-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrun.py
222 lines (184 loc) · 8.48 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import argparse
from lib import TabularDataset
from lib.train_blackbox import train_clf
from lib.train_blackbox_fair import train_clf_fair
from lib.train_explanation import get_explanation_predictions
import torch
import numpy as np
import pandas as pd
import socket
import sys
import random
from pathlib import Path
import copy
import os
import json
import pandas as pd
from itertools import count
from collections import defaultdict
from imblearn.over_sampling import RandomOverSampler
def program_config(parser):
parser.add_argument("--dataset", default = 'adult', choices = list(TabularDataset.dataset_params.keys()),
type = str)
parser.add_argument('--blackbox_model',
default='xgb', choices = ['lr', 'nn', 'svm_rbf', 'xgb', 'rf'], type=str)
parser.add_argument('--explanation_type',
default='local', type=str)
parser.add_argument('--explanation_model',
default='lime', type=str)
parser.add_argument('--n_features',
default=10, type=int)
parser.add_argument('--model_type', type=str, choices = ['ARL', 'ERM', 'LfF', 'sklearn', 'JTT', 'JointDRO', 'GroupDRO', 'reductionist'])
parser.add_argument('--seed', type = int, default = 42)
parser.add_argument('--experiment', type=str, default = '')
parser.add_argument('--output_dir', type = Path, required = True)
parser.add_argument('--ignore_lime_weights', action = 'store_true')
parser.add_argument('--evaluate_val', action = 'store_true', help = "generate explanations for validation set")
parser.add_argument('--max_epochs', default = 100, type = int)
parser.add_argument('--perturb_sigma', type = float, default = 1.)
# balance training set
parser.add_argument('--balance_groups', action = 'store_true', help = 'balance groups on training set by supersampling')
parser.add_argument('--balance_labels', action = 'store_true', help = 'balance labels on training set by supersampling')
parser.add_argument('--balance_group_idx', type=int, default=0)
# group aware debiasing
parser.add_argument('--train_grp_clf', action = 'store_true')
parser.add_argument('--grp_clf_attr', type = str, default='all') # sensitive attribute in data
# ERM and ARL
parser.add_argument('--lr', type = float, default = 5e-1)
parser.add_argument('--C', type = float, default = 1.0)
parser.add_argument('--batch_size', type = int, default = None)
parser.add_argument('--debug', action = 'store_true')
# JTT
parser.add_argument('--jtt_lambda', type = float, default = 10.)
parser.add_argument('--jtt_thres', type = float, default = 0.5)
# JointDRO
parser.add_argument('--joint_dro_alpha', type=float, default=0.1) # default=1 in jtt implementation
# GroupDRO
parser.add_argument('--groupdro_eta', type = float, default = 1.)
# reductionist
parser.add_argument('--reductionist_type', type = str, choices = ['EO','DP', 'Acc'], default = 'EO')
parser.add_argument('--reductionist_difference_bound', type = float, default = 0.01)
parser.add_argument('--reductionist_thres', type = float, default = 0.5)
# global decision tree
parser.add_argument('--tree_depth',type=int, default=7)
# parameters for fitting GAMs
parser.add_argument('--gam_max_iter', type = int, default=100)
return parser
parser = argparse.ArgumentParser()
parser = program_config(parser)
args = parser.parse_args()
print("Environment:")
print("\tPython: {}".format(sys.version.split(" ")[0]))
print("\tPyTorch: {}".format(torch.__version__))
print("\tCUDA: {}".format(torch.version.cuda))
print("\tDevice: {}".format('cuda' if torch.cuda.is_available() else 'cpu'))
print("\tCUDNN: {}".format(torch.backends.cudnn.version()))
print("\tNumPy: {}".format(np.__version__))
print("\tNode: {}".format(socket.gethostname()))
random.seed(args.seed)
torch.manual_seed(args.seed)
(args.output_dir).mkdir(parents=True, exist_ok=True)
dataset = TabularDataset.Dataset(args.dataset)
X_train, X_train_expl, X_val_expl, X_test, y_train, y_train_expl, y_val_expl, y_test, g_train, g_train_expl, g_val_expl, g_test = dataset.get_data()
assert(args.grp_clf_attr is None or args.grp_clf_attr == 'all' or args.grp_clf_attr in g_train.columns)
random.seed(args.seed)
torch.manual_seed(args.seed)
if args.balance_groups:
try:
#assert args.grp_clf_attr in g_train.columns
assert args.balance_group_idx<=1
balance_grp=g_train.columns[args.balance_group_idx]
grp = g_train[balance_grp]
except AssertionError:
print('Using all sensitive columns by default!')
