['image'])
# dataset_metadata.push_to_hub("NYUSHPRP/GEMRec-Metadata")
# # upload roster to hf dataset
# roster = pd.read_csv('./roster.csv')
# roster = Dataset.from_pandas(roster)
# roster.push_to_hub("NYUSHPRP/GEMRec-Roster", split='train')
# print('Upload complete')