Skip to content

Latest commit

 

History

History
62 lines (40 loc) · 2.14 KB

performance-benchmarks-descriptions.md

File metadata and controls

62 lines (40 loc) · 2.14 KB

Latency tests

  • Input length: 32 tokens.
  • Output length: 128 tokens.
  • Batch size: fixed (8).
  • Models: llama-3.1 8B, llama-3 70B, mixtral 8x7B.
  • Evaluation metrics: end-to-end latency (mean, median, p99).

{latency_tests_markdown_table}

Throughput tests

  • Input length: randomly sample 200 prompts from ShareGPT dataset (with fixed random seed).
  • Output length: the corresponding output length of these 200 prompts.
  • Batch size: dynamically determined by vllm to achieve maximum throughput.
  • Models: llama-3.1 8B, llama-3 70B, mixtral 8x7B.
  • Evaluation metrics: throughput.

{throughput_tests_markdown_table}

Serving tests

  • Input length: randomly sample 200 prompts from ShareGPT dataset (with fixed random seed).
  • Output length: the corresponding output length of these 200 prompts.
  • Batch size: dynamically determined by vllm and the arrival pattern of the requests.
  • Average QPS (query per second): 1, 4, 16 and inf. QPS = inf means all requests come at once. For other QPS values, the arrival time of each query is determined using a random Poisson process (with fixed random seed).
  • Models: llama-3.1 8B, llama-3 70B, mixtral 8x7B.
  • We also added a speculative decoding test for llama-3 70B, under QPS 2
  • Evaluation metrics: throughput, TTFT (time to the first token, with mean, median and p99), ITL (inter-token latency, with mean, median and p99).

{serving_tests_markdown_table}

json version of the benchmarking tables

This section contains the data of the markdown tables above in JSON format. You can load the benchmarking tables into pandas dataframes as follows:

import json
import pandas as pd

benchmarking_results_json = """The json string"""
benchmarking_results = json.loads(benchmarking_results_json)
latency_results = pd.DataFrame.from_dict(benchmarking_results["latency"])
throughput_results = pd.DataFrame.from_dict(benchmarking_results["throughput"])
serving_results = pd.DataFrame.from_dict(benchmarking_results["serving"])

The json string for all benchmarking tables:

{benchmarking_results_in_json_string}

You can also check the raw experiment data in the Artifact tab of the Buildkite page.