mapping = defaultdict(count().__next__)
grp_vals=g_train.values
grp = []
for element in grp_vals:
grp.append(mapping[tuple(element)])
grp = np.array(grp)
rs = RandomOverSampler(sampling_strategy='not majority')
inds = rs.fit_resample(np.arange(len(X_train)).reshape(-1, 1), grp)[0].squeeze()
X_train = X_train.iloc[inds]
y_train = y_train[inds]
g_train = g_train.iloc[inds]
if args.balance_labels:
rs = RandomOverSampler(sampling_strategy='not majority')
inds = rs.fit_resample(np.arange(len(X_train)).reshape(-1, 1), y_train)[0].squeeze()
X_train = X_train.iloc[inds]
y_train = y_train[inds]
g_train = g_train.iloc[inds]
if args.debug:
X_val = X_val.head(128)
X_test = X_test.head(128)
y_val = y_val[:128, :]
y_test = y_test[:128, :]
g_val = g_val.head(128)
g_test = g_test.head(128)
clf, blackbox_pred_val, blackbox_pred_test, blackbox_prob_val, blackbox_prob_test = train_clf(args.blackbox_model,
X_train, X_val_expl,
X_test, y_train,
y_val_expl, y_test,
cat_cols = TabularDataset.dataset_params[args.dataset].categorical_columns)
if args.model_type in ['GroupDRO', 'reductionist']:
assert args.train_grp_clf
if args.train_grp_clf:
for i in g_train.columns:
assert i not in X_train.columns
#assert args.grp_clf_attr in g_train.columns
grp_clf, _, _, _, _ = train_clf('xgb', X_train, X_val_expl, X_test, g_train[args.grp_clf_attr].values,
g_val_expl[args.grp_clf_attr].values, g_test[args.grp_clf_attr].values, scoring = 'roc_auc_ovr')
else:
grp_clf = None
final_outputs = []
if args.evaluate_val: ssets = ['test', 'val']
else: ssets = ['test']
# getting train group info for training fair global models
mapping = defaultdict(count().__next__)
sens_list=g_train_expl.values
sens_list_id = []
for element in sens_list:
sens_list_id.append(mapping[tuple(element)])
sens_list_id = np.array(sens_list_id)
assert args.balance_group_idx<=1
balance_grp=g_train.columns[args.balance_group_idx]
balance_grp_expl= g_train_expl[balance_grp].values
for sset, mat, blackbox_pred, blackbox_prob, ground_truth in zip(ssets, [X_test, X_val_expl],
[blackbox_pred_test, blackbox_pred_val],
[blackbox_prob_test, blackbox_prob_val],
[y_test, y_val_expl]):
expl_predictions = get_explanation_predictions(
args.explanation_type, args.explanation_model,
X_train_expl,
mat, y_train_expl,
clf, hparams = vars(args), n_feat = args.n_features,
model_type = args.model_type,
set_name = sset,
grp_clf = grp_clf,
perturb_sigma = args.perturb_sigma,
reductionist_type=args.expl_reductionist_type,
reductionist_difference_bound=args.expl_reductionist_difference_bound,
thresh=args.expl_thresh,
grp_train = balance_grp_expl
)
curr_test = mat.copy()
curr_test['blackbox_pred'] = blackbox_pred
curr_test['blackbox_prob'] = blackbox_prob[:,1]
curr_test['expl_pred'] = expl_predictions
curr_test['groundtruth'] = ground_truth
curr_test['set'] = sset
final_outputs.append(curr_test)
final_outputs = pd.concat(final_outputs, ignore_index = True)
final_outputs.to_csv(args.output_dir/'{}_{}_{}.csv'.format(args.blackbox_model,
args.explanation_type,
args.explanation_model), index = False)
# creating outputs
with (args.output_dir/'args.json').open('w') as f:
temp = copy.deepcopy(vars(args))
for i in temp:
if isinstance(temp[i], Path):
temp[i] = os.fspath(temp[i])
json.dump(temp, f, indent = 4)
print(json.dumps(temp, indent = 4, sort_keys = True))
with (args.output_dir/'done').open('w') as f:
f.write('done')